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 10 

Abstract 11 

The 3D characterisation of individual vine canopies with a LiDAR sensor requires point cloud 12 

classification. A Bayesian point cloud classification algorithm (BPCC) is proposed that combines an 13 

automatic filtering method (AFM) and a classification method based on clustering to process LiDAR 14 

data. Data were collected on several grape varieties with two different modes of training. To evaluate 15 

the quality of the BPCC algorithm and its influence on the estimation of canopy parameters (height 16 

and width), it was compared to an expert manual method and to an established semi-automatic 17 

research method requiring interactive pre-treatment (PROTOLIDAR). The results showed that the 18 

AFM filtering was similar to the expert manual method and retained on average 9% more points than 19 

the PROTOLIDAR method over the whole growing season. Estimates of vegetation height and width 20 

that were obtained from classification of the AFM-filtered LiDAR data were strongly correlated with 21 

estimates made by the PROTOLIDAR method (R2 = 0.94 and 0.89, respectively). The classification 22 

algorithm was most effective if its parameters were permitted to be variable through the season. 23 

Optimal values for classification parameters were established for both height and width at different 24 

phenological stages. On the whole, the results demonstrated that although the BPCC algorithm 25 

operates at a higher level of automation than PROTOLIDAR, the estimates of canopy dimensions in 26 

the vineyards were equivalent. BPCC enables the possibility to adjust the spray rate according to local 27 

vegetative characteristics in an automated way. 28 

 29 
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Nomenclature 33 

AFM automatic filtering method 
BBCH describes the phenological development of grapes using the BBCH-scale 
BPCC Bayesian point cloud classification 
CCC correlation coefficient of concordance 
CMM conventional manual measurements 

CV-RMSE coefficient of variation of root mean square error, % 
D distance between the LiDAR travel line and the Line of Trunk, m 
Dε distance indicative of the angle range (ε) of LiDAR beams intercepted by 

the ground in the grassed zone, m 
Dδ distance indicative of the angle range (δ) of LiDAR beams intercepted by 

the ground in the inter-row, m 
HEF human expert filtration 
HG height of grassed zone above ground, m 
HS height of the LiDAR above ground, m 
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Hsc height of the start of canopy growth above the ground, m 
Hε distance defined along the y-axis between the LiDAR emission point and 

the first (closest) 5% beams intercepted in the grassed zone, m 
LiDAR light detection and ranging 

LoT line of trunks 
PPP plant protection products 

vine unit the area of foliage corresponding to 0.5 m before and after the vine trunk; 
signifies a standardised individual vine  

VH vegetation height, m 
VW vegetation width, m 
βH adjustable threshold during the season defined to estimate VH 
βw adjustable threshold during the season defined to estimate VW 
ΔW distance interval between two consecutive vertical scans, m 
Δθ Δθ angular resolution of the scans, degree 
θ angular resolution of the scans, degree 
μ population mean of the points along the y or z axis, m 
ρ radial distance, m 
σ standard deviations of the points along the y or z axis, m 
δ  angle range where the LiDAR beams are removed as intercepted by the 

ground in the inter-row, in degrees 
ε angle range where the LiDAR beams are removed as intercepted in the 

grassed zone, in degrees 
 34 

1. Introduction 35 

Over the past two decades, various advances towards more precise and efficient spray systems have 36 

been proposed for different crops, including vineyards (Siegfried et al., 2007; Walklate & Cross., 37 

2013). Although these advances differ in their assumptions and calculations, most of them are based 38 

on a characterisation of the canopy. The important factors to consider to ensure an efficient spray 39 

application process are the geometric characteristics of the canopy (Solanelles et al., 2006; Llorens et 40 

al., 2011a) and the relationship between the quantity of plant protection products (PPP) sprayed and 41 

the deposits obtained on the foliage, expressed as a quantity per surface area of organs to protect (Gil 42 

et al., 2014). As stated by Gil et al. (2013), the risk levels to harm sensitive non-target areas during the 43 

spray application process are related to dose rates and will depend on both the total amount of PPP 44 

sprayed and the spraying efficiency over the entire canopy. It has been stated that correctly targeting 45 

and adjusting deposition to canopy dimensions/structure will lead to a considerable increase in the 46 

efficiency of applications (Vercruysse et al., 1999; Gil et al., 2007), thereby reducing the total amount 47 

of PPP required in accordance with EU objectives (Llorens et al., 2010). This has led to the 48 

development of variable rate spraying technologies and methodologies (Gil et al., 2013). These 49 

techniques hypothesise that foliar application should target similar deposits per quantity of vegetation 50 

to be protected, regardless of the canopy shape or density. In this context, the development of 51 

precision spraying technologies that take into account the dimensional characteristics of the canopy to 52 

regulate nozzle flow is one of the levers that has been identified to reduce PPPs in perennial crops 53 

(Berk et al., 2016). 54 

 55 

Canopy dimensions can be retrieved manually (Viret et al., 2005; Rosell Polo et al., 2009) or obtained 56 

from sensor measurements (Rosell et al., 2012). Manual measurements are time-consuming and have 57 

limited suitability under production conditions. Using them requires an extrapolation of measurements 58 

from a few locations across the entire field, which generally implies some assumptions about the 59 
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homogeneity of crop characteristics within a production system. This disregards the knowledge that 60 

canopy size exhibits spatial variation in vineyard blocks (Tisseyre et al., 2008; Taylor et al., 2013). In 61 

order to increase spatial resolution to account for known variability in canopy size, vineyard canopy 62 

structure can be indirectly estimated using various types of sensors. The literature includes numerous 63 

studies that have characterised vine dimensions from the scale of the estate to the individual vine 64 

(Rosell et al., 2012; Arnó et al., 2017). Sensors used to date include ultrasonic sensors (Gil et al., 65 

2007; Llorens et al., 2011a), stereo vision imagery (Andersen et al., 2005) including unmanned aerial 66 

vehicle (UAV) mounted photogrammetry (Mathews et al., 2013; Miranda et al., 2017; de Castro et al., 67 

2018) and 2D terrestrial Laser imaging Detection And Ranging (LiDAR) sensors (Poni et al., 1996; 68 

Rosell Polo et al., 2009; Siebers et al., 2018).  69 

 70 

The use of laser sensors to digitise the 3D features (or characteristics) of crops (particularly in 71 

viticulture) has been established for some decades but is still mainly limited to the research domain. 72 

An early attempt to use laser scanning in viticulture was the study by Poni et al. (1996), who used a 73 

2D LiDAR mounted on an arc-shaped structure to simply calculate the light interception of each vine 74 

organ (leaves, trunk, cordon etc…). Since this initial work, interest and development in the use of 75 

LiDAR in vineyards has increased and it is becoming more frequently used to non-destructively 76 

characterise vegetation structure, shape and biomass (Colaço et al., 2018; Jaakkola et al., 2010). Using 77 

LiDAR sensing to measures distances from the sensor to a target over a plane, has a particular interest 78 

for the real-time determination of canopy structure during spray operations. 3D scanning is possible 79 

when a 2D LiDAR is deployed on a moving platform (Rovira-Más et al., 2006) with a well-80 

determined method of geo-referencing the LiDAR data. Canopy characterisation using 2D LiDAR has 81 

been proposed in vineyard studies (Palacin et al., 2007; Sanz et al., 2018) and 3D point clouds have 82 

been used to digitally reconstruct and describe the geometric characteristics of vegetation cover with a 83 

high level of accuracy (Moorthy et al., 2011). A system developed by Rosell et al. (2012) made it 84 

possible to obtain 3D digitised point clouds of crops, from which a large amount of information, such 85 

as height, width, volume, leaf area index and leaf area density, could be obtained for a plant or an area 86 

of the crop. Arnó et al. (2013) concluded that LiDAR systems were able to measure the geometric 87 

characteristics of plants with sufficient precision for most site-specific agriculture applications.   88 

