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Abstract 19 

The mid-infrared spectroscopy (MIRS) was investigated as a tool to improve the quality of tomato products 20 

considering its implementation at different steps along the processing chain. 21 

Models have been developed using partial least square (PLS) regression to predict the quality of raw and 22 

processed tomatoes. A relevant method (Multi-year Combining models) consisting in adding early-season 23 

tomatoes data within models developed using data of previous years, was shown as the most efficient and 24 

adapted to realistic industry conditions. MIRS predicted, in external validation, soluble solids content (R2 25 

0.95), titratable acidity (R2 0.88) and dry matter content (R2 0.81) with a high accuracy of 0.1°Brix, 2.8 mmol 26 

H+/kg and 0.4% respectively. 27 

Secondly, MIRS was used to classify tomato products depending on processing methods (hot- or cold-28 

break) or varieties using factorial discriminant analysis (FDA) based only on spectral data. MIRS was 29 

assessed as an efficient tool to classify processed tomato purees according to process, year and variety, 30 

more accurately than the classification obtained with the reference data. 31 

A possible implementation of MIRS was suggested at three strategic steps along the processing chain to i) 32 

characterize the incoming raw material, ii) monitor the matrix changes during processing and iii) control 33 

the final products. 34 

 35 

Keywords: Industry-type tomato, quality, ATR-FTIR, prediction, classification.  36 

 37 

Highlights: 38 

- Strategies are setup to build robust models to predict tomato quality traits. 39 

- MIRS allows an accurate classification of hot-break and cold-break tomato products. 40 

- An efficient implementation of MIRS along the processing chain is proposed.  41 
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Introduction 42 

Processed tomato trade is a competitive market, with a few major producers such as California (11 43 

Mt/year), Italy (6 Mt/year) or China (5 Mt/year), and a number of smaller ones, such as France producing 44 

180 000 t/year, but also importing more than 100 000 t/year. Tomatoes are processed into various base 45 

products such as raw juice, low concentrated ‘passata’, and up to highly concentrated tomato paste. Base 46 

products are then used as ingredients to generate various manufactured products such as soups, ketchup 47 

or sauces. To promote their products, most producers act on quality, leveraging on variety and local 48 

production, but also by developing specialties from juices directly concentrated at the right expected dry 49 

matter content. This avoids diluting highly concentrated tomato pastes as traditionally operated by many 50 

industrial tomato users. This trend results in an increased demand from the companies to sort and pay the 51 

raw material according to their quality. This includes not only the traditional soluble solids content (SSC 52 

expressed in degree Brix), but also the real dry matter content (DMC, including also insoluble component, 53 

more likely correlated to viscosity) and some new sorting criteria which should be developed. For example, 54 

the ability to process a viscous and colored product, or the ability to determine when the product reaches 55 

the expected quality according to guidelines during and after the manufacturing of products would be an 56 

achievement. The implementation of infrared tools throughout the production chain is therefore an issue 57 

for producers and processers to reach these objectives. This technique is already used in many other 58 

productions regarding quality targets. In the dairy industry, mid-infrared analyzers (MIRS) are used since 59 

1964 and improved over years to provide a rapid determination of fat, protein and lactose content of milk 60 

(Barbano and Clark, 1989; Lynch et al., 2006). Today, MIRS assists most payment of milk and dairy 61 

products. Concerning cereals, MIRS is used to classify flours according to landraces or technological 62 

treatments (Cozzolino, 2014) and to determine their contents in proteins, lipids, ash and moisture (Sujka 63 

et al., 2017; Shi and Yu, 2017) and even further the intestinal digestibility of their proteins (Shi et al., 2019). 64 

Tomato industry still barely uses MIRS, despite strong needs for prediction tools associated to quality.  65 

In the order of trade relevance, quality attributes of tomato products are their rheological properties 66 

(determining whether they are more or less viscous), their color (preferred as deep red as possible), and 67 

still to a lower extend, their taste and aroma. Viscosity mainly depends on processing methods. The critical 68 

steps are the breaking temperature (i.e. temperature at which fruits are crushed and initially heated) and 69 

the progressive juice concentration by thermal treatment under vacuum (Barrett et al., 1998; Page et al., 70 

2012). Some cultivars were also selected for their ability to produce various levels of viscosity (Svelander 71 

et al., 2010; Ayvaz et al., 2016). However, the biochemical and physical factors driving puree viscosity 72 

remain not fully understood, and therefore viscosity is still empirically controlled in industry. Relationships 73 
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between viscosity and microstructure (particle size and shape and serum viscosity), dry matter content 74 

(DMC) or pectin composition have been established (Barrett et al. 1998; Anthon et al., 2002; Moelants et 75 

al. 2014; Santiago et al. 2017), but no direct model taking into account those parameters allows an 76 

accurate prediction of puree viscosity from those biochemical data. As soluble solids content (SSC) has 77 

been partially correlated to DMC, the refraction index (which allows for a rapid evaluation of the SSC, 78 

expressed in Brix degree) is currently used all along the production chain as an evaluation of DMC, being 79 

often considered as an indirect indicator of the viscosity. Some companies are even using a price-increase 80 

according to SSC to encourage the incoming of high SSC tomatoes in the factory, expecting these tomatoes 81 

to also have a high DMC (Foolad, 2007). However, DMC corresponds not only to SSC (mainly sugars and 82 

acids) but also to insoluble solids (such as pectins and other cell wall components, proteins, lipids, 83 

pigments) and therefore DMC should be a more accurate marker of the rheological properties. On another 84 

side, titratable acidity (TA) affects the taste in balance with sugars. Measuring SSC together with DMC and 85 

