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This is anOpe
Abstract – Sunflower (Helianthus annuus L.) is one of the three most productive oilseed crops worldwide.
Soilborne diseases limit yields and are challenging to manage. The fungi Verticillium dahliae, Sclerotinia
sclerotiorum and Macrophomina phaseolina can survive in the soil for many years and spread. Following
the ban on fumigants, biofumigation, which consists of growing, chopping and incorporating a Brassicaceae
cover crop to allow biocidal compounds production in the soil, may be an alternative. Biocidal effects of the
hydrolysis of glucosinolate into active compounds, such as isothiocyanates, have been shown in laboratory
studies, but the effectiveness of biofumigation varies more in the field. The present study reviews the main
factors that determine effective biofumigation to protect sunflower. Since the toxicity of isothiocyanates to
pathogens varies widely among the latter, we reviewed studies that assessed the suppressive effect of
products of glucosinolate hydrolysis on V. dahliae, S. sclerotiorum and M. phaseolina. Farmers can use
many mechanisms to increase isothiocyanate production, which may protect sunflower crop effectively.
Increasing biomass production and chopping the cover crop during mild temperatures and before rainy
periods could increase biofumigation effectiveness. Further field experiments are needed to confirm the
potential of biofumigation to control soilborne diseases of sunflower and assess potential disservices to
beneficial soil communities, given their potential key role in the control of soilborne pathogens.

Keywords: Helianthus annuus / cover crops / Brassicaceae / glucosinolates / agroecological crop protection

Résumé – Protéger les cultures oléagineuses par la biofumigation : le cas de la gestion des
champignons telluriques du tournesol. Le tournesol (Helianthus annuus L.) est l’une des trois cultures
oléagineuses les plus productives dans le monde. Les pathogènes telluriques limitent sa productivité et leur
contrôle est difficile. Les champignons telluriques Verticillium dahliae, Sclerotinia sclerotiorum et
Macrophomina phaseolina peuvent survivre plusieurs années dans le sol et sont en recrudescence. Suite à
l’interdiction de plusieurs fumigants, la biofumigation, qui consiste en la mise en place, la destruction et
l’incorporation de culture intermédiaire de Brassicacées permettant la production de composés biocides
dans le sol, pourrait être une alternative. L’effet biocide des produits de l’hydrolyse des glucosinolates, tels
que les isothiocyanates, a été démontré au laboratoire, mais l’efficacité de la biofumigation est variable en
plein champ. Cette revue a pour objectif de recenser les déterminants majeurs de l’efficacité de la
biofumigation pour la protection du tournesol. La toxicité des isothiocyanates étant variable selon les
bioagresseurs visés, le second objectif est de recenser les études ayant évalué les effets suppressifs des
produits de la dégradation des glucosinolates, contre les champignons telluriques V. dahliae, S. sclerotiorum
et M. phaseolina. Les agriculteurs peuvent mettre en place plusieurs leviers afin d’améliorer la production
d’isothiocyanates, permettant potentiellement une protection efficace de la culture du tournesol. Maximiser
la production de biomasse puis détruire le couvert lors de températures douces et avant une période
pluvieuse pourraient améliorer l’efficacité de la biofumigation. Des expérimentations en plein champ
tion to the Topical Issue “Innovative Cropping Systems / Systèmes innovants de culture”
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supplémentaires sont nécessaires pour confirmer le potentiel de la biofumigation pour contrôler les
pathogènes telluriques du tournesol et évaluer ses potentiels disservices contre les communautés
microbiennes du sol, au regard de leur importance potentielle dans le contrôle des pathogènes telluriques.

Mots clés : Helianthus annuus / cultures intermédiaires multi-services / Brassicaceae / glucosinolates / protection
agroécologique des cultures
1 Introduction

1.1 Oilseed crop production and protection
1.1.1 Factors that limit crop yield

Since 2015, soybean (Glycine max), rapeseed (Brassica
napus subsp. napus) and sunflower (Helianthus annuus L.)
have been the three main oilseed crops produced worldwide
(FAOSTAT, 2020). In 2018, their worldwide production was
ca. 345, 75 and 50 million t/annum, respectively (FAO, 2020).
While the global area of these crops is expanding, unfavorable
weather conditions threaten their production (FAO, 2018).
Despite the moderate water requirements of sunflower,
drought is the main environmental factor that limits its growth
(Debaeke et al., 2017a), and high temperature can decrease its
final production of seeds and oil (Harris et al., 1978). In most
European countries that produce sunflower (Romania, Spain,
France, Bulgaria, and Hungary), yield gaps of 1.1–2.4 t/ha
have been reported, and climate change could be partly
responsible for them (Debaeke et al., 2017a). Biotic stress also
limits oilseed crop production worldwide. At least 30
sunflower diseases are known. The most damaging and
widespread fungal diseases are downy mildew (Plasmopara
halstedii), phoma black stem (Phoma macdonaldii), phomop-
sis stem canker (Phomopsis helianthi), white mold (Sclerotinia
sclerotiorum) and Verticillium wilt (Verticillium dahliae)
(Seassau, 2010; Vear, 2016; Debaeke et al., 2017b), most of
which are soilborne pathogens (P. halstedii, S. sclerotiorum,
V. dahliae). More recently, Cadophora malorum has been
reported as a new soilborne fungus of sunflower (Martín-Sanz
et al., 2018; Molinero-Ruiz, 2019). In the context of climate
change, Macrophomina phaseolina could be favored by
ground dryness and temperatures of 28–30 °C (Šárová et al.,
2003). S. sclerotiorum and V. dahliae could tolerate unfavor-
able periods better (Wilhem, 1955; Debaeke et al., 2017a) via
their long-term structures� sclerotia and microsclerotia (MS),
respectively�, which remain viable in the soil for many years
(Mol et al., 1995; Ćosić et al., 2012).