 89 

For high-resolution canopy characterisation, LiDAR systems have an advantage over ultrasonic and 90 

stereoscopic imagery approaches because of their ability to provide information on both canopy 91 

dimensions and density. Ultrasonic sensors were used before LiDAR systems became affordable and 92 

available (Schumann et al., 2005), but did not gain widespread popularity. This was due to issues 93 

regarding the large angle of divergence of the wave beams (which limits the resolution and accuracy 94 

of the measurements) (Stajnko et al., 2012), the need for multiple sensors to cover vine and tree crops 95 

(Lee et al., 2009) and limitations with the proximity to the crop at which the sensor can be effectively 96 

deployed (Llorens et al., 2011a). Recent advances in UAV-based photogrammetry have indicated a 97 

high potential for their use in mapping canopy shape (de Castro et al., 2018). However, mapping 98 

canopy density with stereoscopy is still an issue (Torres-Sánchez et al., 2018), and this is critical for 99 

modelling spray deposition and adjusting sprayer operation (Campos et al., 2019). Moreover, UAV-100 

based sensors are also not suitable for real-time applications and require a pre-application survey 101 

combined with a prescription mapping approach. While LiDAR systems could equally be used pre-102 

spraying to develop prescription spray maps, they also have the potential to be used in front of a 103 

sprayer to generate on-the-go, real-time 3D information for variable-rate spraying (Llorens et al., 104 

2010). In the latter real-time use-case for LiDAR, robust and rapid data processing methods will be 105 

required to ensure that correct information is transferred to the spray control system.  106 

 107 
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The literature presents different types of vegetative indicators, such as the tree row volume (TRV) 108 

(Byers et al., 1971; Sanz et al., 2013) and the leaf wall area (LWA), which can be used to characterise 109 

vegetation structure from canopy dimensions. These are measured either manually or with sensors. 110 

There are high resolution variants of the LWA, such as the pixelated leaf wall area (PLWA) (del-111 

Moral-Martínez et al., 2015) and the leaf wall area by points (LWApts) proposed by Bastianelli et al. 112 

(2017). When LWA is constant, PLWA and LWApts may exhibit variations due to changes in canopy 113 

density. The tree area index (TAI) (Walklate et al., 2002) is based on the notion of light interception 114 

and integrates both canopy density and variations of geometry surface area density (SAD) (Schultz, 115 

1995). All of these vegetative indicators aim to simplify the complex structure of vegetation by 116 

describing it as a simple geometrical form, sometimes with a feature representing density. However, 117 

before these indicators can be calculated from sensor-based data, different processes are required to 118 

obtain the primary canopy dimensions from these data. 119 

  120 

The first challenge is to obtain a complete 3D point cloud of the entire canopy. Typically, this has 121 

required the merging of data collected from the left and right sides of the vineyard (or orchard) row at 122 

potentially different times, i.e. during different transects (Sanz et al., 2004). Various tedious and 123 

difficult methodologies have been proposed, such as placing reference elements at specific points in 124 

the row that can be identified within the canopy point cloud. This complicates data management 125 

(Rosell et al., 2009; Sanz et al., 2013). Subsequently, other developments have improved this process 126 

with the coupling of global navigation satellite system (GNSS) positioning (Llorens et al., 2011b; 127 

Escolà et al., 2017) and inertial measurement units (IMUs) (del-Moral-Martínez et al., 2016). 128 

However, GNSS and IMUs both require high quality, expensive specialised equipment. This increases 129 

the cost and the processing required and affects the transferability of the research methods into 130 

commercial applications. Furthermore, obtaining scans of both sides of the canopy requires sensors to 131 

be deployed in every vineyard row. While this has been possible to date in research-based studies, the 132 

reality of agricultural practices is that vineyard traffic is usually only every second or third row 133 

depending on equipment configuration. It is more likely that only one side of the canopy (a half-134 

canopy scan) will be sensed during any single vineyard operation. This remains problematic, as 135 

approaches to estimate canopy dimensions from ‘half-canopy’ (one-side) LiDAR scans, and their 136 

accuracy, have not yet been well-developed.  137 

 138 

The second challenge is the filtering procedure of the 3D point cloud. Given the large number of 139 

beams emitted by a 2D LiDAR, the selection and classification of “points of interest” becomes an 140 

important pre-processing task before canopy dimensions and vegetative indicators can be calculated. A 141 

significant number of points are intercepted in regions that are not relevant for the calculation of 142 

vegetative indicators, such as the ground, grassed areas, the vine trunk, adjacent rows or the trellis 143 

wires (Bastianelli et al., 2017). However, in the available literature on applications of mobile 2D 144 

LiDAR in vineyards and orchards, there are very limited explanations and details on the procedures 145 

for filtering 3D point clouds. In many studies, the goal was to establish the proof of concept and the 146 

data filtering was performed with intensive human intervention (Palacin et al., 2007; Rinaldi et al., 147 

2013). This laborious human intervention at the pre-processing step is not practical if LiDAR is to be 148 

deployed in production contexts. Rapid, repeatable, robust filtering methods are needed to ensure the 149 

correct estimation of simple vegetative parameters, such as vegetation height or width. These methods 150 

need to be effective at all stages of canopy development, from small open canopies during early shoot 151 

development to large, potentially dense canopies late in the season. Research methods developed and 152 

used to date have tended to focus on filtering and pre-processing data obtained at specific growth 153 

stages, not collectively across all growth stages. If LiDAR, or any other sensing technology, is to be 154 

successfully incorporated into variable-rate PPP spraying regimes, the technology must be effective 155 
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across a wide range of canopy sizes and adaptable to changing canopy conditions. Arguably, the most 156 

important period for applying PPP is when the canopy size and shape is rapidly developing during 157 

early to mid-season shoot growth. The need for rapid and robust filtering of these large 3D datasets 158 

will become even more critical when real-time processing is required for on-the-go applications in 159 

spatially variable canopy systems.  160 

 161 

The research presented here aims to address these issues of half-canopy scans and an evolving canopy 162 

structure by proposing and testing a novel method for the automated pre-processing and filtering of 163 

LiDAR data. The method was designed to remain effective as canopy size and shape change quickly 164 

through the first half of the growing season and to be applicable in commercial agricultural situations. 165 

The specific objectives of this work were to: 166 

(1) propose an adaptable algorithm that applies an automatic filtering method to remove artefacts and 167 

non-vine data from 2D LiDAR data collected from only one side of the vine canopy, and then 168 

classifies and separates the canopy zone from other vine components (trunk, vegetation, trellis wires) 169 

without any operator intervention, 170 

(2) use the proposed algorithm to estimate canopy height and width from LiDAR surveys in several 171 

vineyard blocks in southern France and, 172 

(3) assess the quality of these estimations of canopy dimensions by comparing them to canopy 173 

dimensions derived from an existing standard LiDAR data filtering method, which is not automated 174 

and requires human intervention, and to conventional manual canopy measurements. 175 

 176 

2. Materials and methods 177 

2.1. Fields trials 178 

A vineyard with four different blocks ("Les pins", "Aglae", "Terre blanche" and "Franquet") of four 179 

different varieties of Vitis vinifera L. cv (Marselan, Cabernet Sauvignon, Chardonnay and Petit 180 

Verdot), with contrasting vigour, was chosen for the study in 2019. Located in Grabels, close to 181 

Montpellier (Hérault, France), the study vineyard is characteristic of a vineyard from the south of 182 

France, both in terms of grape varieties and training systems. The rows were north-south oriented for 183 

"Les pins", and northeast-southwest for "Aglae", "Terre blanche" and "Franquet".  Two different 184 

training systems were used: Royat cordon for "Les pins", "Aglae" and "Franquet" and Guyot for 185 

"Terre Blanche". Vines were trained (one carrying wire and one trellising wire) in all blocks. Rows 186 

were separated by distance Dir, with Dir equal to 2.5 m in all blocks and vine spacing in the row was 1 187 

m. For each block, 20 vines were selected and their trunks geolocated with a LEICA Viva GS10 dual-188 

frequency GNSS receiver equipped with a Siemens MC75 GSM/GPRS individual module, triple-189 

frequency antennas (GPS/GLONASS/Galileo) LEICA AS10 and CS10 radio controls. The same vines 190 

were followed throughout the season. 2D LiDAR and manual characterisation of vegetation were 191 

carried out on seven dates during the season (T1: 2019/04/29, T2: 2019/05/13, T3: 2019/05/21, T4: 192 