TA is therefore relevant to follow tomato quality. But, as their measurement on fruit is time consuming, 86 

SSC is generally the only measurement, and its correlation to other traits is empirically expected. However, 87 

the relationships between SSC, dry matter content and puree viscosity become weak when a large 88 

variability of genotypes and various growing conditions are taken into account (Arbex de Castro Vilas Boas 89 

et al., 2017), and therefore, SSC is becoming of poor interest to predict DMC or viscosity. Color and taste 90 

mainly controlled by sugar, acid, volatile and lycopene content, are all strongly dependent on genetic 91 

factors as well as on the ripening stages at harvest (Saha et al., 2010; Figas et al., 2015). The processing 92 

treatments also affect the biochemical composition of puree (Svelander et al., 2010; Wilkerson et al., 2013; 93 

Lijima et al., 2016; Page et al., 2019). Still, neither global model nor easy-to-measure parameters are 94 

available to predict or measure their real influence.  95 

Using MIRS coupled with the Attenuated Total Reflectance (ATR), provides a solution well adapted to 96 

aqueous samples such as juices and purees (Kemsley et al., 1996; Garrigues and Rambla, 1998). MIRS 97 

allows an accurate evaluation of dry matter content (DMC), soluble solids content (SSC) and titratable 98 

acidity (TA) based on one single spectrum acquired in a few seconds, compared to the time-consuming 99 

reference methods (Beullens et al., 2006; Scibisz et al., 2011). Such an efficiency is compatible with the 100 

cadency required for the grading of incoming raw tomatoes when trucks deliver them to factories. Quality 101 

traits such as sugar content, pH and viscosity are also predicted in hot-break cooked tomato juices by MIRS 102 

(Wilkerson et al., 2013; Ayvaz et al., 2016).  103 

 104 
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Despite those relevant results, strategies to adapt this technique to real industry conditions remain poorly 105 

documented. Therefore, the objective of this paper was to test several options to implement MIRS at three 106 

specific steps of the value chain of tomato products:  107 

i) On fresh fruits, to develop accurate PLS models in order to predict, in a single run, a complete 108 

composition of the raw materials before processing such as dry matter content (DMC), soluble 109 

solids content (SSC) and titratable acidity (TA) instead of the only Brix degree actually 110 

measured as a biochemical quality trait of tomato. Here, strategies were compared to gain in 111 

efficiency to develop models taking into account industrial habits and constraints. (Figure 1). 112 

ii) On fresh tomatoes and their corresponding purees, to verify if samples from an experimental 113 

design including genotypes x years x processing conditions can be discriminated using 114 

discriminant analysis (FDA). As the processed purees exhibit a large variability of quality traits, 115 

the objective was to evaluate if MIRS could detect puree variability according to the 116 

characteristics of the raw tomatoes.  117 

iii) And on manufactured products, to assess the MIRS accuracy as a tool for assisting quality and 118 

traceability control. This was performed using both, data of our laboratory and data from the 119 

industry to measure whether correlations can be found between MIRS and quality 120 

measurement currently achieved by industry. 121 

 122 

1. Material and methods 123 

1.1. Plant materials and processed samples 124 

1.1.1. Fresh tomatoes  125 

Tomatoes were harvested over two years (2014-2015), all over the production area in France. In 2014, 102 126 

samples from 30 varieties were collected in the South-East (Vaucluse and Bouches-du-Rhône Counties) as 127 

well as in the South-West (Lot-et-Garonne County) of France, from the 24th of July to the 10th of September 128 

at breaker, ripe and overripe ripening stages. In 2015, 144 samples from 45 cultivars were collected in the 129 

same areas, from the 20th of July to the 15th of September, but only at ripe and overripe stages. Samples 130 

included a core collection of 14 genotypes, namely Caladou, Delfo, H1293, H1301, H1311, H9036, Impact, 131 

Increase, ISI29714, JAG8810, Leader, Perfect Peel, Pietra Rossa and Terradou, which were planted every 132 

year in every location to measure the inter-annual and the local variability. 133 

For each sample, 15 fruits were randomly harvested on three plants, cut into pieces of around 2 cm3, 134 

quickly frozen and stored at -20°C. Before analysis, the tomato pieces were thawed and homogenized in a 135 

Waring blender. Fruit homogenates were used for the biochemical and spectral characterization.  136 
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 137 

1.1.2. Puree processing at the laboratory scale  138 

In 2016 and 2017, four cultivars (Terradou, H1015, H1311 and Miceno) were cultivated in an experimental 139 

design including two irrigation levels and two blocks per treatment (Arbex de Castro Vilas Boas et al., 140 