1.1.2 The challenge of managing soilborne fungi

Protecting crops from soilborne organisms is more
challenging than protecting them from foliar pests (Matthiessen
and Kirkegaard, 2006). Soilborne fungi such as V. dahliae and
M. phaseolina can survive asMS up to 14 years (Wilhem, 1955)
and 4 years (Watanabe, 1973), respectively. S. sclerotiorum
produces sclerotia that may survive for 3 years (Ćosić et al.,
2012). Soilborne pathogens can coexist in the soil (Raaijmakers
et al., 2009), and their heterogeneous distribution makes
monitoring them costly and usually ineffective (Matthiessen
and Kirkegaard, 2006). For many oilseed diseases, genetic
resistance is one of the most effective protection methods, but it
breaks down frequently due to the appearance of new virulent
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strains, as observed for sunflower diseases (Vear, 2016;Debaeke
et al., 2017b; Molinero-Ruiz, 2019). To reduce the pressure of
soilborne pathogens, farmers used to fumigate vegetable and
ornamental crops intensively with methyl bromide (Hoffmann
andMalkomes, 1974; Duniway, 2002;Martin, 2003). However,
methyl bromide was phased out under the Montreal Protocol in
2005due to its depleting effects on the ozone layer (Laegdsmand
et al., 2007; Gimsing and Kirkegaard, 2009). Other synthetic
compounds were subsequently used to control soilborne
pathogens, such as 1,3-dichloropropene (phased out in the
European Union [EU] in 2007), chloropicrin (phased out in the
EU in 2012) and methyl-isothiocyanate (MITC), the primary
breakdown product of metam-sodium (Ibekwe, 2004). MITC
has a broad biocidal activity but alters important soil functions
such as nutrient cycling (Macalady et al., 1998). It is also highly
volatile, with much of it transferred to the atmosphere after
application (Dungan et al., 2003).

Like for genetic resistance, maintaining the efficacy of
pesticides after repeated use is difficult (Matthiessen and
Kirkegaard, 2006). Synthetic fumigants may become less toxic
due to soilborne pathogens developing resistance (Goldman
et al., 1994) and/or increased biodegradation of their chemicals
(Warton et al., 2003). This latter misunderstood phenomenon
comes from the ability of microorganisms, mainly bacteria, to
catabolize xenobiotics in the soil after repeated exposures with
a short interval between applications (Warton et al., 2003;
Matthiessen and Kirkegaard, 2006). Microorganisms can
accelerate the degradation, which decreases their persistence
and effectiveness for soilborne pathogens (Warton et al., 2003;
Di Primo et al., 2003). This phenomenon has been observed
with metam sodium used for potato (Solanum tuberosum)
Verticillium wilt (VW) (Di Primo et al., 2003). When a soil
develops increased biodegradation, fumigation requires
several years before it can recover an effective biocidal effect
(Warton et al., 2003). In the meantime, the use of fumigants
seems ineffective and wasteful (Matthiessen and Kirkegaard,
2006).

1.1.3 Alternatives for managing soilborne diseases

The breakdown of resistance and the current context of
agroecological transition have decreased the use of broad-
spectrum fumigants (Warmington and Clarkson, 2016) and
increased interest in alternative methods of crop protection
(Martin, 2003). Reliance on combined and natural mechanisms
to protect crops has been encouraged by Integrated Pest
Management (IPM), as described in the EU Framework
Directive 2009/128/EC. IPM is implemented through eight
principles, and the first one is based on preventing and/or
suppressing harmful organisms using a variety of methods,
such as crop rotations. IPM favors the use of sustainable
biological methods (Barzman et al., 2015). Since isothiocya-
nates (ITCs) are biologically active compounds, and MITC is
f 15
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widely used as a fumigant, there is interest in transposing this
biocidal activity of biological sources of ITCs to suppress
soilborne pathogens and diseases (Brown and Morra, 1997;
Matthiessen and Kirkegaard, 2006; Gimsing and Kirkegaard,
2006). This natural alternative to fumigation, called “bio-
fumigation” (Kirkegaard et al., 1993), involves growing,
chopping and incorporating crops that produce ITCs.
Brassicaceae (crucifers) are widely used for this technique
(see part 2).

The utility of biofumigation has been observed for
protecting vegetable crops (Michel, 2014; Morris et al.,
2020) and, to a lesser extent, wheat (Triticum aestivum,
Kirkegaard et al., 2000) and beetroot (Beta vulgaris ssp.
vulgaris, Motisi et al., 2009). Many studies of in vitro
approaches have shown promising results of biofumigation for
soilborne diseases. In the field, however, the effectiveness of
biofumigation has varied more (Motisi et al., 2010; Morris
et al., 2020). Nonetheless, mechanisms for suppressing
pathogens effectively in the field are increasingly understood
(Kirkegaard and Matthiessen, 2004; Matthiessen and
Kirkegaard, 2006; Morris et al., 2020), and biofumigation
appears to be an environmentally friendly defense strategy
(Lazzeri et al., 2004) considered as a part of IPM (Gimsing and
Kirkegaard, 2009; Kruger et al., 2013). Among oilseed crops,
sunflower seems to be particularly suitable for protection using
biofumigation. It is sown in spring, after a long fallow period
when soils are usually left bare. A Brassicaceae cover crop
introduced during this period would fit into the rotation easily,
thus diversifying it. It would also improve:

–
 soil structure and reduce erosion (Thorup-Kristensen et al.,
2003; Justes et al., 2012);
–
 nutrient management, through catch crop and green
manure effects for nitrates and sulfates (Constantin
et al., 2011; Couëdel et al., 2018a; Couëdel et al.,
2018b);
–
 soil organic matter (Kirkegaard and Matthiessen, 2004).
To follow the fundamental agroecological principle of
diversifying crop rotations (Altieri, 1999), this review does not
discuss rapeseed protection using Brassicaceae cover crops
and biofumigation. However, it does present studies that used
Brassicaceae as a biofumigant crop. Biotic stresses are not still
a major issue for soybean in France (Lamichhane et al., 2020)
or in Europe. This is in part because soybean is currently grown
on small areas and in diversified rotations (Lamichhane et al.,
2020). The interest in biofumigation to protect soybean
remains low and studies rare. Thus, this review excludes
soybean protection using biofumigation, although some
studies showed promising results. Fayzalla et al. (2009)
showed that soybean root rot and soybean wilt, caused by
Fusarium oxysporum, Rhizoctonia solani, M. phaseolina and
Sclerotium rolfsii, could be reduces with mustard in field
conditions.

With a focus on sunflower, the objectives of this review are to:

–
 highlight the main factors that determine effective
biofumigation;
–
 review studies on laboratory or field experiments
performed to evaluate suppressive effects of synthetic
GSLs/ITCs or Brassicaceae incorporation on V. dahliae,
S. sclerotiorum and M. phaseolina.
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Since studies of sunflower protection using biofumigation
are rare (to our knowledge), most studies concerned other plant
hosts. Thus, after describing the biofumigation concept and
process briefly, factors that drive ITC production are detailed
to provide a set of mechanisms that results in effective
biofumigation. Suppressive effects of glucosinolate (GSL)
products on sunflower soilborne diseases are reviewed based
on studies of a variety of host crops. Finally, non-GSL-related
suppressive effects of biofumigation and the utility of
including Fabaceae with Brassicaceae to protect sunflower
against soilborne disease are also discussed.

2 The biofumigation process

2.1 Biofumigation concept and the use of
Brassicaceae

Biofumigation is defined as the suppressive effect of GSL-
containing species on soilborne pathogens through the
liberation of volatile compounds, mainly ITCs, released after
hydrolysis of GSLs by the enzyme myrosinase during tissue
disruption and incorporation into the soil (Kirkegaard et al.,
1993; Kirkegaard and Matthiessen, 2004). GSLs occur
naturally in families of the order Capparales: Tovariaceae,
Resedaceae, Cappareaceae, Moringaceae and mainly Brassi-
caceae (Fenwick et al., 1983; Brown and Morra, 1997; Van
Dam et al., 2009). They are widely cultivated as vegetables
(cabbage [B. oleracea var. capitata], radish [Raphanus
raphanistrum subsp. sativus], and rocket [Eruca vesicaria
ssp. sativa]), condiments (mustard [Brassica juncea]), forage
(fodder radish [Raphanus sativus var. longipinnatus] and
turnip rape [Brassica rapa subsp. rapa]), oilseed crops and
cover crops during fallow periods. However, plants that
contain GSLs can be used to control soilborne pathogens
through biofumigation (Kirkegaard et al., 1993; Brown and
Morra, 1997; Matthiessen and Kirkegaard, 2006) and are
considered to be a biological alternative to conventional soil
fumigation (Brown and Morra, 1997; Matthiessen and
Kirkegaard, 2006; Laegdsmand et al., 2007; Clarkson et al.,
2015). Bactericidal activity of ITCs has been reported (Brown
and Morra, 1997; Smith and Kirkegaard, 2002; Bending and
Lincoln, 2000), as have fungicidal (Angus et al., 1994; Manici
et al., 2000; Smith and Kirkegaard, 2002), nematicidal
(Lazzeri et al., 1993; Riga, 2011; Ntalli and Caboni, 2017),
insecticidal (Borek et al., 1995a; Borek et al., 1998) and
herbicidal activities (Haramoto and Gallandt, 2004). Bio-
fumigation can reduce pest abundance and disease incidence
(Morris et al., 2020), but its degree of pest suppression can
vary significantly. Some studies concluded that biofumigation
did not suppress soilborne pathogens (reviewed by Kirkegaard
and Matthiessen, 2004; Motisi et al., 2010). After rape
incorporation, Davis et al. (1996) observed no significant
differences in V. dahliae population in the soil compared to that
without residue incorporation, while the incidence of VW on
potato was reduced significantly compared to that on potato
grown after a fallow period. VW can be caused by an
interaction between V. dahliae and nematodes like Pratylen-
chus penetrans (Martin et al., 1982; Rowe and Powelson 2002)
or Pratylenchus neglectus (Scholte and s’Jacob, 1990) which
may facilitate the penetration of V. dahliae in roots, but no
information is available about the direct effect of residue
f 15
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incorporation on P. neglectus in this study. However, no
significant correlation has been found between VW symptoms
or yield and the nematode. Hartz et al. (2005) also reported that
biofumigation (with mustard) did not significantly reduce
V. dahliae population in the soil or VW on tomato (Solanum
lycopersicum). A review of Motisi et al. (2010) noted an
increase in disease intensity after biofumigation for some
pathogens. Moreover, some studies may not be published
because they unexpectedly observe no significant effects of
biofumigation (Morris et al., 2020). This variability is due to
the many biological and physical factors that influence the
effectiveness of biofumigation (Motisi et al., 2010). Thus,
knowledge about GSL and ITC production, and a systematic
approach to field research through analytical studies are
needed (Kirkegaard and Matthiessen, 2004).