2019/05/28, T5: 2019/06/20, T6: 2019/07/18, T7: 2019/07/31). These dates correspond respectively to 193 

the following BBCH scale growth stages (Lorenz et al., 1994): three leaves spread out (14), four to six 194 

leaves spread out (53), separate flower buds (57), beginning of flowering (61), flowering (70), berry 195 

development (76), bunch closure (81).  196 

 197 

2.2. Measurement system 198 

2.2.1. Conventional manual measurement (CMM) 199 

Two different canopy parameters were manually measured at each vine: canopy height (m) and 200 

canopy width (m). Manual observations were performed according to the protocol of Manktelow and 201 

Praat (1997). Briefly, canopy height was defined from the first leaf above the trunk to the highest leaf 202 

in the canopy in the area above the vine trunk. For canopy width, the canopy zone was divided into 203 
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three equal vertical sections and a measurement made horizontally in each section between the 204 

external canopy leaves with a 2 m ruler. The three measurements were averaged to give the mean 205 

canopy width. Each measurement aimed to include > 99 % of the canopy (i.e. some protruding 206 

branches were ignored). 207 

 208 

2.2.2. LiDAR sensor specifications 209 

Data acquisition unit 210 

A Sick LMS100 (SICK AG, Düsseldorf, Germany) 2D LiDAR sensor was used in the study. The 211 

LMS100 LiDAR is a fully-automatic divergent laser scanner based on time-of-flight (TOF) 212 

measurement with a systematic error of ± 30 mm, a selectable angular resolution (Δθ) set to 0.5° and a 213 

range of 270°.With these settings, there were 541 distances (ρ, from the sensor to the interception 214 

point) that corresponded to one complete laser mirror rotation. This set of 541 distances is called a 215 

“scan” throughout the article and scans were repeated at 50 Hz. The Sick LMS100 laser emission 216 

wavelength is 905 nm (near infrared) and it is Class one eye-safe. This sensor was coupled to a Real 217 

Time Kinematic (RTK) GNSS receiver (Teria GSM correction, Vitry-sur-Seine, France) and an 218 

Effibox data acquisition unit (Effidence society, Romagnat, France) that was used as a data-logger. 219 

After surveys, the data were transferred to a laptop over a Wi-Fi network. The sensors were mounted 220 

on a dedicated stainless-steel mast placed behind a tractor according to a previously described 221 

procedure (Bastianelli et al., 2017) at a height ranging from 1.0 m to 1.40 m above the ground level 222 

(HS). Height was adjusted up during the season to account for increasing canopy height (Figure 1A). 223 

Collectively the sensors and mobile equipment provided a 3D measurement system. 224 

 225 

The tractor was driven along the vineyard rows at a constant forward travel speed (FTS) (Figure 1B) 226 

of 5 km h-1, with a systematic error of ± 0.21 km h-1 (IFV, internal report, October, 2018). The 20 227 

target vines were located in various locations along the vineyard rows. The RTK-GNSS was used to 228 

identify the starting point of these 20 target vines, after which the scans were aggregated, using a fixed 229 

forward distance based on the constant tractor speed, to generate a 3D point cloud reconstruction of 230 

the vine environment (Figure 1B). During the trials, only one side of the canopy was scanned for each 231 

vineyard row.  232 

 233 

2.3. Vine unit local 3D point cloud construction 234 

A vine unit, corresponding to an individual vine, was defined according to the direction of travel (x), 235 

considering 0.5 m before and 0.5 m after the vine trunk centre (Figure 1B). Vertical scans of the vine 236 

canopy were obtained from the 2D LiDAR. Each scan was composed of distances between the LiDAR 237 

and objects in the path of the laser beam. The coordinate system origin (O) was defined as the first 238 

position of the 2D LiDAR during the measurement on the studied vine unit. The time stamp t (in 239 

seconds) was given by the Effibox acquisition unit. The distance interval between two consecutive 240 

vertical scans (ΔW) was 0.028 m along the direction of travel of the tractor (Figure 1B). For each 241 

point of the cloud, the x coordinate was calculated by multiplying t by the travel speed. The y and z 242 

coordinates (informing on canopy height and width respectively) were obtained by a polar (ρ, θ) 243 

(Figure 1A) to Cartesian (y, z) coordinates transformation. Therefore, the 3D point cloud of the vine 244 

unit was generated within a Cartesian coordinate system.  245 

 246 

 247 

Figure 1 near here 248 

 249 

 250 

2.4. Filter algorithms and LiDAR data analysis  251 
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In this section, the methodologies of the two approaches to be compared are presented. The first, 252 

PROTOLIDAR, is considered here as a standard approach. It requires human intervention and is based 253 

on work by Rinaldi et al. (2013). The second is the novel algorithm BPCC. 254 

 255 

2.4.1. PROTOLIDAR methodology 256 

The data files were analysed using the open source statistical software R (Version 1.2.5001) (R 257 

Development Core Team, 2019) and the PROTOLIDAR package (PROcess TO LIDAR Data) 258 

(Rinaldi et al., 2013). PROTOLIDAR contains three functions to characterise the vine canopy (height, 259 

width and front view) from the LiDAR point cloud. The tool performs statistical analysis on the 260 

outputs and estimates the leaf area index (LAI), LWA and TRV. For the pre-processing (filtering), the 261 

methodology described in Rinaldi et al. (2013) was used. The 3D point cloud was trimmed using the 262 

Extract_plant_grapevine function with manually defined thresholds, leaving only the area of interest 263 

(i.e. the canopy). This function removed areas of the 3D point cloud that were not associated with the 264 

canopy, including LiDAR returns from ground and under vine weeds as well as vines in neighbouring 265 

rows.  266 

Once the data had been filtered to a canopy-only response, the PROTOLIDAR package allowed user-267 

defined parameters to be set to characterise the vegetation. The functions Width_canopy and 268 

Height_canopy permit the characterisation of vegetation height (VH) and vegetation width (VW) 269 

respectively. The minimum possible height was defined manually as the cordon height. VH was 270 

estimated from the lowest registered point of canopy LiDAR returns above the defined cordon height 271 

(denoted as Height start canopy (Hsc)) to the highest registered point of canopy returns along the y-272 

axis. VW was estimated using the same methodology as for VH, but by considering points along the z-273 

axis. 274 

 275 

2.4.2. LiDAR Bayesian point cloud classification algorithm (BPCC) 276 

The BPCC is a 2-stage algorithm. It comprises an automatic filter to remove points of non-interest and 277 

a hierarchical cluster-based method to derive canopy dimensions. The two stages are presented in their 278 

respective subsections. 279 

 280 

2.4.2.1. Automatic filter method (AFM) 281 

As the 2D LiDAR sensor scans the entire vineyard, not just the vine canopy, points that belong to the 282 

canopy must be automatically identified and distinguished from points associated with other elements 283 

(ground, non-vine vegetation, etc…). This pre-processing is critical to estimate canopy dimensions 284 

