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Modern food systems facilitate rapid dispersal of pests and pathogens
through multiple pathways. The complexity of spread dynamics and data
inadequacy make it challenging to model the phenomenon and also to pre-
pare for emerging invasions. We present a generic framework to study the
spatio-temporal spread of invasive species as a multi-scale propagation pro-
cess over a time-varying network accounting for climate, biology, seasonal
production, trade and demographic information. Machine learning tech-
niques are used in a novel manner to capture model variability and
analyse parameter sensitivity. We applied the framework to understand
the spread of a devastating pest of tomato, Tuta absoluta, in South and South-
east Asia, a region at the frontier of its current range. Analysis with respect to
historical invasion records suggests that even with modest self-mediated
spread capabilities, the pest can quickly expand its range through domestic
city-to-city vegetable trade. Our models forecast that within 5–7 years, Tuta
absolutawill invade all major vegetable growing areas of mainland Southeast
Asia assuming unmitigated spread. Monitoring high-consumption areas can
help in early detection, and targeted interventions at major production areas
can effectively reduce the rate of spread.
1. Introduction
As the intensity of trade and human mobility increases, so does the rate of
exotic species invasions [1]. Climate change and the detrimental impact of
intensive agriculture on natural resources further aggravate this problem [2].
Understanding the dynamics of invasive species spread is imperative for
achieving zero hunger, no poverty, good health and well being, which are
among the sustainable development goals drafted by the United Nations [3].
Models play an important role in predicting the spatio-temporal spread,
identifying roles of different pathways, assessing efficacy of control strategies
and exposing gaps in the understanding of the phenomenon [4,5]. However,
impending invasions of agricultural pests present difficult challenges. Account-
ing for multiple drivers of dispersal invariably makes the model complex.
At the same time, data inadequacy makes it nearly impossible to calibrate
and validate these models. Despite these limitations, a natural goal for a mod-
eller is to provide useful insights into the mechanisms of spread, and thus help
design effective policies for its prevention and mitigation.
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Network propagation models have been widely used to
study phenomena as diverse as infectious disease and inva-
sive species spread, online social networks and cascading
failures in infrastructure networks [6]. Douma et al. [7]
survey the invasive species literature categorizing various
efforts into flow-based pathway models and agent-based
models. Network representations and analysis are being
increasingly applied to capture human-mediated pathways
of spread [8,9], multi-scale spread [10], monitoring [11], and
mitigation [12]. Unlike pest risk maps generated by species
distribution models [13], the resulting dynamics of such a
validated model yields a causal description of the underlying
complex system.

We present a multi-pathway propagation model to study
the spread of invasive agricultural pests. We applied it to
study the spread of the South American tomato leafminer or
Tuta absoluta, a pest of the tomato crop and representative of
recent biological invasions that have significantly perturbed
global food production. Indigenous to South America, T. abso-
luta was accidentally introduced to Spain in 2006, and since
then has rapidly spread throughout Europe, Africa, Western
and Central Asia, the Indian subcontinent and parts of Central
America [14,15]. It is well accepted that trade played a critical
role in T. absoluta’s rapid spread. On multiple occasions, it has
been discovered in packaging stations and its spread pattern is
correlated with prime trade routes [16]. Our study region is
South and Southeast Asia—a region at the frontier of its cur-
rent range—comprising of 10 countries: members of the
Association of Southeast Asian Nations (ASEAN) and Bangla-
desh. In recent years, there has been a thrust to improve
vegetable production in all the countries of this region. With
the pest having already spread to major tomato producing
areas in Bangladesh, there is a high chance that it will be intro-
duced to the remaining countries in the near future. Such
invasions can have devastating effect on the economyand live-
lihood of farmers. Moreover, the invasion in mainland
Southeast Asia, in particular, is a serious threat to China [17],
the largest producer of tomatoes, and Australasian neigh-
bours. To our knowledge, this is the first study that explicitly
considers multiple pathways of introduction and spread
of T. absoluta. Earlier modelling efforts have only accounted
for ecological aspects and self-mediated spread [14,18,19].
A precursor to this work [20] modelled the seasonal pro-
duction and trade of tomatoes in Nepal to study the role
of trade in the spread of T. absoluta using a gravity model
and network dynamics.