2.2 The GSL-myrosinase system

GSLs are organic anions characterized by a common
b-thioglucose, a sulfonated oxime moiety and a side-chain
group (Fenwick et al., 1983). This side chain determines the
type of GSL: aromatic, aliphatic or indolyl (Fenwick et al.,
1983; Brown and Morra, 1997; Mithen, 2001). To date,
132GSLs have been identified in Brassicaceae tissues
(Couëdel et al., 2019). Native GSLs have little or no biocidal
activity or toxicity (Manici et al., 1997). Species that contain
GSL produce myrosinase, a group of similar-acting enzymes
(Brown and Morra, 1997) that are also produced by some
microorganisms in soils (Gimsing and Kirkegaard, 2009).
In intact plant tissues, GSLs and myrosinase are physically
separated (Gimsing and Kirkegaard, 2009). The isolation
seems to be intercellular (Brown and Morra, 1997), with GSLs
in the vacuoles and myrosinase in specialized myrosin cells
(Höglund et al., 1992). Both compounds are distributed
throughout Brassicaceae tissues (Wittstock and Gershenzon,
2002), and cells must be disrupted physically for them to
contact each other (Brown and Morra, 1997). The result is
rapid hydrolysis into biologically active products such as ITCs
and other products of GSL degradation, such as nitriles,
organic cyanides, oxazolidinethiones and ionic thiocyanates
(Brown and Morra, 1997; Gardiner et al., 1999). Mature
tissues have less myrosinase activity (Iversen and Baggerud,
1980).

2.3 GSL-hydrolysis products and non-GSL products

The biocidal effect of the products of GSL hydrolysis is
function of the chemical composition of the GSL side chain,
their concentration, environmental conditions and the expo-
sure time of the target organism (Fenwick et al., 1983; Lazzeri
et al., 1993; Laegdsmand et al., 2007; Gimsing and
Kirkegaard, 2009). Each compound differs in its persistence
in the soil, stability and toxicity (Borek et al., 1995b; Manici
et al., 2000).

ITCs are produced rapidly after Brassicaceae tissues are
disrupted (Morra and Kirkegaard, 2002). Their concentration
in the soil peaks 30min after incorporation and can be detected
for up to 12 days (Gimsing and Kirkegaard, 2006). ITCs are
highly volatile, and the shorter their side chain is, the more
volatile they are (Brown and Morra, 1997). Due to their high
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volatility, their toxicity is assumed to spread around the point
of chopping (Angus et al., 1994). Only aliphatic and aromatic
GSLs produce ITCs (Matthiessen and Kirkegaard, 2006), and
they are recognized as the most biologically active products of
GSL hydrolysis, with broad-spectrum activity (Fenwick et al.,
1983; Brown and Morra, 1997; Matthiessen and Kirkegaard,
2006). ITCs are toxic because of their irreversible interaction
with proteins, mainly nucleophilic reagents (Brown and
Morra, 1997; Borek et al., 1995a). The reaction damages
the protein structure and functions of pest cells (Dufour et al.,
2015).

Despite the lower toxicity of the other products of GSL
hydrolysis, they may also help control soilborne organisms and
work synergistically with ITCs (Brown and Morra, 1997).
Other non-GSL secondary metabolites, such as sulfur-
containing organic compounds (e.g. sulfoxides, amino acids
such as methionine and cysteine, sulfonium compounds) may
also have toxic effects on soil organisms (Bending and
Lincoln, 1999).

3 Increasing biofumigation effectiveness for
sunflower production

With more than 350 genera (Beilstein et al., 2006; Abideen
et al., 2013) and 3200 species (Abideen et al., 2013),
Brassicaceae present a wide scope for farmers to choose the
most promising crops for effective biofumigation, based on
their GSL concentrations and profiles, and biomass production
(Sarwar et al., 1998). Farmers can act at multiple levels to
improve the biofumigation potential (Borek et al., 1995b;
Brown and Morra, 1997; Matthiessen and Kirkegaard, 2006;
Gimsing and Kirkegaard, 2009):
f

–

15
choice of Brassicaceae species;

–
 amount and profile of GSLs produced by the crop;

–
 rate of GSL conversion into ITCs;

–
 persistence of biocidal compounds in the soil.
3.1 The choice of the biofumigant Brassicaceae
species