2017). 141 

For each sample, about 1 kg of tomatoes was prepared as follow: a 1-cm slice was cut in the central part 142 

of each fruit and slices were directly stored at -20°C, representing the fresh tomatoes. The rest of the fruits 143 

were cut into 2-cm² pieces. All pieces were mixed and split into two similar samples dedicated to the hot 144 

break (HB) or cold break (CB) standard processing (Page et al., 2012). Both processing routes used the 145 

same heating and grinding energy, and only the order of each unit operation changed. Tomatoes for HB 146 

purees were first heated (microwave oven, 900 w, full power, 0.9 sec/g of tomato) and then grinded (30 147 

seconds in a Waring blender) whereas the CB tomatoes were first grinded, macerated at room 148 

temperature for 30 seconds (allowing for intrinsic enzyme reactions) and then heated.  149 

After cooking, purees were stored into 400-ml glass jars, pasteurized (100°C, 15 min) and stored at 4 °C 150 

until analyses. A total of 336 samples were characterized in 2016 and 2017, as fresh tomatoes, HB and CB 151 

cooked purees.  152 

 153 

1.1.3. Industrial products 154 

In 2015, 140 tomato-based products (juices, purees and pastes) were collected from two factories located 155 

in South-East (Tarascon) and South-West (Bergerac) of France. Their soluble solids content (SSC) and 156 

viscosity were measured in parallel by the quality control of the factories and by our laboratory.  157 

 158 

1.2. Reference analyses 159 

Soluble solids content (SSC) was determined with a digital refractometer (PR-101 ATAGO, Norfolk, VA) and 160 

expressed in °Brix at 20°C. Titratable acidity (TA) was determined by titration up to pH 8.1 with 0.1N NaOH 161 

and expressed in mmol H+/kg of fresh weight using an autotitrator (Methrom, Herisau, Switzerland). The 162 

dry matter content (DMC) was determined by weighing and drying 3 g of samples in air oven at 7O°C to 163 

reach a constant weight. The viscosity was measured as described by Arbex de Castro Vilas Boas et al. 164 

(2017) using a viscosimeter (Anton Paar MCR 301, Graz, Austria). For the industrial products, consistency 165 

was measured using a Bostwick consistometer (CSC Scientific Company, Fairfaix, USA) and according to 166 

manufacturer’s guidebook, results were expressed as arbitrary Bostwick unit (Bw). The lower the Bostwick 167 

value, the higher the consistency. 168 
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 169 

1.3. Mid-Infrared Spectroscopy analyses 170 

Spectra were recorded as described by Bureau et al. (2009) at room temperature with a Tensor 27 171 

spectrometer (Bruker Optics, Wissembourg, France) equipped with a horizontal attenuated total 172 

reflectance (ATR) sampling accessory composed of a zinc selenide (ZnSe) crystal with six internal 173 

reflections and with a deuterated triglycine sulfate (DTGS) detector. Spectra were acquired between 4000-174 

650 cm-1, with scanner velocity of 10 KHz, a background of 32 scans, and a resolution of 4 cm-1. The 175 

reference spectra were recorded using a blank ATR crystal every twenty samples. Between measurements, 176 

the crystal was carefully cleaned using distilled water and dried with filter paper. In the range between 177 

4000 and 400 cm-1 light penetrates from about 0.4 to 4 μm (Bureau et al., 2019). The total optical path is 178 

therefore 2.4 µm at 4000 cm-1 and 24 µm at 400 cm-1 taking into account the six internal reflections. 179 

1.4. Chemometrics 180 

Spectral preprocessing and multivariate data analysis were performed as described by Bureau et al. (2013) 181 

with Matlab 7.5 (Mathworks Inc.Natick, MA) software using SAISIR package (Cordella & Bertrand, 2014). 182 

The absorption band around 2400 cm−1, due to carbon dioxide, was discarded. Spectra were systematically 183 

pretreated with the standard normal variate correction (SNV).  184 

1.4.1. PLS modelling 185 

Models were developed by partial least squares (PLS) regression on the fresh tomatoes harvested in 2014 186 

and 2015 (see § 1.1.1). In PLS, orthogonal latent variables are iteratively constructed by maximizing the 187 

covariance between the two matrices of data set, the spectral data (X) and the quality traits (Y, reference 188 

data) (Nicolaï et al., 2007). In a first step, models were calibrated and validated by randomly splitting the 189 

data set into a sub-set of calibration data (2/3 of the data) which was used to build the model, and a sub-190 

set of validation data (1/3 of the data) for which the content was predicted by using the previous built 191 

model. The root mean square error (RMSE) between predicted and measured values was estimated to 192 

evaluate the accuracy of the prediction. The random selection of calibration/validation data was repeated 193 

10 times for each quality trait and the RMSE value was recalculated in order to examine the stability of the 194 

model. In a second step, models were evaluated by an external validation, consisting in predicting the 195 

composition of an independent validation data set, not used for the internal validation. 196 

The performance of models was evaluated by the determination coefficient of calibration and of validation 197 

(Rc
2 and Rv

2), determination coefficient of external validation (i.e. prediction) (Rp
2), root-mean-square error 198 

of calibration and of validation (RMSEC and RMSEV) and root-mean square error of external validation 199 

(RMSEp). Finally, the ratio of prediction to deviation (RPD) corresponding to the ratio of the standard 200 
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deviation of the reference data to the RMSE was calculated. A RPD between 1.5 and 2 concerns a low 201 

performance model which can only discriminate low from high values; a value between 2 and 2.5 indicates 202 

a coarse quantitative prediction, and a value between 2.5 and 3 or above corresponds to good and 203 

excellent prediction accuracy, respectively (Nicolaï et al., 2007). 204 

Three strategies were tested on the raw materials. The first one consisted in building models only based 205 

on one-year data in 2014 and 2015 (named YPY), the second one in building one global model combining 206 

total data of the two years (named GlC) and the third one in combining data of 2014 and a part of 2015 207 

data corresponding to samples harvested during the early season of 2015 (before August, the 18th) 208 