Our model accounts for both self-mediated and
human-mediated spread and encapsulates the spatial hetero-
geneity, temporal variations and multi-scale nature of the
propagation mechanisms. To construct this model, we ident-
ified, analysed, and fused disparate datasets corresponding
to biology, climate, production and agricultural commodity
flow. With T. absoluta being an emerging invasion in the
focus region, some of the pertinent questions are (i) what
are the possible explanations for the observed spread;
(ii) what are the possible patterns of future spread; and
(iii) what steps could be taken to mitigate it. We develop a
framework to parameterize and analyse the multi-pathway
model with respect to ground truth by a novel application
of popular supervised and unsupervised machine learning
algorithms. Our approaches are motivated by recent research
on machine learning surrogates for agent-based models [21]
and interpretable artificial intelligence [22]. The analysis
provides valuable insights into the dynamics of T. absoluta
spread and its control, particularly from the perspective of
human-mediated spread.
2. Methods
(a) Data
The global datasets used in the model and for analysis are
described in the electronic supplementary material, table S1.
Country specific data on seasonal production, consumption, pro-
cessing and trade was obtained from websites of agriculture
ministries, research articles and technical reports (electronic sup-
plementary material, table S2). Almost all the datasets used are
openly available. The details of T. absoluta biology can be
found in the electronic supplementary material.

(b) Multi-pathway spread model
We developed a stochastic multi-scale propagation model to
simulate the multi-pathway spread of T. absoluta. Key concepts
are illustrated in figure 1a. The model parameters and their
values are summarized in table 1. A discussion on the choice
of model structure and assumptions is presented in the electronic
supplementary material, S3.1. The study region is divided into
cells, the smallest spatial units, by overlaying a grid (0.25° ×
0.25°). Each cell is in one of the three states: susceptible (S) denot-
ing pest-free state, exposed (E) denoting that the pest has been
introduced but the population has not yet built up to influence
other cells, and infectious (I) denoting that the pest has estab-
lished and the cell can influence its neighbours. The cell states
are updated in discrete time steps, each corresponding to one
month. The probability that a cell v transitions from state S to
E is determined by (i) suitability to establish at that time step
e(v, t) and (ii) influence of neighbours in state I depending on
the pathway. An exposed cell transitions to state I after a latency
period of ℓ time steps. This is the time required for the excess
population to build up to infect other cells. Once the pest has
established in a cell, the cell remains infected forever, a
fair assumption considering that, historically, eradication of
T. absoluta has not been successful (the only exception being the
UK). The infectiousness of a cell ρ(v, t) is modelled as a linear func-
tion of host density at time t, for which we use the weighted sum
of production volume of tomato, eggplant and potato in that cell
at time t. The details are in the electronic supplementary material.

There are three pathways by which a cell can become
infected: short-distance dispersal, local human-mediated disper-
sal and long-distance dispersal. Short-distance dispersal captures
the spread through natural means; from an infested cell to cells in
its Moore neighbourhood of range rM. The probability that a sus-
ceptible cell gets exposed (E) at time step t through short-distance
spread is as follows:

ps(v, t) ¼ e(v, t) 1� exp �as

X
v0[Mv(rM)

r(v0, t)

 ! !
: (2:1)

The probability depends on the suitability of the cell e(v, t),
infestation level of each neighbouring cell in the Moore neigh-
bourhood with range rM, ρ(v0, t), and the scaling factor, αs,
which is the transmission rate for this pathway. The function
form is explained in the electronic supplementary material, S3.1.

For human-assisted spread, we identified large urban areas
in the region which we refer to as localities (figure 1a) and con-
sidered interactions within and between localities. These areas
have significant trade flows owing to high consumption or pro-
duction. Each locality consists of all grid cells which are within a
certain distance (determined by locality radius) from its corre-
sponding centre. Local human-mediated dispersal is modelled
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Figure 1. Multi-pathway model concept, construction and analysis. (a) Multi-pathway model. (b) Model construction pipeline. (c) Outline of the process used for
analysing the multi-pathway spread. (Online version in colour.)
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as the spread between cells belonging to a locality. Every cell v
is influenced by cells in its locality L based on their infectious-
ness. The expression is similar to that in equation (2.1), but with
cells in the locality instead of the Moore neighbourhood:

p‘(v, t) ¼ e(v, t) 1� exp �a‘

X
v0[L

r(v0, t)

 ! !
, (2:2)

where αℓ is the scaling factor. The details of locality construction
are provided in the electronic supplementary material, S3.2.