Morris et al. (2020) emphasized that species in the genus
Eruca and Raphanus had the highest biofumigation effective-
ness. However, most studies about biofumigation concern
brown, white or Ethiopian mustard and rape (rapeseed and
forage rape) (Sarwar et al., 1998; Kirkegaard and Matthiessen,
2004; Reau et al., 2005; Clarkson et al., 2015). Brown mustard
has high concentrations of sinigrin GSL, which hydrolyzes into
2-propenyl-ITCs. Considered as a highly toxic ITC (Motisi,
2009), it may explain brown mustard’s promising results for
crop protection (see part 4). The utility of choosing forage rape
cultivars as a biofumigant crop was demonstrated by Gardiner
et al. (1999), who studied products of hydrolysis after
incorporation of cv. Dwarf Essex. Plants were incorporated
using a rototiller at the bud-to-early-flowering stage. The most
abundant product of hydrolysis measured in the soil was the
2-phenylethyl-ITC (2-PE-ITC), obtained from the aromatic
2-phenylethyl-GSL (2-PE-GSL), the main GSL in the roots of
both cultivars. Smith and Kirkegaard (2002) demonstrated the
toxicity of this ITC to pests. Moreover, Larkin et al. (2010)
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measured a lower VW incidence on potato after forage rape
(cv. Dwarf Essex) incorporation as green manure compared to
a continuous potato (non-rotation) control. However, farmers
harvest rapeseed crops to produce oil, so destroying them at the
flowering stage and/or incorporating them as a green manure
seems unrealistic in the context of oilseed crop production. The
advantage of rapeseed would rely more on an allelopathic
effect during development, with continuous production of
ITCs by its living roots (Rumberger and Marschner, 2003) or
after harvest, during roots decomposition (Reau et al., 2005),
both of which would provide a source of biocidal compounds
(mainly ITCs) against soilborne fungi. Rumberger and
Marschner (2003) demonstrated this phenomenon, observing
that live roots of canola cv. Monty (low root GSL) and cv.
Rainbow (high root GSL) released 2-PE-ITC continuously into
the rhizosphere, which affected soil microbial communities
(bacteria and eukaryotes) without accumulating in the soil.
Despite the interest in rape for its allelopathic and, to a lesser
extent, biofumigant effects, the trend since the 1960s has been
to select and breed varieties with lower GSL concentrations.
Thus, “double-low” varieties (i.e. low in erucic acid and GSLs)
have been introduced (Boag et al., 1990). GSLs may be
undesirable or even toxic to mammals (rats and roe deer) when
GSL concentrations increase in rape tissues (Fenwick et al.,
1983; Boag et al., 1990). It is possible, however, to breed
canola with higher 2-PE-ITC concentration without affecting
shoot or seed GSL concentrations (Potter et al., 2000). Since
the GSL concentration necessary to have a toxic effect on
soilborne pathogens remains unknown, low-GSL cultivars
may still have biocidal effects (Couëdel et al., 2019). For
example, Kirkegaard et al. (2000) found no significant
difference in the decrease in inoculum survival of the fungus
G. graminis var. tritici between canola with high (cv. Tamara
and cv. Karoo) and low (cv. Oscar and cv. Monty) root GSL
concentrations, even though the pairs of varieties produced
different 2-PE-ITC concentrations. In a pot experiment,
Michel et al. (2008) showed that the number of live MS of
V. dahliae in soils after the low GSL canola (cv. Talent) were
approximatively 60MS/g of soil, compared to that in an
unamended control (approximatively 90 MS/g of soil), but the
differences were not significant. To our knowledge, no study
has examined the potential of rapeseed to control soilborne
diseases of sunflower in field (through biofumigation and/or
allelopathic effects). Seassau et al. (2016) observed, in vitro,
a significant reduction in the germination or the development
of V. dahliae (strains from sunflower) exposed to rapeseed (cv.
Mosa), selected for its low GSL concentration compared to the
unamended control.

Although most studies have focused on Brassicaceae green
manures for biofumigation, seed meals could be used as an
alternative strategy (Mazzola et al., 2001) since they have
more biological activity than green manures. GSLs are
concentrated in the seeds and retained in the meal after
crushing (Borek and Morra 2005). Thus, seed meals can be
a source of GSLs (Brown and Morra, 1997; Morra and Borek,
2010) that stimulate soil microbial communities and suppress
soilborne pathogens (Mazzola et al., 2017). This alternative,
however, would be better suited for small areas of crops with
high commercial value than large areas of sunflower because
of the high cost of seed meals.
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3.2 Increasing GSL concentrations and profiles

A positive relation exists between GSL concentrations in
Brassicaceae tissues and their ability to suppress pests and
diseases during biofumigation (Morris et al., 2020). The
concentration and the profiles of GSLs (aliphatic, aromatic and
indolyl) vary among Brassicaceae species (Kirkegaard and
Sarwar, 1998; Bellostas et al., 2004; Bhandari et al., 2015) and
between their shoots and roots (Kirkegaard and Sarwar, 1998;
Van Dam et al., 2009; Bhandari et al., 2015). Roots usually
have higher GSL concentrations than shoots, even though roots
have lower biomass than shoots (Gimsing and Kirkegaard,
2006; Van Dam et al., 2009; Bhandari et al., 2015). This
difference may be explained by a higher pathogen pressure
belowground than aboveground (Van Dam et al., 2009;
Bhandari et al., 2015). Biotic stress, such as herbivore damage
and pathogen infection, increases GSL concentrations in
Brassicaceae tissues (Van Dam et al., 2009). It is important that
biotic stress does not decrease biomass production too much,
however, because a positive relation exists between Brassi-
caceae biomass and its GSL concentrations (Kirkegaard and
Sarwar, 1998). A large amount of biomass is thus required for
effective biofumigation (Clarkson et al., 2015). Morris et al.
(2020) predicted that less than 0.53 t dry matter of biomass/ha
would result in ineffective biofumigation. Thus, it is important
that cover crops be established well to maximize their biomass.
While application of fertilizers (nitrogen and sulfur) increases
GSL concentrations (Booth et al., 1991; Li et al., 2007),
applying them to cover crops is neither recommended nor
profitable.

The effectiveness of biofumigation also depends on the
growth stage of the plant. During development of Brassica-
ceae, GSLs turn over or redistribute within its organs (Booth
et al., 1991). GSL concentration peaks at the early flowering
stage in the whole plant, then it starts to decrease in shoots and
roots and increase in the seeds, whose GSL concentration
peaks at maturity (Booth et al., 1991; Sarwar and Kirkegaard,
1998; Michel, 2008). Because seeds have much less biomass
than shoots and roots, which decreases the amount of biomass
available for biofumigation (Morris et al., 2020), the optimal
timing for biofumigation is at the maximum value of
biomass�GSL concentration (Matthiessen and Kirkegaard,
2006). The recommended stage at which to destroy crops is
thus flowering (Michel, 2008), which also has the advantage of
avoiding seed-set.