(height and width) as accurately as possible. The filtering of the raw data was carried out using 4 285 

functions that eliminate LiDAR returns from areas of non-interest associated with: (1) the ground in 286 

the inter-row, (2) adjacent rows, (3) undervine and inter-row vegetation (weeds) and (4) obstacles too 287 

close to the sensor to be canopy.  288 

 289 

(1) Inter-row ground filtering: beams intercepted by the ground in the inter-row must be removed from 290 

the raw data. It is assumed that this zone corresponds to half of the distance from the sensor to the line 291 

of trunks and equates to a distance Dδ of 0.625 m in these vineyards (Figure 2). Depending on the 292 

height of the LiDAR (HS), the beams in the interval [0; �] are removed. Dδ is not fixed and should be 293 

adjusted for changes in row width and canopy vigour and shape if transferred to other production 294 

systems. The value of the angle δ is calculated as follows:  295 

� = ���	 ��

��� 296 

 297 
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(2) Filtering of adjacent rows: in a first pass, points intercepted more than two rows away (> 8 m) from 298 

the LiDAR sensor were removed from the raw data. Then, assuming that the tractor has a straight 299 

trajectory centred in the inter-row, with a systematic error of ± 0.035 m, the distance from the centre of 300 

the inter-row to the trunk line (LoT) can be used to identify and delete points associated with the 301 

opposite side of the canopy or adjacent rows. The filter value (D) is therefore half the row width (Dir).  302 

 303 

� = ����
2 � 304 

(3) Grassed zone filtering: vegetation present under the vine or in the inter-row must be removed from 305 

the raw data to avoid its inclusion in the calculation of the vegetative parameters. For this purpose, the 306 

height of the grassed zone (HG) could be set as a constant threshold, which would need to be adjusted 307 

between systems, or alternatively derived from the LiDAR data, so that it is automated. In the latter 308 

case, HG can be derived under the assumption that there is only grass below the LiDAR sensor and 309 

that HS is known. In this case, a distance for filtering the grassed zone (Dε) can be defined as:  310 

 311 

�� = � − �
  312 

The beams are removed at the angles ε in the interval that is considered as the grassed zone (Figure 2). 313 

The value of the ε angle is defined as: 314 

 315 

� = ���	 ���
��� 316 

Subsequently, a distance Hε can be calculated as the average distance of the nearest 5% of intercepted 317 

points to the LiDAR emission point in the grassed zone, as defined by the angle ε. The 5% threshold 318 

was based on previous unpublished research using this setup. HG is therefore defined as: 319 

 320 

�� = �� − �� 321 

This filtration threshold (HG) will evolve during the season according to the acquisition date and the 322 

characteristics of the ground cover in the blocks (Figure 2). The angle ε may need to be altered in 323 

vineyards with differing canopy and ground cover conditions to those in southern France. The relative 324 

importance of this filter will vary depending on how precisely ground cover in the vineyard is 325 

managed. 326 

 327 

(4) Near point filtering: beams intercepted at a distance too close to the 2D LiDAR to be canopy need 328 

to be removed from the raw data. Most of these are likely to be associated with large insects or 329 

random, untrained or broken shoots. The filter value was set at a constant 0.5 m, which was based on 330 

the operating range of the 2D LiDAR sensor and the expectation that the canopy is vertically trained 331 

(Figure 2). This fixed threshold will again need to be adapted when transferred into vineyards with 332 

different training and trellising modes; however, once determined, it should be a fixed value to 333 

automate this filtering process. In practice, this filtering represents a tiny fraction of point removal by 334 

AFM. 335 

 336 

Before the application of these four filters, no pre-processing or filtering was applied to the raw point 337 

clouds. Generic parameters based on vineyard characteristics were set and all the above defined filters 338 

were applied automatically. At the end of this step, it was possible to separate the intercepted points 339 

into two categories (Figure 2): (1) points intercepted outside the zone of interest (in blue) that have 340 
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been eliminated, and (2) points intercepted in the zone of interest (trunk, vegetation and trellis wire) 341 

(in red). 342 

 343 

 344 

Figure 2 near here 345 

 346 

 347 

2.4.2.2. Clustering methodology 348 

The determination of canopy dimensions from the pre-processed LiDAR data consisted of two parts; 349 

(a) a 1D cluster analysis based on the vegetation height from the LiDAR point clouds to identify 350 

different components of the vine and trellis, followed by a Bayes classification, and (b) a statistical test 351 

(thresholding) to delimit two dimensional parameters (vegetation height and vegetation width), 352 

associated with the canopy area defined from the classification process. 353 

 354 

(a) 1D hierarchical cluster and Bayes classification 355 

The LiDAR point cloud expressed the canopy information in a 3D space. Points therefore 356 

corresponded to heterogeneous distributions, like multivariate clusters, of discrete objects within the 357 

sample space according to their positioning. Field observations suggested the presence of at least three 358 

different ‘groups’ within the general area of interest for the canopy. A "low" group associated with 359 

LiDAR returns from the trunk and low-hanging or poorly placed shoots; a "high" group, particularly 360 

early in the season, associated with LiDAR returns from trellis wires and infrastructure; and a 361 

"transition" or central group associated with LiDAR returns from the canopy (Figures. 3A, 3B and 362 

3C). The spatial location (on a vertical axis) of the high and low groups is static, as the trellis wires 363 

and vine trunks are fixed. It is predominantly the transition group associated with the canopy that is 364 

dynamic and changing as the season progresses. As the vine grows, the transition group will merge 365 

with the high group and obstruct the trellising wires. 366 

Hierarchical cluster analysis was performed to determine if there were two or three unique 367 

combinations of Gaussian distributions along the height axis. Given the expected overlapping 368 

Gaussian distributions of the 2D LiDAR groups, a hierarchical clustering algorithm based on a 369 

Gaussian mixing model (Fraley et al., 2007) was used. Hierarchical clustering defines classes by 370 

grouping the most similar observations in a hierarchical fashion and is based on functions that 371 

combine model-based hierarchical clustering (expectation–maximisation) and the Bayesian 372 

Information Criterion (BIC). The clustering was conducted using the mclust package (Fraley et al., 373 

2012) in R.  374 

Once the points in the point cloud had been clustered and points associated with (or likely to be 375 

associated with) the canopy had been identified, the canopy dimensions were calculated. The canopy 376 

point cloud will follow a Gaussian distribution (Figures. 3A, 3B and 3C). Therefore, a choice must be 377 

made on which values of this distribution should be used to determine canopy dimensions. In the 378 

standard approach of Rinaldi et al. (2013), extreme values were used for width and for the maximum 379 

height, while the minimum height (Hsc) was defined manually as the cordon height. However, in the 380 

case of an automated system, as proposed here, this may not be sensible as some outlying values may 381 

be retained and will unduly influence the dimension calculations. A sensitivity analysis on the choice 382 

of a statistical threshold for defining the vegetation height and width was carried out. The distribution 383 

of the points along the y axis were filtered based on standard deviations (σH) from the population mean 384 

(μH). The thresholds were established as follows: μH +/- (βH * σH) with βH a parameter. Candidate 385 

values for βH were selected as follows: 0.5; 1; 1.5; 2; 2.5; 3. For each set of data corresponding to the 386 

same phenological stage (from T1 to T7) and for each βH values (6 in total), the absolute error 387 
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(expressed in m) between the dimensions of the vegetation canopy measured manually by an operator 388 

in the field and estimated by the clustering method was calculated for the vegetation. Any y-values 389 

that were not in the respective interval were excluded from the analysis. The evolution of the absolute 390 

error according to the selected candidate βH values allowed the identification of the optimum βH value 391 

that minimised the absolute error (vs. manual measurement). Thus, a set of seven phenology 392 

dependent βH thresholds were defined that covered the whole season.  393 

 394 

With regards to the estimation of canopy width, a similar sensitivity analysis was carried out in the z 395 

axis using the methodology described above for canopy height (y axis). However, as only one side of 396 

the vine was scanned, a symmetry hypothesis was used based on the observations of Arnó et al. (2015) 397 

to estimate full canopy width from half canopy width. The half width of canopy was estimated using 398 

the line of trunks (LoT) as the upper limit. The z-values of the point cloud followed an exponential 399 

distribution over the interval [μw - (βw * σw); LoT]. The lower thresholds were established as follows: 400 