Long-distance human-mediated dispersal corresponds to
spread through trade between localities. For this purpose, we
considered only tomato trade as there is not much evidence of
T. absoluta spreading through trade of other hosts. We modelled
domestic trade using a gravity model approach accounting for
tomato production, processing, imports and exports in each
locality, and the travel time between localities. The probability
of spread is directly proportional to the trade flow Fij from one
locality (i) to another ( j). Suppose cell v belongs to locality i.
Then, the probability of cell v transitioning from S to E due to
long-distance human-mediated dispersal is given by

p‘d(v, t) ¼ e(v, t) 1� exp �a‘d

X
j=i

X
v0[L(j)

F jir(v0, t)

0
@

1
A

0
@

1
A, (2:3)

where αℓd is the pathway scaling factor.

(c) Network construction
Figure 1b provides a schematic of the network construction. The
first step was to estimate monthly production volume of tomato,
eggplant and potato for each cell. We estimated annual pro-
duction in each cell followed by disaggregation to monthly
production. The annual production was estimated using the veg-
etable production available at the highest resolution for each
country (at the level of province to just one value for the entire
country) and a synthetic dataset called the spatial production
allocation model [23]. For monthly production, we used linear
regression to model the production rate as a function of precipi-
tation, temperature and elevation. Seasonal tomato and eggplant
production data for different regions of the Philippines was used.
For most of the other countries, only qualitative information on
seasonal production is available (electronic supplementary
material, table S2). The regression function was applied to
locations of these countries where this information is available
and visually compared to available data. The details are in the
electronic supplementary material, S3.3.

To model locality-to-locality trade, we applied the approach
of Venkatramanan et al. [20] with some modifications. We mod-
elled the flow of fresh tomato crop between markets based on the
following assumptions: (i) the total outflow from a city depends
on the amount of produce in its surrounding regions and imports
from countries outside the focus region at time t, and (ii) the total
inflow depends on total consumption, processing demand, and
exports from the city to countries outside the focus region. The
details are in the electronic supplementary material, S3.4. Trade
between countries of the focus region was not modelled as
there is no adequate information on ports of entry or monthly
flow volumes. But, it was accounted for while analysing the
possible routes of introduction.

(d) Parameterization and experiment design
The goodness of fit of a parameter instance was determined by
comparing the simulation output with T. absoluta incidence
reports (figure 2a; electronic supplementary material, table S3
for Bangladesh). The spread was simulated with infestation start-
ing from the location of first report. For each cell, v and model
configuration C, the empirical probability p(C, v, t) that it is in
state I at time t was computed (averaged over 100 repetitions).
The output was compared to ground truth using a similarity
function adapted from [9]. Let v be a reporting cell and tv
denote the month of the actual report of pest presence. To
account for uncertainty in reporting, we consider a time
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Figure 2. Explaining observed spread pattern in Bangladesh. The contour plots show the spread starting from the location of first report in Panchagarh district for a
simulation time of 12 months. Here, the time of infection for a cell is the minimum time step t such that the empirical probability that the cell is infected by time t
is greater than or equal to 0.8. Also highlighted are the eight monitored locations and the localities applied in the model. The colours of the monitored locations
correspond to the time of infection relative to the first report (Panchagarh). Two distinct spread patterns emerged from the cluster analysis. (a,b) Representative
spreads observed for each class. The similarity in each case was S . 0:8. Importance of model parameters with respect to (i) similarity score S and (ii) cluster
membership based on the random forest method. The latter plot shows how the results vary with an increase in the number of clusters for hierarchical clustering
algorithm. More results are presented in the electronic supplementary material, figure S9. Videos depicting the spatio-temporal spread for each class are provided in
the supplement. (a) Class A, (b) class B and (c) parameter importance. (Online version in colour.)

Table 1. Model parameters, their values and notes on parameter choices and ranges.

parameter description value/range

rM range of Moore neighbourhood {1, 2, 3} corresponding to spread per month of approximately 25 km, 50 km and 75 km,

respectively

ℓ latency period to transition from E to I {1, 2, 3} months based on the time for the pest to complete life cycle (T. absoluta biology

in the electronic supplementary material, S2)

season disaggregation of annual production to

monthly values

uniform throughout the year or seasonal based on regression analysis (Methods)

β gravity model distance function

exponent

{0, 1, 2}

κ gravity model distance function cut-off between 4 and 16 h of travel time

seed location and time of initial infestation scenarios based on countries (see the electronic supplementary material, table S5)

locality

radius

determines cells assigned to a locality 100 km (see the electronic supplementary material, S3.2 for locality construction and

analysis)

ts time of initial infestation during

parameterization

{3, 4, 5} corresponding to March, April and May, respectively, based on first report in