3.3 Improving the conversion of GSLs into ITCs

For effective biofumigation, maximizing the hydrolysis
reaction that converts GSLs into ITCs is crucial to generate
high ITC concentration in the soil (Borek et al., 1995b; Brown
and Morra, 1997; Gimsing and Kirkegaard, 2009). Under
laboratory conditions, Brassicaceae sometimes released only
19% of the total potential ITCs produced (Brown et al., 1991).
This conversion efficiency reached 62.5–100% for Brassica-
ceae seed meals in sterile sand (Neubauer et al., 2015). In the
field, the efficiency was estimated at 60% (Gimsing and
Kirkegaard, 2006). The efficiency depends mainly on
agronomic practices and soil and climate conditions. The
stage of development of the Brassicaceae for biofumigation
f 15
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must be considered, due to the decrease in myrosinase activity
in mature tissues (Iversen and Baggerud, 1980). Brassicaceae
tissues must be chopped finely to maximize contact between
myrosinase and GSLs (Matthiessen and Kirkegaard, 2006).
Thus, chopping at high speed and using hammers instead of
blades is recommended (Matthiessen et al., 2004; Michel,
2008). Dilution with large amounts of water is then crucial to
ensure tissue maceration and soil moisture to hydrolyze GSLs
into ITCs and other products (Matthiessen et al., 2004; Michel,
2008; Gimsing and Kirkegaard, 2009). ITC concentration
increased by up to 7–10-fold when 42mm of water was added
to a soil after biofumigation (Matthiessen et al., 2004).
However, Gimsing and Kirkegaard (2006) observed no
difference after irrigating with 18mm over 3 hours after
biofumigation. Warmer temperatures also increase hydrolysis
(Matthiessen and Kirkegaard, 2006; Michel, 2008; Gimsing
and Kirkegaard, 2009). Matthiessen and Shackleton (2005)
observed that the biological activity of 2-PE-ITC was
significantly lower at 5 °C than at 10–20 °C. Consequently,
farmers should carefully choose the day on which to perform
biofumigation. Days with temperatures above 10 °C and with
rain forecast to fall within a few days could improve the
conversion of GSLs into ITCs, which would favor effective
biofumigation. In the soil, a pH around neutral results in ITC
production, while acid pH favors nitrile production (Brown
and Morra, 1997).

3.4 Maximize persistence of ITCs in the soil

Un-hydrolyzed GSLs and the ITCs produced persist in
soils from a few days to a fewweeks (Brown andMorra, 1997),
with the concentrations of GSL and ITC peaking 30min after
Brassicaceae incorporation (Gimsing and Kirkegaard, 2006) to
30 hours (Gardiner et al., 1999). Maximizing the persistence of
ITCs is crucial to increase the duration of exposure of
soilborne pathogens, which increases biofumigation effective-
ness (Borek et al., 1995b; Brown and Morra, 1997).

The main pathway of ITC losses is volatility (Brown and
Morra, 1997). To decrease these losses, solarization is used
with vegetable crops to trap volatile ITCs (Morris et al., 2020).
This technique consists of covering the soil with transparent
polyethylene sheets (Katan, 1981), but it is impractical over
larger areas, such as those of oilseed crops. Thus, rapid
incorporation of the chopped Brassicaceae is highly recom-
mended (Gimsing and Kirkegaard, 2006; Michel, 2008).
Sorption on soil components is another pathway of ITC loss.
For example, ITCs had lower toxicity in soils with high organic
matter content (>1%) (Gimsing and Kirkegaard, 2009;
Neubauer et al., 2014), which suggests that ITCs reacted
with organic matter’s nucleophilic reagents. Soil pH and
texture had little influence on ITC persistence in the soil
(Brown and Morra, 1997), unlike heavy rainfall (70–90mm),
which could cause ITCs to leach, thus reducing their
persistence (Laegdsmand et al., 2007).

Microbial degradation is a key factor that influences ITC
losses in the soils (Brown and Morra, 1997). Using an
autoclaved soil in biofumigation experiments increased the
stability of ITCs (Rumberger and Marschner, 2003). Farmers
have little influence on this factor, but soils that have never
been fumigated may not experience increased biodegradation
Page 6 o
(Warton et al., 2003). Because fumigation is used less often
with oilseed crops than with vegetable crops, mainly because
of the high cost of protecting large areas, soils of oilseed crops
may not experience this increased biodegradation.

4 Suppressive effects of GSL products on
the soilborne diseases of sunflower targeted

Under optimal conditions that maximize GSL concen-
trations, their conversion into ITCs and persistence in the soil,
the effectiveness of biofumigation will depend greatly on the
target species, since pathogens vary greatly in their sensitivity
to ITCs (Brown and Morra, 1997; Smith and Kirkegaard,
2002). To assess the sensitivity of sunflower pathogens to
biofumigation, this review focuses on laboratory or field
experiments performed to evaluate suppressive effects of
synthetic GSLs/ITCs or Brassicaceae incorporation on
V. dahliae, S. sclerotiorum and M. phaseolina (Tab. 1). Since
studies of sunflower protection using biofumigation are rare (to
our knowledge), most studies concerned other plant hosts of
these pathogens, mainly vegetable.

4.1 Experiment using synthetic ITCs/GSLs

In vitro studies of synthetic ITCs or synthetic GSLþ
myrosinase tested the sensitivity of pathogens and screened the
most effective GSL profiles (Tab. 1, part a). Neubauer et al.
(2014) tested five ITCs, all of which were lethal to V. dahliae
MS. Aromatic ITCs (benzyl-ITC and phenylethyl-ITC
obtained by Glucotropaeolin and Gluconasturtiin hydrolysis)
were much more toxic than aliphatic ITCs. Among the same
profiles of ITCs (aromatic or aliphatic), ITCs with lower
molecular weight tended to be more effective than ITCs with
higher molecular weight. To suppress S. sclerotiorum, aromat-
ic ITCs were also more effective than aliphatic ITCs. Overall,
benzyl-ITC was the most effective ITC against S. sclerotiorum
mycelial development and sclerotia (Kurt et al., 2011), while
methyl-ITC and allyl-ITC were among the most effective ITCs
at reducing mycelial growth (Kurt et al., 2011; Ojaghian et al.,
2012). For M. phaseolina, mycelial development was also
reduced by allyl-ITC (Mazzola et al., 2017).