(named MYC) (Figure 1). All models were compared using internal and external validations when possible. 209 

 210 

1.4.2. Discriminant analysis 211 

Factorial discriminant analysis (FDA) was performed to test the ability of MIRS to discriminate samples 212 

according to the known qualitative groups (genotypes, years and cooking procedures). FDA (Factorial 213 

Discriminant Analysis) was performed on samples characterized in 2016 and 2017, as fresh, HB or CB 214 

processed purees as described in § 1.1.2. It was carried out in two steps: 1) Principal Component Analysis 215 

(PCA) was calculated on the spectral data to visualize the samples distribution according to the most 216 

discriminating spectral ranges identified with the eigenvectors and 2) FDA was applied on the gravity 217 

centers of each qualitative group assessed on the normalized principal component scores (Bertrand et al., 218 

1990).  219 

 220 

2. Results and discussion 221 

 222 

2.1. PLS models to predict quality traits of fresh tomatoes  223 

 224 

2.1.1. Variability of the samples used to build models  225 

To make our models as generic as possible, the sampling included 59 varieties harvested out of two regions 226 

of France, over two years and at three maturity stages (see § 1.1.1). The values ranged from 3.6 to 7.5°Brix 227 

for SSC, from 4.7 to 11.1% for DMC and from 30.2 to 81.7 mmol H+/kg for TA (Table 1). Fruit quality varied 228 

for the reference data, and especially, a year effect was obvious on the relationship between SSC and DMC. 229 

The groups of points of each year, 2014 and 2015, are parallel indicating that the classification of varieties 230 

remained similar but, for a similar SSC, DMC revealed variations from 1 to 2% (Figure 2A). This was also 231 

the case for the core of 14 varieties present in the 2014 and 2015 data sets. The year effect was not so 232 
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clear for the spectral data. On PCA plot calculated using spectra of the two years, the 2015 samples covered 233 

a larger variability than the 2014 ones. This was probably related to the higher number of genotypes in 234 

2015 than in 2014 (respectively 45 and 30) (Figure 2B).  235 

Our results were in accordance with data already reported for processing tomatoes grown in California 236 

counties between 2010 and 2014, and particularly for SSC which ranges from 3.2 to 7.2°Brix in (Wilkerson 237 

et al., 2013; Ayvaz et al., 2016). The set of samples covered a large range of the variability generally 238 

observed for industry-type tomatoes. This permits a standard robustness of calibration models, as 239 

robustness is directly related to the variability of the samples (Nicolai et al., 2007).  240 

 241 

2.1.2. Comparison of strategies to build accurate and robust models 242 

 243 

a) Model calibration and validation 244 

Any of the three strategies (YPY, GlC or MYC) gave accurate results to predict SSC. Similar results were 245 

obtained for calibration and validation with Rc
2 and Rv

2 between 0.93 and 0.97 and RMSEc and v between 246 

0.13 and 0.16°Brix, leading to a RPD equal or above to 3.6 corresponding to a highly accurate prediction. 247 

The MYC model obtained the highest RPD. Globally, RPD of models for SSC exhibited the highest RPD 248 

among the quality traits (Table 2). Our results were similar to those previously obtained on tomato fruits 249 

for the fresh market exhibiting SSC from 3.2 to 8.8 °Brix while our data exhibited no SSC above 7.5 °Brix 250 

(Scibisz et al., 2011). Similar results were obtained on industry-type tomatoes grown in California, as SSC 251 

is predicted with Rv
2 varying from 0.86 to 0.98 depending on the years, regions and varieties (Wilkerson et 252 

al., 2013; Ayvaz et al., 2016). Our data confirmed that SSC is extremely well predicted by MIRS. 253 

For the DMC parameter, models still exhibited high performance although the values were not as good as 254 

for the SSC models. Rv
2 varied from 0.82 to 0.94 and RMSE from 0.24 to 0.49%. The RPD was in all cases 255 

higher than 2.5, and then within the highly accurate values for predicting models (Nicolaï et al, 2007). The 256 

YPY models exhibited RMSEv of 0.25% in 2014 and 0.41% in 2015. The higher variability of fruit DMC in 257 

2015 than in 2014 could explain the results. The differences between min and max values were 5.4% in 258 

2015 but only 3.1% in 2014 (Table 1). RPD values indicated some differences of model performances. The 259 

MYC model exhibited the highest values of Rv
2 (0.94) and RPD (3.9). Similar results with RPD of 4.8 are 260 

obtained on tomatoes for fresh market using a dataset including a large number of traditional varieties 261 

conferring a variability similar to that of our experiment (Scibisz et al., 2011). 262 