Bangladesh (electronic supplementary material, table S3)

αs, αℓ, αℓd pathway scaling factors in the interval [0, 500]
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window Ut ¼ [tv � t, tv þ t] during comparison, where τ is the
uncertainty parameter. We set τ = 2, that is, error within ±2
months is tolerated. Supposing CR is the set of cells correspond-
ing to ground truth, then the similarity S is given by

S(C) ¼ 1
jCRj

X
v[CR

X
t[Ut

p(C, v, t)þ
X
t�Ut

(1� p(C, v, t))

 !
: (2:4)

For parameter space exploration, we were motivated by a
recent approach of using machine learning surrogates [21]. In
our iterative ‘go with the winners’ process [24], the subspace
under consideration is sampled uniformly (the first part of
figure 1c). Then, with model parameters as features and the simi-
larity score as the dependent variable, we use classification and
regression trees (CART) approach to identify parts of the sub-
space for which the similarity score is high and reject the
remaining. In the following iteration, these subspaces are
sampled uniformly, and the process continues. The approach is
very similar to the reverse engineering approach used to build an
interpretable learner for a black box model ([22], figure 10). In
the interpretable machine learning framework, the black box is
a machine learning algorithm like a neural network or tree
ensemble, while in our case, the black box is an agent-based
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model. Simulations were performed for more than 500 000 par-
ameter combinations using a high performance computing
cluster. Configurations with similarity score S(C) � 0:75 were
chosen for further analysis.

(e) Analysis of spread pattern
The objective here is to analyse the variability in the simulation
outcomes within the set of best-fit configurations. We leverage
well-known machine learning techniques in a novel way to
address this question. The methodology is outlined in figure 1c.
First, we cluster the simulation outputs (time and cell-indexed
empirical probabilities) of selected configurations from the para-
meterization phase. This step captures the variability in
outcomes; simulation outputs belonging to different clusters
can be considered to be significantly different from one another.
In the second step, we attempt to infer relationships between
model parameters and cluster membership. To this end, our
approach is to cast this as a classification problem using CART
with model parameters as the features and cluster index as the
label. The relationships are inferred from the decision tree that
resulted from the algorithm. To avoid any bias introduced by
the clustering algorithm, we also apply more than one
method—hierarchical agglomerative clustering and the k-means
algorithm. In both cases, we use the Euclidean distance as the dis-
tance measure to compare two simulation outputs. The analysis is
repeated for different values of k, the number of clusters. More
details are provided in the electronic supplementary material, S5.

To assess the relative importance of model parameters, we
adopted the approach of Lamperti et al. [21]. We use the
random forest algorithm [25] to assess the importance with
respect to (i) similarity score (S) and (ii) spread pattern, which
in our case, is akin to cluster membership. The set-up is similar
to the parameterization and cluster analysis case, with CART
replaced by the random forest algorithm. Details are in the elec-
tronic supplementary material, S5. To evaluate parameter
importance with respect to the similarity score, we used mean
increase in node purity as the criterion (as it is a regression pro-
blem), and for cluster membership, we used decrease in accuracy
(classification problem).
3. Results
(a) Variability in spread pattern
The clustering analysis of the configurations selected during
the parameterization phase (approx. 8000 of them) reveals
two distinct spread patterns primarily determined by the
pathway parameters. The first class of models (figure 2a),
referred to as class A, is characterized by the absence of
long-distance human-mediated spread (αℓd negligible) and
brisk spread between geographically adjacent cells, driven
by the latency period ℓ, the Moore range rM and the short-
distance scaling factor αs. By contrast, for class B models
(figure 2b), the long-distance pathway (αℓd) plays a significant
role and there is relatively slow spread between geographi-
cally adjacent neighbours. Both hierarchical clustering and
k-means clustering (electronic supplementary material,
figures S5(b) and S6(a)) are consistent in this regard.