μw - (βw * σw) (with μw and σw respectively the mean and standard deviation of the z values of the 401 

points defined in the foliar zone). For each phenological stage and for each βw value, the absolute error 402 

was calculated (expressed in m) between the manually measured full canopy width and the canopy 403 

width estimated by the clustering method. Calculating this over a range values (0.5; 1; 1.5; 2; 2.5; 3) 404 

allowed an adjustable threshold (βw) to be defined at each observed phenological stage along the 405 

season that minimised the absolute error against the manual measurements. 406 

 407 

The parameterisation of the adjustable (temporal) threshold for defining the canopy zone was carried 408 

out for different phenological stages. This is needed because (1) the number of groups defined by the 409 

algorithm changes with vine development, decreasing from three at the start of the season to two 410 

groups by mid/late-season once the trellising wire is covered by foliage and (2) the geometry of the 411 

canopy evolves with vine management operations, such as lifting, trimming and topping, that are 412 

linked to phenological development, and they have a potential impact on canopy dimensions.  413 

 414 

(b) Estimation of canopy height and width based on adaptive thresholding in the canopy zone 415 

Given the preferred βH and βw values for the vine phenological stage, canopy dimensions in the y and z 416 

axes can be derived from the 2D LiDAR points classed as the canopy zone. Height and width were 417 

calculated for each vine unit. 418 

 419 

Vegetation height (VH) in m was defined as: 420 

 421 

VH = (μH + (βH * σH)) – (μH – (βH * σH)) 422 

where βH is the threshold identified from the sensitivity analysis for a particular phenological stage; μH 423 

and σH are respectively the mean and standard deviation of the y values defined in the canopy zone 424 

 425 

Vegetation width (VW) in metre (m) was derived from a LiDAR scan of only one side of the vineyard 426 

row. Therefore, VW was calculated as double the width of one side and defined as: 427 

 428 

VW = (D – (μw – (βw * σw)) *2 429 

where D is the distance between the LiDAR travel line and the LoT (in m), βw is the threshold 430 

identified from the sensitivity analysis for a particular phenological stage and μw and σw are 431 

respectively the mean and standard deviation of the z values defined in the canopy zone. 432 

 433 

2.5. Error assessment of result 434 
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2.5.1. Quantitative comparison of filter methods 435 

In order to compare the effect of the AFM (first step in the BPCC) and the PROTOLIDAR package on 436 

the raw point cloud data, both approaches were compared with an intensive expert classification of the 437 

entire point cloud, which is termed a “Human Expert Filtration” (HEF) approach. The HEF consisted 438 

of manually tagging all the intercepted points and using the expert’s knowledge to classify each 439 

LiDAR return into a group (inter-row ground, adjacent rows, grassed zone, near point or canopy). This 440 

was a very laborious process and was only performed on a few vine units at different phenological 441 

stages to illustrate and compare how the three different filtering methods were performing. To describe 442 

the differences between the HEF, the PROTOLIDAR and AFM methodologies, a distribution of the 443 

intercepted points in the four groups defined by the applied filters was studied and a comparison of the 444 

percentage of the  points retained to calculate vegetative parameters after the filtration steps was 445 

performed on two 3D LiDAR point clouds from an acquisition made on three vines (Vitis vinifera L. 446 

cv. Marselan) at three different stages - BBCH 14, 57 and 76 (Table 1). It should be noted that the 447 

PROTOLIDAR method is a global and non-specific method for filtering intercepted LiDAR points. It 448 

did not offer the possibility to class the filtered points according to groups (inter-row ground, grassed 449 

zone, etc). Consequently, only total data removed, and not associated groupings, are reported for the 450 

PROTOLIDAR method.  451 

 452 

2.5.2. Sensitivity study on thresholding in the clustering methodology 453 

A sensitivity analysis was used to select βH and βw thresholds that minimised the absolute difference 454 

with manual measurement of canopy dimensions. To evaluate the accuracy and precision of the 455 

automatic clustering method within the sensitivity analysis, several statistical tests were performed on 456 

the absolute errors measured on the 560 vine units. To test the accuracy between the different 457 

methods, an ANOVA test was performed on the absolute error values per vine unit by aggregating the 458 

data for each phenological stage (n = 80 vine units) and significant differences between the groups 459 

determined by a Tukey Honest Significance Difference (Tukey-HSD) post-hoc test. The variance of 460 

the absolute error is a measure of the precision of the method, with a low variance indicating a high 461 

precision. To test for differences in the variance between groups, a pairwise test was done using 462 

Bartlett’s test (α = 0.05) and p values were adjusted using the Bonferroni method (Westfall et al., 463 

1997). 464 

 465 

2.5.3. Comparison of derived canopy dimensions between the PROTOLIDAR - BPCC - CMM 466 

methodologies 467 

The coefficient of variation of root mean square error (CV-RMSE) and the correlation coefficient of 468 

concordance (CCC; Lin et al. 1989) were calculated to evaluate the quality and concordance of the 469 

estimations of canopy height and width between the established methods (PROTOLIDAR and manual 470 

observations) and the new method (BPCC) for all vine units over the entire season. The R² was used to 471 

evaluate the fit of these regressions.  472 

 473 

3. Results and discussions 474 

3.1. Quantitative comparison of filtering methods 475 

Table 1 shows the number of points removed and the percentage of points retained using the three 476 

different filtration methods for three vine units in one vineyard (Vitis vinifera L. cv. Marselan), 477 

representing three of the phenological stages measured (14, 57 and 76). The results in Table 1 are 478 

presented to illustrate the behaviour of the three filters, not to present a complete analysis over all 560 479 

vines. The HEF approach is slow and laborious and could not be performed on all vines. It can be 480 

observed that the total number of points intercepted increased throughout the growing season, as the 481 

canopy size increased. The percentage of points retained differed between the PROTOLIDAR and 482 
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AFM (Table 1), with more points preserved with the AFM regardless of the phenological stage. There 483 

were respectively 2%, 9% and 12% more points preserved with the AFM at BBCH 14, 57 and 76. 484 

Although the HEF method retained the highest percentage of points for all three phenological stages, it 485 

retained on average only 1.3 % more points than the AFM. Overall the removal rate was 486 

approximately 50 - 60% of the data for the three filters and three stages (Table 1). This is expected 487 

considering the wide scan angle relative to the canopy area that results in a large amount of data being 488 

collected from areas of non-interest. The similarity between HEF and AFM in these three vine units 489 

indicated that AFM retained a sensible level of information for subsequent analysis. Overall, the AFM 490 

method mimicked the expert approach more closely and retained a larger percentage of data to carry 491 

through to the next stage than the PROTOLIDAR method. 492 

 493 

At BBCH 14, there was little difference between the AFM and PROTOLIDAR methodologies (Table 494 

1). This can be explained by the almost non-existent grassed zone that limited errors when classifying 495 

the canopy zone. Additionally, at this growth stage, vegetation was sparse permitting the LiDAR laser 496 

beams to penetrate the inner surface of the canopy. There was no shadowing effect, allowing the 497 

PROTOLIDAR method to estimate the canopy area with high precision. However, at more advanced 498 

growth stages (BBCH 57 and 76) there was a significant difference between the AFM and 499 

PROTOLIDAR filtration methods with the PROTOLIDAR filter removing more points.  500 

 501 

The PROTOLIDAR methodology only relies on this filtering step to eliminate erroneous data and to 502 

define the canopy zone. Thus, the accuracy of the filtering directly affects the accuracy of the 503 

PROTOLIDAR estimations of canopy dimensions. In addition, it should be noted that the 504 

PROTOLIDAR method is based on a hypothesis of total propagation of LiDAR laser beams through 505 

the vegetation to define the canopy width. However, with high-density canopies, the LiDAR beams 506 

cannot penetrate deeply in or through the canopy. Instead the majority of the LiDAR returns are from 507 

the outer surface of the canopy. This is a "shadowing effect" and reduces the amount of information 508 

related to the inner surface of the canopy. Returns from the far-side of dense canopies are very limited, 509 

reducing the precision of canopy width estimations. This shadowing effect is one of the main 510 

drawbacks of the laser measurement system (Van der Zande et al., 2006). 511 

 512 

While Table 1 provides an example comparison including the HEF approach, the filtered points from 513 