As for DMC, models predicting TA did not present the same accuracy over the two years (Table 2). In 2015, 263 

models exhibited higher Rv
2 and RPD than in 2014, even if the RMSEv remained close around 2.2 mmol 264 
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H+/kg. As for DMC, the range of TA was larger in 2015 (30.2-81.7 mmol H+/kg) than in 2014 (45.3-76.8 265 

mmol H+/kg) (Table 1). This impacted the RPD values. However the prediction of TA remained within the 266 

excellent RPD values (≥ 2.5). For TA, our results were similar to those obtained on fresh tomatoes by Scibisz 267 

et al. (2011) and on industry-type tomatoes by Wilkerson et al. (2013). 268 

So, combining data of different years in GlC models did not affect the model performance, except an 269 

increase of the RMSEv for TA, in comparison with the YPY strategy (Table 2). However, RPD remained 270 

acceptable for the three predicted quality traits with values ≥ 2.5. An interesting result came from the MYC 271 

strategy. By introducing new data every year, and especially the data of the early tomatoes, the MYC 272 

models were as accurate as the GlC models for SSC and DMC, despite less samples used to calculate the 273 

models. For TA, the MYC and GlC models did not much differ for their Rv
2 but RMSEv of MYC was the 274 

highest, giving a RPD of 2.2. The gain of the MYC strategy was not obvious on the validation results for TA. 275 

 276 

b) External validation of models 277 

The external validation constitutes the ultimate validation of predicting models as samples used for 278 

validation must differ from samples use for calibration belonging to another sample sets, and here to 279 

another year. In this case, the YPY and MYC strategies exhibited contrasted results (Table 3). Concerning 280 

the YPY models, predicting 2015 data with the 2014 models resulted in low Rp
2 and RPD and high RMSEp 281 

for the three quality traits, SSC, DMC and TA (Table 3). Predicting 2014 data with the 2015 models led to a 282 

better prediction of SSC (RPD of 2.7) but not for DMC and TA. For DMC, RPD was 0.1 due to the RMSEp of 283 

2.54%, i.e. 5 times higher than the RMSEv (Tables 2 and 3). For TA, RPD was 0.3 in relation with the RMSEp 284 

of 53.44 mmolH+/kg, i.e. 10 times higher than the RMSEv (Tables 2 and 3). These results can be explained 285 

by the difference of the fruit variability observed in the two years (Figure 2). The linear relationship 286 

between the quality traits, SSC and DMC, may be maintained but contents of DMC changed for a same SSC 287 

from one year to another. 288 

The combination of data of several years significantly improved the models. The MYC models, which 289 

combined all data of the first year and data of the earliest tomatoes of the second year (2014 + early 2015 290 

until August, 18th) accurately predicted SSC, DMC and TA of the late tomatoes of 2015 (from August, 18th) 291 

with similar RPD values (respectively 4.3, 2.8, 2.1) than those previously obtained (Tables 2 and 3). Adding 292 

the early data of 2015 within the 2014 data (MYC models) led to a more efficient prediction of the late 293 

tomatoes of 2015. Improving models by accumulating new data each year is an approach described by 294 

Thomas and Ge (2000) as a passive approach consisting in acquiring calibration data over a sufficiently 295 

long period. It tends to cover gradually the fruit variability by including variability such as seasons or years, 296 



11 

 

varieties, orchards in the calibration data to improve the model accuracy as already suggested (Peiris et 297 

al., 1998; Peirs et al., 2003; Golic and Walsh, 2006; Bobelyn et al., 2010). Such approach is particularly 298 

relevant for the every-day work of the tomato processors. The earliest tomatoes may be used to calibrate 299 

and update models each year. The calibrated model can then be used for the rest of the season to 300 

accurately predict the quality of the incoming production. At the end of the season, models can be 301 

efficiently completed by the addition in the calibration of the most contrasted samples harvested during 302 

the running year. They can be identified using their infrared signature in comparison with those already 303 

placed on the cartography representing the tomato diversity, and only those samples can be analyzed by 304 

reference methods. This method is a way to minimize the quantity of analyses to the most relevant ones, 305 

and year after year, this approach leads to a progressive improvement of global models, by taking into 306 

account variability of early and late tomatoes as illustrated in this paper (Figure 3). 307 

This demonstration was focused on building PLS models for predicting the quality of raw tomatoes. But 308 

one can assume that the same approach could be developed for the prediction of processed product 309 

quality as shown by Wilkerson et al. (2013) and Ayvaz et al. (2016). In this case, including variability due to 310 

the processing conditions should be considered in addition to all the other sources of variability. 311 

 312 

2.2. Towards using MIRS to discriminate fresh fruits and processed products according to varieties, years 313 

and processing conditions. 314 

Discriminant analysis only based on spectral data was performed on a set of samples issuing from an 315 

experimental design to evaluate the ability of MIRS to classify samples according to factors of interest, 316 

such as varieties, years and processing conditions. The experimental design included four varieties, two 317 

irrigation levels and was reproduced in 2016 and 2017 (see § 1.1.2). Samples were analyzed as fresh fruits 318 

and after a hot or a cold break processing, and all samples were evaluated for their SSC, TA and DMC using 319 

reference methods. Data exhibited a significant impact of the genotype (F=70, Prob>5.3.10-34), water 320 

scarcity (F=70, Prob>2.8.10-15) and processing (F=18.2, Prob>3.7.10-8) but no significant impact of the year. 321 

However, the year affected standard deviations. In 2016, TA exhibited variations from 59.9 to 89.4 mmol 322 

H+/kg FW while it ranged from 46.6 to 96.9 mmol H+/kg FW in 2017. The same trends were also observed 323 

for DMC and SSC.  324 

Factorial Discriminant Analysis (FDA) performed on spectral data classified the samples in their right 325 

classes with only few confusion concerning the processing. All the 144 fresh samples were well classified, 326 