The class A spread pattern does not capture the gap
between the time of first report (Panchagarh) and the
report in Gaibandha district (figure 2a). Even though the dis-
tance between the two locations is only 185 km, the latter
reported the presence only after 10 months of first report,
suggesting that self-mediated spread might have been
much slower. In the model output on the other hand, the cor-
responding cell gets infected between the second and fourth
months. In class B, this location is infected much later in com-
parison. However, the eastward spread towards the location
Jaintiapur is slower than what was observed (figure 2b).
Even though Panchagarh is quite far from this location,
pest presence was reported by February 2017, just nine
months after the first report. As a baseline, we also simulated
the spread using the cellular automata model developed by
Guimapi [19] for Bangladesh. The spread pattern is similar
to class A as the model does not account for long-distance
hops. However, the predicted rate of range expansion is much
higher than our models (see the electronic supplementary
material, S6.3 for model details and results).

In the case of spread pattern, the importance was derived
for each k (number of clusters) and clustering algorithm.
Some results are presented in figure 2c. We note that the
long-distance scaling factor (αℓd) is among the top three
important parameters. The start month (ts) is also important
for two reasons. Firstly, the distance between two time-
shifted simulation outputs can be large. Secondly, outputs
are sensitive to seasonal variations or temporality of the net-
work. Latency period (ℓ) and Moore range (rM) together
control the extent of radial spread in a time step. Typically,
for class A models, rM is high and ℓ is low and the other
way round in the case of class B models. Analysis of
trade flows and seasonality is presented in the electronic
supplementary material, S6.2.

(b) Scenarios of pest introduction to countries in
Southeast Asia

To identify routes of introduction to other countries in the
region, we applied both class A and class B models. The start-
ing point of the spread corresponds to the Panchagarh district
(figure 2a). Both model classes strongly indicate that T. abso-
luta is already present in parts of Myanmar (curves
corresponding to time step 24, or 2 years from first report).
Also, the pest is likely to enter Thailand from Myanmar,
and subsequently move to Laos, Cambodia and Vietnam as
it spreads eastwards, and to China when it spreads north-
wards. From Thailand, spreading southward, it will enter
Malaysia and subsequently enter Indonesia (figure 3a,b).

We also analysed the international tomato trade network
(electronic supplementary material, S6.1) to assess the risk
owing to imports from T. absoluta infested countries outside
this region. Malaysia and Singapore are important hubs
with tomato imports from T. absoluta infested regions. There
is a possibility that T. absoluta is directly introduced to these
regions. However, in both cases, the import volume is very
low. Also, the introduction risk depends on the preventive
measures taken by the exporting countries. With respect to
both trade and natural pathways, there is a low chance that
the pest will be introduced into Philippines from neighbour-
ing countries, as there are no shared borders with any
country in the region nor evidence of tomato trade. However,
human mobility is a possible pathway. For example, the
Middle East is the top destination for Filipino workers.

(c) Predicted spread is model and region dependent
In the case of class A models, the eastward spread is faster
than southward spread (figure 3a). This is mainly because
the Moore neighbourhood is smaller at the narrow region
in the south of Myanmar and Thailand bordering Malaysia.
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Figure 3. Predicting rate and pattern of spread. The contour plots show the spatio-temporal spread. The colours indicate the time interval at which there is at least
a 50% chance that a location will be infected. Spread in Southeast Asia. Figures (a,b) correspond to the spread starting from northern Myanmar for 120 time steps or
10 years; (a,b) correspond to representative simulation output for class A and class B models respectively. Domestic spread with and without intervention. In (c,d ),
representative spread dynamics of class B models (rM = 1, ℓ = 3) are shown for the country of Thailand. More plots are in the electronic supplementary material,
figure S12. In each case, a cell close to a high production region was seeded and simulation run for 48 time steps; (c) corresponds to unmitigated spread while (d)
corresponds to spread after cutting off flows from chosen localities. (e) Average spread with respect to origin of infection for all class B models. The cells are binned
based on their distance from the origin of infection. Given time step t (48), let Pr�t (v) be the probability that cell v is in state I by time t. For each configuration,
we computed the ‘total infection’ for every bin at time t by aggregating Pr�t (v) for each v in the bin. The cross points referred to as ‘max’ correspond to the total
number of cells in each bin, which is also the maximum possible accumulated probability for that bin. (Online version in colour.)
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However, in the case of class B (figure 3b), the spread is much
faster in the same region aided by domestic trade flows from
northern and central Thailand to the southern region. The
class A spread pattern predicts that within the next 4–5
years, much of the northern part of mainland Southeast
Asia will be invaded. The class B spread pattern predicts
that in the same period, T. absolutawill spread all over Malay-
sia and Singapore. However, the rate of spread observed is
slower than that observed in Bangladesh for both classes.
Also, even though the models exhibited a similar rate of
spread for Bangladesh, we observed high variance in inten-
sity of infestation as well as range expansion for the rest of
the region. The results are in the electronic supplementary
material, figure S11. The reason for slow spread is as follows.
Bangladesh has the highest tomato volume per country sur-
face area (≈2.5 tonnes km−2). The next country is Vietnam
(≈1.5 tonnes km−2). Therefore, in the case of Bangladesh,
not only is the extent of infestation in a cell ρ( · ) typically
high, but also because it is a densely populated country,
most cells have vegetable production. Hence, the rate of
spread is much higher for relatively lower values of pathway
parameters and Moore range. Also, we observed a strong
dependence on Moore range (electronic supplementary
material, figure S11b). In geographically larger countries,
the production is scattered. Therefore, the lower the Moore
range, the slower the spread.