4.2 Experiments using Brassicaceae (in vitro or in
pots)

To screen the potentially most effective varieties and/or
species of Brassicaceae, and to assess effects of hydrolysis
products of GSLs to manage soilborne fungi, experiments were
performed using Brassicaceae biomass (e.g. crushed, ground,
macerated) instead of synthetic compounds (Tab. 1, part b). To
control V. dahliae, S. sclerotiorum and M. phaseolina, mustard
varieties, especially Brassica juncea (brown/Indian mustard),
were used mainly as a source of GSLs and ITCs in
biofumigation studies. Mustard species often showed signifi-
cant suppression of V. dahliae (Olivier et al., 1999; Neubauer
et al., 2015; Seassau et al., 2016), S. sclerotiorum (Ojaghian
et al., 2012; Rahimi et al., 2014; Warmington and Clarkson,
2016) and M. phaseolina (Mazzola et al., 2017). Some
cultivars of turnip rape (Brassica rapa), forage radish
f 15
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(Raphanus sativus), Kohlrabi (Brassica oleracea cv. caulor-
apa) and B. napus were among the most effective species, but
were more variable than B. juncea. In these studies, anti-fungal
effects of ITCs and other products of GSL hydrolysis were
assessed on mycelial growth and/or the long-term survival
structures of the pathogens. Effectiveness of Brassicaceae
varied among the forms of the pathogens. Seassau et al. (2016)
showed that mycelial growth of V. dahliae isolated from
sunflower was suppressed mainly by B. juncea, while MS
germination was suppressed mainly by B. rapa. Since
biofumigation occurs a few months before sunflower sowing,
its suppressive effects would affect long-term survival
structures of pathogens because of the low persistence of
GSLs and ITCs.

4.3 Field approaches to biofumigation

In vitro and pot studies have shown promising biocidal
effects on V. dahliae, S. sclerotiorum and M. phaseolina.
In field conditions, however, results varied more among
studies (Tab. 1, part c), due to the many factors that influence
the effectiveness of biofumigation. The only study of
sunflower crop protection reported a significant reduction in
VW incidence and severity following three Brassicaceae cover
crops and biofumigation compared to that with a bare soil
(Galaup et al., pers. comm.). In both years of its field
experiment, R. sativus was the Brassicaceae that reduced VW
incidence the most, followed by B. rapa and B. juncea. The
ability of biofumigation with a given species to reduce VW
varied between years due to differences in the biomass
incorporated into the soil each year. The largest reduction in
VW was associated with the largest biomass produced. In
strawberry (Fragaria� ananassa) field experiments, Michel
et al. (2008) observed a significant reduction of MS in soils
after biofumigation with B. juncea. Conversely, Hartz et al.
(2005) considered B. juncea an ineffective biofumigant: it did
not decrease the density of V. dahliae in the soil and had no
effect on tomato productivity compared to a fallow control.
Michel (2014) observed no significant effects of B. juncea on
V. dahliae density in the soil, in the short-term, but a reduction
of 80% was observed a few months after biofumigation.
Because of the low persistence of ITCs, they could not have
caused this suppressive effect. Instead, the reduction in MS
may have been caused by stimulation of specific groups of
microbial communities during mustard decomposition and
organic matter addition, as supported by other studies
(Mazzola et al., 2007; Ochiai et al., 2008; Mazzola et al.,
2017). Thus, organic inputs could improve soil biological
status by increasing both the diversity and size of populations
of beneficial species through physico-chemical changes
(Ochiai et al., 2008; Davis et al., 2010; Omirou et al., 2011).
5 Non-GSL-related suppressive effects on
pathogens, and the multifunctionality of
Brassicaceae

Pathogen suppression by green manure addition has been
attributed to indirect effects of higher microbial competition
rather than a direct effect on pathogen inoculum (Davis et al.,
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1996; Davis et al., 2010). This involvement of microbial
communities was supported by long-term studies at the
rotation scale when Brassicaceae and non-Brassicaceae
species were incorporated (Tab. 1, part d). Davis et al.
(2010) observed that cover crops reduced VW on potatoes
more than fallow did. Sudangrass (Sorghum vulgare var.
sudanense cv. Monarch) was a more effective cover crop than
B. napus cv. Dwarf Essex and cv. Bridger. The authors also
suggested that another beneficial effect of sudangrass was the
potential control of root knot nematodes. Larkin et al. (2010)
also observed a significant reduction in VW on potato after
a canola cover crop and to a lesser extent after a rapeseed cover
crop. Davis et al. (2010) and Larkin et al. (2010) concluded
that, beside the direct toxic effects of products of GSL
hydrolysis, VW may have been suppressed due to a change in
microbial communities that increased microbial competition
after cover crop incorporation. The reduction in VW may be
explained by the increase in Fusarium equiseti in the soil
observed by Davis et al. (2010), which suggests a potential
antagonism between the two fungi.