89 among the 96 HB and 94 among the 96 CB were well classified giving a performance of classification of 327 

100% for fresh, 93% for HB and 98% for CB (Table 4). The results on genotype classification was more 328 
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confused: for the two most contrasted genotypes, most samples were identified in their right classes (70% 329 

for H1311 and 90% for Terradou), but the classification was less accurate for the two other genotypes, as 330 

only 54% and 67% were well classified for H10 (H1015) and MIC (Miceno) respectively (Table 4). The 331 

classification according to varieties was good when FDA was performed separately on each year. On fresh 332 

tomatoes, for example, samples of Terradou in 2016 and H1311 in 2017 were 100% well classified whereas 333 

for the other varieties the classification was at least higher than 88%. 334 

Nevertheless, when considering fresh and processed samples separately, the FDA gave accurate 335 

classifications of the genotypes. Each appeared as distinct and non-overlapped ellipses on the factorial 336 

maps (Figures 4A and 4B). Moreover, the classification was partially reproducible from one year to the 337 

other. When 2017 data were projected as illustrative data on the factorial map calculated with 2016 data, 338 

ellipses from 2017 data remained distinct from one genotype to the others. For two of the genotypes 339 

(H1311 and Terradou), 2016 and 2017 ellipses were in a very close area of the factorial map. The same 340 

trend was observed in the reverse situation. On this FDA space, the distances between ellipses of each 341 

year were greater for Miceno and H1015, but remained in the same region of the map, for fresh products 342 

as well as for processed ones (Figure 4). The most significant spectral area distinguishing varieties was 343 

between 1200 and 900 cm-1 corresponding to absorptions due to stretching and bending vibration modes 344 

of sugars (Talari et al., 2017).  345 

Altogether, discriminations based only on spectral data indicated that MIR was a powerful tool to follow 346 

tomato quality during processing as it allowed a strict and accurate distinction of fresh, cold or hot break 347 

samples. However, the infrared sensors exhibited some limits for distinguishing samples according to the 348 

varieties when processed and fresh samples were considered altogether, and especially for those 349 

exhibiting similar qualities. This last result should be challenged to a larger range of varieties, as our set of 350 

data only contained four varieties, and to a high processing impact according to the genotype. Previous 351 

studies on fresh fruits indicated that accurate genotype discrimination is made possible over a larger set 352 

of varieties (Ibanez et al., 2019). To our knowledge, our studies was the first on tomato showing that the 353 

same kind of distinction remained after fruit processing.   354 

 355 

2.3. Toward the use of MIR tools for quality control of manufactured products 356 

The products exhibited a diversity including purees, sauces and pastes giving a large variation of quality 357 

traits. SSC varied from 5.3 to 36.5°Brix, pH from 3.9 to 4.7, TA from 44 to 319 mmol H+/kg FW, DMC from 358 

7 to 45 % and viscosity from 0 to 8 Bw unit (Table 5). SSC vs TA, SSC vs DMC and TA vs DMC exhibited 359 

correlations with determination coefficient Rv
2 higher than 0.95. SSC was measured both in the Lab and in 360 
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the plants giving as expected similar values (Rv
2 = 0.99). TA and DMC were only measured in our laboratory, 361 

pH and viscosity only in factories.  362 

A first set of PLS models were built to measure their efficiency for predicting the product composition 363 

taking into account their entire variability, from juice to paste (Table 5). SSC was extremely well predicted 364 

by MIRS with Rv
2 of 0.99 and error ranged between 0.73 and 0.98 °Brix in Laboratory and in the factories 365 

data respectively (Table 5). The RPD, higher than 12, confirmed that SSC can be predicted with a very weak 366 

error using MIRS. TA and DMC measured in the Lab exhibited similar levels of prediction with Rv
2 higher 367 

than 0.98 and RPD higher than 7.6, as we previously obtained in the other experimental assays. These 368 

results were also in accordance with the strong internal correlation measured between those traits in this 369 

set of samples. On the contrary, pH measured in the factories was predicted with a Rv
2 of only 0.51 and a 370 

RPD of 1.4 (Table 5). The quality of our prediction was lower than that already obtained on industry tomato 371 

(Ayvaz et al. 2016). This can be due to the lower size of our sample set (76 instead of 249 for the calculation 372 

of the model), and its lower variability (pH ranged from 3.98 to 4.6 instead of 3.8 to 4.6). The prediction of 373 

the viscosity (Bw) exhibited an apparent high accuracy. The Rv
2 of validation was 0.77 and the RPD 4.6. 374 

However, the high contrast of viscosity between juice and paste and the low quantity of intermediate 375 

samples were a concern regarding the statistical analysis. Therefore, in a second step, the models were 376 

built after removing pastes in order to have a more continuous and homogeneous set of samples. For all 377 

quality traits, RPD values decreased to values close to those obtained in our models on raw fruits (Table 378 