(d) Influence of domestic trade on spread pattern and
rate

Here, we focus on long-distance dispersal and therefore
restrict our discussion to class B models. For the country-
specific studies, the starting location was decided based
on our analysis of possible entry points through different
pathways (electronic supplementary material, S4.1). We
observed the following common spread pattern. When the
invasive species is introduced to a country, dispersal is slow
until the invasion front reaches a production source. Once it
establishes at a source, the spread is very fast. Depending
on the country, within 12–24 time steps (or 1–2 years), it
spreads to almost all major localities of the country (see
figure 3c for example). Production areas which are very
close to high-consumption localities (large urban areas) are
particularly vulnerable. Because local production typically
does not satisfy demands of such localities, they have high
inflows from other production areas and possibly from
other countries. As a result, these localities are quickly
infected. Once introduced to such localities, farmer–market
interactions (local human-mediated dispersal) can facilitate
the introduction of the pest to nearby production regions
where it can establish and proliferate. Similar observations
have been made in a number of works [26,27].

Given that monitoring and quarantining are both
resource-intensive and potentially disruptive, developing
strategies that involve few locations yet provide near-optimal
control is a goal for modellers. Market-level phytosanitary
measures in terms of import restrictions have been under-
taken by countries [28]. Here, we evaluated a simple
strategy for containing the spread through the trade pathway.
Localities associated with high annual outflows were ident-
ified (at most four in each country). As discussed earlier,
pest establishment in these areas can potentially lead to
rapid range expansion. The outflow from the targeted
localities was cut off to mimic control at the trade/market
level. In the strictest sense, this can be implemented by
restricting trade of host crops. But, it is possible that phytosa-
nitary measures have the same effect. Figure 3d shows the
spread after intervention. More results are present in the elec-
tronic supplementary material, figure S9. Consistently, across
countries, we observed a significant reduction in range
expansion as well as intensity of spread. Besides, as seen in
figure 3d, stifling these flows localizes the spread that
resembles those of class A models, but with much less
intensity.
4. Discussion
The variability in the spread patterns that explain the inci-
dence reports exposes the lack of understanding of the
pathways of spread. Nevertheless, the analysis does strongly
indicate the role of human-assisted spread of T. absoluta. The
pest was reported in May 2016 in the northwestern part of
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Bangladesh bordering India. The region is among the top
three tomato producers in the country. By the beginning of
the next production season, T. absoluta was found in almost
every major urban region. Similar correlation between the
tomato trade and T. absoluta spread was observed in Nepal
[20]. Studies on self-mediated spread (flying capability or
by wind) can definitely help estimate more accurately the
rate of self-mediated spread. It is also important to consider
alternate scenarios of introduction. We recall that the far east-
ern part of Bangladesh (locality Jaintiapur in figure 2b)
reported pest presence nine months after the first report.
This place happens to be close to an important trade route
connecting northeastern Bangladesh to Meghalaya in India,
where T. absoluta was officially reported in January 2017.
Therefore, it is possible that multiple incursions took place.

Historically, international trade has played a strong role in
the spread of T. absoluta between countries. For example, the
pest was first reported by India in 2014. By early 2016, it was
discovered in the Kathmandu area of Nepal and in the north-
ern part of Bangladesh in May 2016. Both countries import
significant volumes of tomatoes from India. However, there
has been no report from Pakistan, another neighbour which
does not import tomatoes from India. There are similar
examples outside the region such as its slow advance from
South America to Central America, or the fact that it is not
reported in China despite being present in neighbouring Cen-
tral Asian countries since 2015. We recall the discussion on
slow predicted rate of spread in mainland Southeast Asia
compared to the observed rate in Bangladesh. One reason
for this could be the unaccounted trade flows between
countries. International trade within this region is not docu-
mented well. It is critical to address the data gaps
concerning international trade, particularly considering that
production and trade between countries in this region have
been increasing over the years (details are in the electronic
supplementary material, S6.1).