AFM and PROTOLIDAR methods were calculated and compared over the entire vegetation season 514 

from the 560 vine units. From this global analysis, the AFM method retained on average 9% more 515 

points than the PROTOLIDAR method for calculating canopy dimensions (data not shown). However, 516 

it should be noted that the performance of PROTOLIDAR filtering may be affected by imperfect 517 

adjustment of filtering parameters. Although a considerable amount of time was spent manually 518 

optimising the filter parameter settings, there may be a better set of parameters that could have been 519 

used for the 560 vine units used for comparison.  520 

 521 
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Table 1. Points deleted from three different filtration methods, for three vine units in one vineyard 522 

(Vitis vinifera L. cv. Marselan) at BBCH stages 14, 57 and 76 to illustrate the differences between the 523 

automatic filtration method (AFM), the human expert filtration (HEF) and the PROTOLIDAR 524 

methodologies. Deleted points are classed according to the four groups defined in the AFM. The 525 

percentage of points retained by each filter at each stage indicates the data that are available to be used 526 

in the derivation of canopy dimensions post-filtration. 527 

 528 

Methodology 
 

Number of deleted points after filtration step 
 

Percentage of points 
retained after filtration step 

 Inter-row 
ground 

Grassed 
zone 

Adjacent 
rows 

Near 
points 

 

BBCH 14 - total number of intercepted points in the vine unit = 2732 

HEF 450 154 966 0 43 
PROTOLIDAR NA† NA† NA† NA† 39 

AFM 470 149 986 0 41 
BBCH 57 -  total number of intercepted points in the vine unit = 4136 

HEF 469 387 1244 34 48 
PROTOLIDAR NA† NA† NA† NA† 37 

AFM 479 377 1335 34 46 
BBCH 76 - total number of intercepted points in the vine unit = 5014 

HEF 542 489 1345 0 52 
PROTOLIDAR NA† NA† NA† NA† 39 

AFM 562 501 1369 0 51 
† The PROTOLIDAR filter did not permit classification of deleted points into groups 529 

 530 

3.2. Sensitivity study on thresholding in the clustering methodology 531 

This analysis concerned the influence of the statistical thresholds, βH and βw, on the calculation of 532 

vegetation height (VH) and width (VW) in the clustering method. The evolution of the absolute errors 533 

(in m) between canopy height and width from CMM and VH and VW are shown in Tables 2 and 3 534 

respectively. For both VH and VW, the values of βH and βw that minimised the absolute error when 535 

compared with CMM were not constant during the growing season. Table 2 shows that for the 536 

phenological stages BBCH 14, 53 and 57, a value of 2 for βH (equivalent to ±2 σ or the retention of 95 537 

% of the data) gave the lowest absolute error to define the canopy height from the BPCC filtered 538 

LiDAR data. However, for phenological stages BBCH 61 and 81, a value of 3 (±3 σ or retention of 539 

99.7 % of the data) minimised the absolute error relative to CMM. This is explained by the elongation 540 

and the lifting of shoots between BBCH 57 and 61 that moves the canopy into and above the upper 541 

trellis wire. Before this, there is a clear third (high) group associated with LiDAR returns from the 542 

upper trellis wire that needs to be considered in the determination of canopy dimensions.  543 

 544 

The sensitivity analysis associated with βw indicated a preferred value of 2 for the earliest and latest 545 

observed phenological stages (BBCH 14 and 81), and a value of 3 for all other stages in order to 546 

reduce the absolute error. Thus a more severe trimming (lower βw value) is needed early and late in the 547 

season. No clear reason was found for this empirical result. It may be associated with a less dense 548 

canopy (more open foliage) at both these phenological stages that is associated respectively with early-549 

season leaf/shoot expansion and late-season leaf senescence.  550 

 551 

The best performed thresholds (βH and βw) at each phenological stage are shown in bold in Tables 2 552 

and 3. The absolute errors between canopy height and width from the PROTOLIDAR and CMM at 553 
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each phenological stage are also shown. This permits an indirect comparison of absolute error for the 554 

BPCC and PROTOLIDAR methods (both relative to CMM). For canopy height, the optimised BPCC 555 

method outperformed (lower absolute error) the PROTOLIDAR at all phenological stages, with the 556 

difference in absolute error rising from 0.08 m early in the season to 0.16 m late in the season (Table 557 

2). For canopy width, the response was different. Earlier in the season (BBCH 14), when the 558 

vegetation was not very dense, the absolute error associated with the PROTOLIDAR method was less 559 

than the BPCC method (0.11 m vs 0.17 m respectively) (Table 3). However, as the canopy developed 560 

and the vegetation became denser, the optimised BPCC estimated canopy width with less absolute 561 

error than PROTOLIDAR, with an average difference ≥ 0.16 m from BBCH 61 onwards (Table 3). 562 

This can be explained by the increasing influence of shadowing effects in the LiDAR data as the 563 

canopy develops. The PROTOLIDAR depends on LiDAR returns from the distal part of the canopy to 564 

estimate canopy width. With larger, denser canopies, these returns are greatly reduced, generating less 565 

certainty in the shape of the distal part of the canopy and therefore more error in canopy width 566 

estimation. Under these conditions, it appears that an estimation of canopy width based on half-row 567 

LiDAR scans and the assumption of a symmetrical canopy structure is more accurate. The 568 

PROTOLIDAR method was developed under the assumption that a good quality 3D point cloud of the 569 

canopy is available, i.e. scanned from both sides in the case of larger canopies. It is not surprising that 570 

the absolute error with the PROTOLIDAR canopy width estimations increases overtime with canopy 571 

development. However, as noted in the introduction, a clear need for the industry is to have LiDAR 572 

processing systems that can operate with half-row scans. The BPCC method permitted estimations of 573 

the height and width of individual vine canopies (i.e. a site-specific estimation) with absolute errors < 574 

0.2 m in both height and width at any point throughout the season and < 0.15 m at growth stages up to 575 

and including flowering (BBCH 61). The exception to this was canopy width estimations very early in 576 

the season (BBCHH 14) with BPCC (absolute error compared to CMM was 0.17 m). However, at this 577 

stage, the canopy is still small, shoots can still be randomly organised thereby generating measurement 578 

or scanning anomalies, and issues with PPP coverage are unlikely in small open canopies. Therefore, 579 

this result was not considered detrimental to the potential adoption of the BPCC.    580 

 581 

The sensitivity analysis of both βH and βw indicated that a dynamic threshold value is preferable for 582 

calculating vegetation height and width with the clustering method. The optimum threshold can be 583 

associated with the management and the architecture of the vine, that itself can be modelled or sensed, 584 

enabling the threshold to be programmed in the clustering method based on vine management and 585 

phenology. This makes the BPCC less subject than PROTOLIDAR to operator interpretation for 586 

calculating VW, particularly at the beginning and end of the season (Table 3). It should be noted that 587 

the absolute error was highest towards the end of the season, a period when, typically, PPP are applied 588 

less frequently in vineyards. In this study, the parameterisation of the number of clusters defined by 589 

the algorithm was performed in a supervised mode. In future developments, a statistical test could be 590 

used to support the automatic determination of the number of clusters to be defined.  This would be 591 

important in vineyards at mid-season when there is potentially a clear difference between high and low 592 

vigour areas in a vineyard in regards to the location of shoots relative to the upper trellis wire. 593 

 594 
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Table 2. Pairwise differences of the means of absolute errors (in m) for the vegetation height 595 

parameter of the conventional manual measurement (CMM) and PROTOLIDAR and clustering 596 

methodologies, grouped by BBCH stage class with p value from ANOVA. Variances between groups 597 

that differed significantly using Bartlett’s test with the Bonferroni adjustment are in italics. 598 