5), assessing the accuracy of prediction on manufactured products.   379 

With this restriction to juices and purees, models exhibited accuracy close to the models obtained by Ayvaz 380 

et al (2016), which were also dedicated to tomato juices and purees (between 11 and 25 Bw) and 381 

calculated with a large number of samples. Altogether, our results and those of Ayvaz et al. (2016) 382 

indicated that predicting consistency by MIRS was certainly possible but hardly in actual realistic industry 383 

conditions. Progress should be made in two directions. First, more universal and accurate measurements 384 

of the rheological properties should be used as comparing Bostwick values of contrasted products such as 385 

juices and purees should include specific corrections (Perona, 2005). Second, the rheology of tomato 386 

products does not enforce the same mechanical properties depending on their concentrations. Those 387 

properties depend upon biochemical and physical characteristics such as pectin dissolution and 388 

modification, particle size and shape and particle packing (Bayod et al., 2008). Each of those characteristics 389 

may have diverse MIRS signature, and this could explain why PLS models including pastes and less 390 

concentrated products gave less accurate results. For the prediction of consistency, models per classes of 391 

products, using a large variability within each class, should lead to models more accurate and adapted to 392 
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the real industry activity. Combination of models may also rise to accurate results to predict intermediate 393 

products between purees and pastes, but require a more specific study. 394 

 395 

Conclusions 396 

Our results confirmed that MIRS is a powerful decision-making tool to assist the industry for the 397 

improvement of the quality of tomato-based products all along the processing chain. In the realistic 398 

industrial context, we demonstrated that MIRS could enhance industrial management at three strategical 399 

steps: 400 

- For the incoming tomatoes: as, in a single measure, not only SSC but also TA and DMC can be 401 

predicted. MIRS gives a new framework for grading tomatoes regarding their quality. 402 

- For assessing the processing: as Fresh, HB and CB samples can be discriminated, and considering 403 

that the sorting of fresh or processed samples was accurate, this indicates that MIRS is a powerful 404 

sensor to improve the product traceability before, during and after the processing step. Therefore, 405 

development of databases of MIRS spectra needs to be achieved in a large industrial context. 406 

- For the post-processing quality and trade management, as most quality traits of manufactured 407 

products (SSC, DMC, acidity, viscosity) seemed to be predictable, MIRS could help for a more 408 

pragmatic and complete verification of the accordance of manufactured products regarding the 409 

specification books. 410 

MIRS signature is easy and rapid to acquire on homogenous samples such as purees, liquids and pastes 411 

compared to the classical measurements by reference methods. MIRS coupled with chemometrics greatly 412 

increases the possibilities to enhance the quality, by a better management of raw materials and processed 413 

products at all steps of the production chain. Our results give strategies for an industrial development, 414 

including the accumulation of MIR data over years to integrate in calibration, and to gradually improve the 415 

accuracy and the robustness of prediction.  416 
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Figure 1. The three tested strategies to build models using both mid-infrared spectra and 

reference data of quality traits.  

with YPY; Year per Year models, GlC: Global Combining models and MYC: Multi-Year Combining models. 
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Figure 2. Variability of processing type tomatoes in France over two years. A) Biplot between 

soluble solids content (SSC) and dry matter content (DMC) and (B) Principal Component Analysis 

(PCA) performed on spectral data (2000-900 cm-1) with tomatoes characterized in 2014 (●) and 

in 2015 (○). 
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Figure 3. The best strategy to improve model ability over successive years. 

With 2, 3, 4, 5: early and late data each year added in the previous models identified by M1+2+… 

and arrows simulating the model use to predict firstly the late tomato quality traits each year and 

then the tomatoes of next years. 
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Figure 4. Factorial Discriminant Analysis (FDA) maps performed on mid-infrared spectral (MIRS) 

data (1200-900 cm-1) of fresh tomato (A) and processed purees (B). Ellipses drawn with a P value 

of the confidence interval of 0.05, with continuous line (2016) and dotted line (2017). Terr: 

Terradou, H10: H1015, H13: H1311 and MIC: Miceno.  

FDA was calculated on 2016 data. 2017 data were added as illustrated data. 
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Table 1. Soluble solids content (SSC), dry matter content (DMC) and titratable acidity (TA) of fresh tomatoes measured by reference methods over 

two successive years.  

Quality traits Year Mean SD Min Max 

SSC (°Brix) 
2014 5.2 0.7 3.6 6.8 

2015 5.4 0.7 3.8 7.5 

DMC (%) 
2014 6.0 0.7 4.7 7.8 

2015 7.9 1.1 5.7 11.1 

TA (mmol H+/Kg) 
2014 59.1 6.7 45.3 76.8 

2015 55.6 10.6 30.2 81.7 

 

SD: standard deviation, n=102 samples in 2014 and 144 in 2015 and each sample was a homogenate of 15 tomato fruits. 

  



Table 2. Validation results to compare the performance of the models to predict SSC, DMC and TA depending on the strategies. 