While several integrated pest management strategies have
been suggested for managing T. absoluta, hardly any work
has been done in designing effective interventions at the
trade level. Some countries have already taken measures in
this regard. In the USA, the Animal and Plant Health Inspec-
tion Service of the Department of Agriculture (USDA-APHIS)
has instituted quarantine regulations for imports from
regions where the pest is present [28]. Identifying important
locations to mitigate an epidemic ([26,27,29]) or monitor are
problems being increasingly studied with the lens of network
analysis. While good algorithms exist for undirected net-
works, solutions for these problems on directed weighted
networks are few and far in between.

Emulators—based on Gaussian processes, for example
[30]—and machine learning surrogates [21] are emerging as
solutions to overcome computational challenges, parameteri-
zation and sensitivity analysis of complex agent-based
models. Our approaches were motivated by these works.
We are not aware of any previous work that analyses the
dynamics of simulation systems using unsupervised learning
as presented in this paper. However, clustering has been con-
sidered in the context of multi-resolution simulation models
as an interfacing component between simulators with differ-
ent resolutions [31]. Our use of CART to explain the
clustering is motivated by recent work in interpretable aritifi-
cal intelligence [22], where deep learning models are
interpreted using decision-tree proxy models.
(a) Challenges and limitations
Modelling emerging invasions is particularly challenging.
Limited data on incidence and understanding of the under-
lying dynamics makes it nearly impossible to calibrate and
validate the models. We have had to simplify or ignore
some of the processes that might significantly influence the
spread. For example, our model uses monthly production
as a surrogate for infectiousness of a cell. Complex phenology
models can be used instead (as in Carrasco et al. [9]), but
would add to the complexity of the model. Because our
focus region spans multiple countries, identifying and collect-
ing data for each country was a lengthy process. For many
countries, data had to be collected (or even inferred) from
several publications and reports (electronic supplementary
material, table S2). Furthermore, these datasets were mis-
aligned in time and spatial resolution. It is important to
account for heterogeneity in production, consumption,
awareness, cultural factors, etc. both within and between
countries. Some countries are technologically more advanced
than others, which manifests as differences in yield, crop loss,
trade infrastructure, pest awareness and preparation for
invasion [2].

In particular, it is hard to model human-assisted spread
owing to lack of seasonal trade data. To determine outflows
and inflows for each locality, we had to identify major ports
for import(s) and export(s) as well as estimate the fraction
of production which was used for processing and was avail-
able only for a few countries. The farm–market-consumer
interactions (local human-mediated spread) involves various
actors such as farmers, wholesalers, retailers, wet markets,
supermarkets and so on. Modelling this is a challenge in
itself. If data on actual flows of vegetables is provided, the
gravity model can be improved or replaced by more
sophisticated approaches. Also, the relationship between
long-distance invasion risk and trade volume is hard to deter-
mine. While a direct relationship between volume and risk is
plausible, whether the relation is linear (as assumed by our
model) is unclear.

(b) Conclusion
Traditionally, in developing countries, crops such as the
tomato are seasonal. However, over the past decade,
owing to rising demand and opportunities to export, there
has been a thrust towards year-round production using pro-
tected cultivation methods and resilient varieties. An
increase in urban population, short shelf life of vegetables,
and the advantages of short marketing chains have encour-
aged urban agriculture in developing countries [32]. Our
results indicate that such urban and peri-urban agriculture
is particularly vulnerable to invasive species attacks. In par-
ticular, in Southeast Asia, vegetable production and internal
trade have steadily increased. In comparison, the export of
tomatoes outside of the focus region has risen steeply in
recent years (after 2011), while the imports generally indi-
cate a downward trend. Therefore, invasions from pests
such as T. absoluta can have a huge negative impact on the
socio-economic fabric of this region. The modelling and
analysis framework presented here is generic and appli-
cable to other invasive species. The methodology is
modular and leverages popular learning algorithms to ana-
lyse complex models under data scarcity. Other potential
applications for this work include studies of natural or
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human-initiated disasters, climate change and optimization
of food flows.
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