Considering the clustering method, for each BBCH stage, the βH threshold that minimised the absolute 599 

mean error rate with CMM is in bold. 600 

 601 

Stage BBCH clustering βH =1 clustering βH =2 clustering βH =3 PROTOLIDAR p-value  

14 0.14 0.08 0.21 0.12 
p < 

0.001 

53 0.14 0.09 0.24 0.14 
p < 

0.001 

57 0.18 0.11 0.33 0.17 
p = 

0.017 

61 0.24 0.21 0.12 0.19 
p = 

0.038 

70 0.25 0.23 0.13 0.21 
p = 

0.027 

76 0.33 0.29 0.14 0.24 
p = 

0.039 

81 0.36 0.32 0.16 0.26 
p = 

0.025 

 602 

Table 3. Pairwise differences of the means of absolute errors (in m) for the vegetation width parameter 603 

of the conventional manual measurement (CMM) and PROTOLIDAR and clustering methodologies, 604 

grouped by BBCH stage and with p value from ANOVA. Variances between groups that differed 605 

significantly using Bartlett’s test with the Bonferroni adjustment are in italics. Considering the 606 

clustering method, for each BBCH stage, the βw threshold that minimised the absolute mean error rate 607 

with CMM is in bold. 608 

Stage BBCH clustering βw =1 clustering βw =2 clustering βw =3 PROTOLIDAR p-value 

14 0.37 0.28 0.17 0.11 p = 0.019 

53 0.38 0.11 0.21 0.18 p = 0.027 

57 0.22 0.13 0.26 0.21 p = 0.032 

61 0.36 0.14 0.22 0.24 p = 0.041 

70 0.20 0.17 0.29 0.28 p = 0.038 

76 0.32 0.19 0.24 0.31 p = 0.026 

81 0.39 0.28 0.19 0.32 p = 0.039 

 609 

3.3. Classification of the intercepted points of a 3D LiDAR point cloud 610 

In order to illustrate the classification method used by the BPCC, a detailed analysis was performed on 611 

a single vine unit at three phenological stages for height (Figures 3 and 4) and width (Figure 5). Figure 612 

3 presents histograms of the points intercepted in the different compartments of a vine (trunk, leaf area 613 

and trellis wires) along the height axis (y) at BBCH 14, 57 and 76. It visualises the change in the 614 

number of defined clusters during the season, with a decrease from three to two clusters after BBCH 615 

61, when the upper trellis wire is covered by the canopy (Figure 3C). The adaptive threshold for the 616 

grassed zone filter (HG) also changed during the season, increasing from 0.25 m at BBCH 14 (Figure 617 

3A) to 0.35 m at BBCH 76 (Figure 3C). Across all 560 vines, HG varied between 0 and 0.4 m on 618 

different days and in different blocks (data not shown). The distribution of intercepted points in the 619 

canopy zone followed a Gaussian distribution throughout the growing season (solid black lines in 620 
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Figure 3). Independently of phenological stage, a higher number of intercepted points, associated with 621 

a higher density of vegetation, was found in the centre of the canopy zone (in green) (Figures 3A-C). 622 

This can be explained by the Royat cordon training system used in this block. This is explained by the 623 

presence of primary shoots and the first three leaves in the central zone at the beginning of vegetation 624 

(BBCH 14), by the appearance of flower buds which are transformed into bunches mid-season (BBCH 625 

57), and by the mechanical action of pruning, which induces the development of secondary shoots in 626 

the central zone of the canopy later in the season (BBCH 76).  627 

 628 

Figure 4 presents similar information to the statistical distributions in Figure 3, but in the form of a 2D 629 

plot along the row. It clearly illustrates changes in LiDAR returns associated with the under-vine 630 

grassed zone as well as canopy height over the course of the season. The issue with the proximity of 631 

the upper canopy to the upper trellis wire mid-season (Figure 4B) and its potential effect on the 632 

PROTOLIDAR method for height estimation is clear. While the PROTOLIDAR overestimated height 633 

at BBCH 57 (and similar stages), the use of a three-class hierarchical clustering with a moderate level 634 

of trimming (βH = 2) provided more accurate canopy height (VH) estimations (Table 2). 635 

 636 

Figure 3 near here 637 

Figure 4 near here 638 

 639 

An alternative view of the LiDAR returns from the same vine, at the same three phenological stages, 640 

to illustrate changes in canopy width is shown in Figure 5. This is a cross-section through the canopy 641 

of a scan taken from the left-hand side of the image. Early in the season, the small vine size allows a 642 

good characterisation of the full canopy from the half-row scan (Figure 5A). However, as noted 643 

previously, the characterisation of the distal side of the canopy is problematic with half-row scans as 644 

the canopy develops, which leads to issues with underestimating full canopy width with the 645 

PROTOLIDAR method. The decrease in the density of LiDAR returns from the far side of the canopy 646 

is obvious from midseason onwards (Figures 5B-C).   647 

 648 

Figure 5 near here 649 

 650 

3.4. Comparison of canopy dimensions derived from the PROTOLIDAR - BPCC - CMM 651 

methodologies 652 

Table 4 presents the CCC, R² and CV-RMSE statistics from comparisons of estimations of canopy 653 

height and width from the BPCC, PROTOLIDAR and CMM on all 560 vine units. The CMM was 654 

considered as a reference observation. There was a strong statistical relationship between all pairwise 655 

comparisons (Table 4). The BPCC generated similar results to the PROTOLIDAR, with height 656 

estimations slightly more similar than width estimations between the two methods. This indicated that 657 

the proposed automated approach was similar to the more manually demanding PROTOLIDAR 658 

method for vegetation height and width estimation. It is acknowledged that the relationship between 659 

the width estimations is likely to change if the PROTOLIDAR method is applied to a full canopy scan 660 

as it was initially intended to be. 661 

 662 

When compared with CMM, the BPCC slightly outperformed PROTOLIDAR (higher CCC and R² 663 

and lower CV-RMSE) for the estimation of canopy height and width. However, for both approaches 664 

the relationship with CMM was strong over the entire season. For height, the improved fit with BPCC 665 

resulted from the two stage filtering and classification approach that adapted to canopy development 666 

and provided more accurate mid- and late-season estimations. For width, the PROTOLIDAR was 667 

more accurate at early stages, when the canopy was small and open, allowing impacts to be made 668 



17 

 

throughout the canopy (Table 3). As canopy size and density increased, impacts were less likely to 669 

occur in distal parts of the canopy and width estimations with the PROTOLIDAR from a half-row 670 

scan became less accurate than the BPCC method, which assumed symmetry and a fixed distance from 671 

the LoT (Table 3).  672 

 673 

Table 4. Results of the comparison between PROTOLIDAR methodology, a LiDAR Bayesian point 674 

cloud classification algorithm (BPCC) and conventional manual measurement (CMM) in the 675 

estimation of vegetation height (VH) and width (VW) for all vines over the entire season. 676 

Pairwise comparisons CCC R² CV-RMSE (%) 

 VH VW VH VW VH VW 

PROTOLIDAR BPCC 0.97 0.92 0.94 0.89 5 7 
PROTOLIDAR CMM 0.92 0.87 0.91 0.83 12 15 

BPCC CMM 0.94 0.90 0.92 0.85 10 13 

 677 

3.5. Future applications for dose management of PPP and precision viticulture 678 

The method for expressing PPP doses currently used in French viticulture is based on a fixed dose, 679 

defined per ha ground surface area (Codis et al., 2016). In this context, a system for expressing PPP 680 

doses that explicitly takes into account the evolution of the structure of the plant to be protected, as 681 

well as spatial variability in this evolution, would be an important step toward more efficient 682 

agricultural practices. The development of precision spraying technologies has been identified as a key 683 

area for more efficient viticulture (and agriculture) practices (Berk et al., 2016). As such, the 684 

automated method for analysis of LiDAR point clouds proposed here is an important step forward. In 685 

this work, the method and validation were focussed on the determination of canopy dimensions from 686 

sensor data. By themselves, canopy dimensions are limited. Once obtained they are typically used to 687 

calculate vegetative indicators, such as the TRV indicator that has been used to adjust PPP dose rates 688 

in Switzerland (Viret and Höhn, 2008). More recently, the LWA indicator has been proposed by the 689 

chemical industry as a new method to report dose expression at the European level (Wohlhauser, 690 