Quality trait Sampling LV Calibration   Validation   RPD 

      RC
2 RMSEC RV

2 RMSEV   

SSC (°Brix) YPY (2014) 7 0.95 0.16 0.95 0.16 4.3 

 YPY (2015) 4 0.96 0.14 0.94 0.13 3.6 

 GlC 8 0.95 0.15 0.93 0.17 3.9 

 MYC 9 0.97 0.13 0.95 0.14 4.5 

        

DMC (%) YPY (2014) 7 0.89 0.24 0.87 0.25 2.6 

 YPY (2015) 4 0.82 0.39 0.85 0.41 2.6 

 GlC 6 0.86 0.48 0.85 0.49 2.5 

 MYC 10 0.92 0.37 0.94 0.34 3.9 

        

TA (mmol H+/Kg) YPY (2014) 10 0.89 2.33 0.84 2.19 2.5 

 YPY (2015) 10 0.97 2.01 0.96 2.23 4.6 

 GlC 9 0.84 3.74 0.90 3.47 3.1 

  MYC 9 0.84 3.92 0.79 4.15 2.2 

 

 LV: latent variables, R2: coefficient of determination, RMSE: root mean square error, with c for calibration and v for validation; RPD: ratio of the 

standard deviation (SD) of the response variable in the validation set to the RMSEv; Strategies named: YPY for year-per-year models, GlC : global 

combining models, MYC : Multi-year combining models 

Sample number was n=102 in 2014, n=144 in 2015, n=246 in 2014 + 2015 and n=181 in 2014 + 2015 early (all samples in 2014 and until August, 

18th 2015). 

With 2014 and 2015 from the Scenario1 (YPY models); 2014+2015 from the Scenario 2 (GlC) and 2014 + early 2015 from the Scenario 3 (MYC 

models combining all data of the first year 2014 and data of the beginning of the second year until August, 18th 2015).  



Table 3. External validation results to compare the performance of the models to predict SSC, DMC and TA depending on the strategies 

Quality trait Models Predicted  External validation 

    samples RP
2 RMSEP RPD 

SSC (°Brix) YPY (2014) 2015 0.31 0.90 0.5 

 YPY (2015) 2014 0.88 0.25 2.7 

 MYC end 2015 0.95 0.11 4.3 

      

DMC (%) YPY (2014) 2015 0.13 3.89 0.3 

 YPY (2015) 2014 0.79 2.54 0.1 

 MYC end 2015 0.81 0.36 2.8 

      

TA (mmol H+/Kg) YPY (2014) 2015 0.27 33.12 0.3 

 YPY (2015) 2014 0.16 53.44 0.3 

  MYC end 2015 0.88 2.81 2.1 
 

Rp
2: coefficient of determination of external validation, RMSEp: root mean square error of external validation. 

With 2014 and 2015 from the Scenario1 (YPY models) with n=102 in 2014 and n=144 in 2015; 2014 + early 2015 from the Scenario 3 (MYC models) 

with n=181 in 2014 + 2015 early (all samples in 2014 and data of the beginning of the second year until August, 18th 2015) and n=65 in end 2015 

(data from August, 18th 2015). 

  



Table 4. Matrices of confusion given by the Factorial discriminant analysis (FDA) using PC scores of the PCA (Principal Component Analysis) 

performed on the spectral data (2000-900 cm-1) of the fresh tomato homogenates and their corresponding cooked purees. Three factors were 

tested with A: years, B: type of samples and C: varieties. 

A. Year         

 2016 2017   

2016 143 1   

2017 0 192   

B. Type of tomato-based products   

 CB FR HB  

CB 94 1 1  

FR 0 144 0  

HB 6 1 89  

C. Variety       

 H10 H13 MIC TER 

H10 45 9 24 6 

H13 12 59 13 0 

MIC 19 9 56 0 

TER 3 1 4 76 

 

The total number of samples for each condition being 2016: 144 samples; 2017: 192 samples; CB: 96 samples; HB: 96 samples and fresh: 144 

samples; 84 samples for each of the H10, H13, MIC and TER varieties. 

  



Table 5. Prediction of quality traits of industrial products using both reference data acquired by laboratory measurements and by plant control 

quality. 

Samples Quality traits Reference data LV Calibration Cross-validation 

    Mean SD   RC
2 RMSEC RCV

2 RMSECV RPD 

 SSC (°Brix) 17.4 8.4 5 0.99 0.73 1.00 0.66 12.7 

All samples TA (mmol H+/Kg) 131.2 71.6 7 0.99 8.79 0.98 9.47 7.6 

  DMC (%) 20.5 9.4 5 0.99 1.01 0.99 0.99 9.4 

 SSC (°Brix) 11.4 2.2 5 0.92 0.67 0.87 0.68 3.2 

Juices and purees TA (mmol H+/Kg) 93.9 22.4 8 0.88 8.95 0.82 8.82 2.5 

  DMC (%) 15.5 3.1 4 0.90 1.10 0.76 1.13 2.7 

 SSC (°Brix) 15.0 7.2 5 0.99 0.98 0.99 0.97 7.5 

All samples pH 4.4 0.1 9 0.55 0.09 0.51 0.10 1.4 

  Bw 6.0 5.0 5 0.80 1.02 0.77 1.08 4.6 

 SSC (°Brix) 11.5 2.5 7 0.92 0.67 0.93 0.70 3.6 

Juices and purees pH 4.4 0.2 5 0.59 0.10 0.38 0.13 1.3 

  Bw 2.8 1.5 6 0.46 1.07 0.35 1.22 1.2 
 

 

When all samples (juices, purees and pastes) were used: n=76 in the calibration set and n=38 in the cross-validation set. When only juices and 

purees were used: n=57 in the calibration set and n=28 in the cross-validation set. 

 LV: latent variables, R2: coefficient of determination, RMSE: root mean square error, with c for calibration and v for validation; RPD: ratio of the 

standard deviation (SD) of the response variable in the validation set to the RMSEv. Bw: Bostwick.  

 