Increasingly, biofumigation benefits are considered along
with other green manure benefits, such as addition of organic
matter to soils (Kirkegaard and Matthiessen, 2004). This non-
GSL-related pathway of suppression may be involved in
reducing pathogens and disease severity in the studies that used
low-GSL cultivars observed by Kirkegaard et al. (2000) and
Michel et al. (2008). The potential key role of microbial
communities in suppressing pathogens emphasizes the need to
assess potential disservices of products of GSL hydrolysis on
these beneficial communities. To date, these disservices and
their influence have been rarely studied, and the review of
Couëdel et al. (2019) reported inconsistent impacts of
Brassicaceae on non-target species. No effect of Brassicaceae
incorporation was observed on nitrifying bacteria in field
studies (Omirou et al., 2011). Conversely, Bending and
Lincoln (2000) observed that application of ITCs disrupted
microbial communities, reducing the growth of nitrifying
bacteria in clay-loam soils. One mechanism to avoid these
potential disservices could be cover crop mixtures (Couëdel
et al., 2019), which would provide more nutrients, and thus
increase microbial diversity and activity, while preserving
GSL production. Couëdel et al. (2018c) showed that,
compared to Brassicaceae sole crops, 50/50 bi-species
mixtures of Brassicaceae and Fabaceae reduced GSL
production/ha by an average of only 19%. Mixtures would
maintain most of the potential of Brassicaceae to suppress
pathogens and could mutualize other benefits provided by
either Brassicaceae or Fabaceae. Couëdel et al. (2018a)
showed that this mixture captured the same amount of nitrate
as Brassicaceae alone and had a larger nitrogen-green manure
effect. This mixture also provided the same sulphate-catch
crop and sulfur-green manure effects as Brassicaceae sole
crops (Couëdel et al., 2018b). This result could be due to
increased biomass production and abiotic-resource-use effi-
ciency (Jensen, 1996). Besides protecting against pathogens
and nutrient enrichment, mixtures provide a bundle of
ecosystem services. They reduce soil disturbance and erosion,
maximize water-use efficiency, increase long-term carbon
sequestration and support pollinators and other beneficial
insects (Therond et al., 2017; Justes and Richard, 2017;
Chapagain et al., 2020). Thus, mixtures of Brassicaceae and
of 15
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Fabaceae could increase sunflower productivity. Combining
cover cropping of mixtures with biofumigation represents
a holistic multi-pest protection approach that relies on several
ecological mechanisms, which is in line with the principles of
IPM. Besides diversifying rotations (which may provide
break-crop effects), encouraged by IPM Principle 1 (P1), it is
a major environmentally friendly protection method (Lazzeri
et al., 2004). It may prevent reliance on the synthetic
compounds used in fumigation (Clarkson et al., 2015), and
thus fulfill the principles of giving preference to non-chemical
methods (P4), selecting pesticides to avoid undesired impacts
of broad-spectrum fumigants on non-target beneficial commu-
nities (P5) and reducing pesticide use (P6). Some of
biofumigation’s ability to protect of sunflower would be due
to the ITCs produced by Brassicaceae, and developing
resistance to them is highly improbable because of the
complex cluster of chemically different components involved
(Ntalli and Caboni, 2017). Moreover, ITC toxicity varies
among pests (Smith and Kirkegaard, 2002), which could allow
for specific actions on targeted pests (P5). The potential
increase in some antagonist fungi (e.g. Fusarium spp., as
reported by Davis et al. (2010)) after incorporating cover crops
represents another ecological mechanism to suppress soilborne
pathogens (Médiène et al., 2011), which could be enhanced by
including Fabaceae in mixtures, because it could diversifies the
tissues incorporated (Couëdel et al., 2019).

Some principles of IPM, however, could be difficult to
implement for soilborne fungi of sunflower. Monitoring
microscopic and heterogeneous pathogens such as V. dahliae,
as recommended by P2, would be too expensive. Thus, it is
challenging to determine thresholds for intervention (P3).
Nevertheless, biofumigation could still help farmers reach the
underlying objectives of IPM: minimize use of broad-spectrum
biocides, environmental contamination, disruption of benefi-
cial communities and development of resistance (Matthiessen
and Kirkegaard, 2006; Barzman et al., 2015).

6 Conclusion

Soilborne diseases threaten sunflower productivity. VW,
sclerotinia head and stalk rots, and charcoal rot have been
expanding worldwide in the past several years or could be in
the future. They are challenging to manage because of their
ability to survive in the soil and the lack of sustainable
effective control methods. Thus, biofumigation could be an
interesting agroecological alternative for protecting sunflower,
especially as a part of IPM. This review showed that multiple
factors must be considered for effective biofumigation. For
sunflower production, a biofumigant crop can be grown during
the fallow period just before sunflower. Ideally, the Brassi-
caceae should be chopped at early flowering, temperatures of
ca. 10 °C minimum and just before a rainy period, since high
temperatures and soil water content increase the hydrolysis of
GSLs into ITCs. Brassicaceae should be incorporated quickly
into the soil after pulverization to reduce volatile losses.

For effective suppression by biofumigation, Brassicaceae
with high GSL concentrations are recommended. The types of
GSLs/ITCs produced by Brassicaceae are also important to
consider, since the biocidal effect of GSLs depend on the target
pathogen. According to the ITCs tested and the Brassicaceae
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incorporated, long-term survival structures and mycelia of
V. dahliae, S. sclerotiorum andM. phaseolina were susceptible
most of the time.

While aromatic ITCs and mustards seem to be the most
effective, an increasing number of studies emphasize non-
GSL-related effects of Brassicaceae and non-Brassicaceae
cover crops. Nutrient enrichment after incorporating cover
crops has strong effects on microbial communities that may
stimulate antagonist species of pathogens in the soil. These
effects are supported by studies that show negative correlations
between microbial activity/diversity and the incidence of
symptoms. The potential key role of microbial communities in
the suppressive effect of Brassicaceae incorporation could
explain the positive results obtained with Brassicaceae with
low GSL concentration, such as canola. This highlights the
need to assess effects of Brassicaceae incorporation on
beneficial communities precisely, since the results to date
are scarce and inconsistent. Nonetheless, cover crop mixtures
that include Fabaceae could be an interesting mechanism to
avoid potential disservices to beneficial communities, while
maintaining suppressive effects on target pathogens. Further
research, including field experiments, are needed to confirm
the benefits of these mixtures.
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