2009). Ideally these indicators, which have both been used for dose adjustment and dose expression 691 

(Llorens et al., 2010; Walklate et al., 2011), should also incorporate information related to canopy 692 

density/porosity for still more accurate dose management (Pergher and Petris, 2008). 693 

  694 

However, when these vegetative indicators are manually determined, there is still a possibility that the 695 

canopy structure metric is over- or under-estimated (Rüegg et al., 2001). Predictive modelling and 696 

real-time observation of spray deposition patterns are capable of providing a feed-back mechanism to 697 

correct misapplications (either over or under applications) (Saddem et al., 2017). These are not yet 698 

well developed or commercialised but they could also form an important part of any future PPP 699 

application system.  700 

  701 

Vineyards and orchards present a wide variety of different canopy characteristics. Although the results 702 

presented here are only from one vineyard (over four different blocks) scenario, the BPCC has been 703 

designed to be flexible so that it can be adapted to a variety of training systems and production 704 

situations. The choice of thresholds used here may need to be altered for other types of production 705 

systems, and the relative importance of the four filtering algorithms in the AFM may change. 706 

However, once the parameters and thresholds have been set, the algorithm should run in a fully 707 

automated manner, permitting it to be used in on-the-go applications.  708 

 709 
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The concept of Line of Trunks (LoT) (del-Moral-Martínez et al. 2015) and the use of vine symmetry 710 

(Arnó et al., 2015) to model canopy width have been used here. This permitted a more automated 711 

approach to modelling canopy width and generated better estimates of canopy width from one-sided 712 

canopy scans from BBCH 53 (mid- and late-season) (Table 3). Early season width estimations were 713 

better with PROTOLIDAR but the mean absolute error at BBCH 14 was low for BPCC (0.17 m). The 714 

accuracy achieved with BPCC negated the need for scanning both sides of the canopy. This is 715 

important as scanning both sides requires the fusion of point clouds from both sides, with issues such 716 

as rectification and harmonisation. Considering multi-row spraying, scanning only one canopy side 717 

means fewer LiDAR sensing systems to be installed on a sprayer with real-time dose control. 718 

 719 

Although focussed on canopy dimensions here, the automatic classification of different components of 720 

vines potentially provides additional, automatically collected information that could be used for vine 721 

and vineyard management, e.g. spraying for variable grass height/growth or estimating vine trunk 722 

diameter.  723 

 724 

4. Conclusions 725 

In this study, a LiDAR BPCC was proposed that combined an AFM and a clustering method to 726 

automate the 3D digital characterisation of the dimensions of vineyard canopies from LiDAR data. 727 

The BPCC only required basic configuration related to vineyard set up to operate autonomously. To 728 

evaluate the efficacy of the BPCC filtering of LiDAR point clouds, it was compared to a manual 729 

human expert filter (HEF) and to a semi-automatic method requiring manual pre-processing 730 

(PROTOLIDAR). The results obtained from data collected on several grape varieties in a two different 731 

training modes demonstrated that the BPCC filtered the LiDAR point clouds in an equivalent way to 732 

HEF and to the well-accepted PROTOLIDAR research method. Hierarchical classification and 733 

trimming of the AFM filtered LiDAR data yielded estimations of canopy height and width that were 734 

strongly correlated with equivalent PROTOLIDAR estimations. The classification was most effective 735 

when the threshold in the trimming process was permitted to be variable along the season. Empirical 736 

results provided clear indications of the preferred threshold value for both height and width at different 737 

phenological stages. When a dynamic threshold was used, the canopy dimensions from the BPCC 738 

process were closer to manual canopy observations than the equivalent PROTOLIDAR estimations. 739 

These results demonstrated that although operating at a higher level of automation, which is more 740 

suited to on-the-go processing, the proposed BPCC was more effective than the PROTOLIDAR to 741 

filter point cloud data and to estimate canopy dimensions in vineyards from half-row scans. This is a 742 

first iteration of a potential automated LiDAR processing algorithm. Further improvements are needed 743 

before commercial deployment, in particular to provide a more robust temporal estimator for the 744 

determination of the trimming threshold and for determining the preferred number of classes for a 745 

given phenological stage or canopy size. The BPCC method also needs to be validated over other 746 

training systems. 747 
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 947 

Figures caption 948 

Figure 1. A: Representation of the scanning procedure showing polar (distance, ρ, and angle, θ) and 949 

Cartesian (x, y, z plane) coordinate reference systems. B: Overhead view of two simulated scans along 950 

the row (x, z plane) showing projected LiDAR returns for a 1 m vine unit (0.5 m either side of the 951 

trunk). The shaded area indicates the progressive reduction in LiDAR returns across the cross-952 

sectional area of the canopy. Legend: O - origin, LoT - Line of Trunks, D - distance between the 953 

LiDAR travel line and the LoT, Δθ - angular resolution of the scans, HS - height of the LiDAR above 954 

ground and HG - height of the grassed zone above the ground, ΔW - distance interval between two 955 

consecutive vertical scans and FTS - forward travel speed of tractor used to mount the LiDAR. 956 

 957 

Figure 2.  View (y, z plane) of a LiDAR point cloud corresponding to a vine unit at BBCH 14 to 958 

illustrate the points deleted in the automated filtration step (blue) and points retained (red) to calculate 959 

canopy dimensions. The four filter functions applied to this LiDAR point cloud (in dotted lines) are 960 

(1) inter-row ground filter based on angle (δ), (2) filtering of adjacent rows based on the distance (D), 961 

(3) grassed zone filtering, based on the height of the grassed zone (HG) and (4) near point filtering. 962 

 963 

Figure 3. Examples of the vertical distribution of the intercepted points in the 3D LiDAR point clouds 964 

on one vine unit at three phenological stages illustrating how the BPCC algorithm filters and classifies 965 

the point cloud into different zones (non-vine ground vegetation in white, trunk zone in red, canopy 966 

zone in green and trellis wire in blue). A = BBCH 14 (early season); B = BBCH 57 (mid-season) and 967 

C = BBCH 76 (mid-late season). A and B have three distinct zones (trunk – canopy – trellis wire), 968 

while C exhibits only two zones as the trellis wire is covered by the canopy. The horizontal lines (in 969 

yellow) represent the σ-based thresholds (βH: with σ = 2 for A and B, and 3 for C) that were used in 970 

the BPCC to define the canopy zone. The dotted line indicates the threshold used for the grassed zone 971 

filter (HG) that changes as the under-vine vegetation grows. The black line represents the distribution 972 

of points in the canopy zone only.  973 

Figure 4. Examples of the LiDAR point clouds on one vine unit seen from the inter-row to illustrate 974 

how the proposed BPCC filtering and classification algorithm defines the canopy height (VH) and the 975 

undervine grass height (HG) at different phenological stages of the season. (A, B and C: same stages 976 

as Fig. 3). The horizontal lines (in yellow) represent the σ-based thresholds (βH: with σ = 2 for A and 977 

B, and 3 for C) that were used in the BPCC to define the canopy zone at each stage. The dashed line 978 

indicates the derived threshold for the grassed zone filter (HG) that changes as the under vine 979 

vegetation grows. For comparison, the canopy height derived from the PROTOLIDAR method is 980 

shown in B illustrating the effect of the trellis wire on VH estimates with PROTOLIDAR with larger 981 

canopies.  982 

Figure 5. Examples of cross-sections (‘scans’) of LiDAR points for one vine unit at three different 983 

phenological stages (same vine and stages as shown in Fig. 4), illustrating how the proposed BPCC 984 

filtering and classification algorithm and the PROTOLIDAR method define canopy width (VW). The 985 

vertical lines represent the extremes of canopy width from both approaches. The BPCC has a 5% 986 

threshold to estimate the half-row width (solid line) and the distal extreme is estimated assuming 987 

symmetry (dashed lines). The PROTOLIDAR derives width directly from the LiDAR returns and 988 

underestimates canopy width in larger canopies (B and C) relative to the BPCC. 989 
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