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Abstract

Generalized multipartite networks consist in the joint observation of
several networks implying some common individuals . Such complex net-
works arise commonly in social sciences, biology, ecology, etc. We pro-
pose a generative probabilistic model named Multipartite Blocks Model
(MBM) able to unravel the topology of multipartite networks by identify
clusters (blocks) of nodes sharing the same patterns of connectivity across
the collection of networks they are involved in. The model parameters are
estimated through a variational version of the Expectation-Maximization
algorithm. The numbers of blocks are chosen with an Integrated Com-
pleted Likelihood criterion specifically designed for our model. A simula-
tion study illustrates the robustness of the inference strategy. Finally, two
datasets respectively issued from ecology and ethnobiology are analyzed
with the MBM in order to illustrate its flexibility and its relevance for the
analysis of real datasets.

The inference procedure is implemented in an R-package GREMLIN,
available on Github (https://github.com/Demiperimetre/GREMLIN). Sim-
ulations are implemented as vignette of the package in order to ensure
reproducibility of the results.

Keywords Networks; Latent Block Models; Stochastic Block Models; Vari-
ational EM; Model Selection; Ecology; Ethnobiology
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1 Introduction

Networks have become fundamental tools in various fields, such as biology, eco-
logical theory or sociology to name but a few. Statistical analysis aims to study
the structure of these networks for instance by unraveling the clusters or com-
munities of individuals (nodes) shaping the observed interactions (see Kolaczyk,
2009, for a review).
The recent years have witnessed a growing interest for multi-layer networks
which is a classical but wide terminology for a collection of related networks
(see Pilosof et al., 2017, for a review of multi-layer networks in ecology for in-
stance). Among others, multi-layer networks encompass dynamic networks, i.e.
networks evolving with time (see Kim et al., 2018, for a review), multiplex net-
works when several types of relations are simultaneously studied on a common
set of individuals (see Kéfi et al., 2016; Barbillon et al., 2016, for instance) and
multipartite networks.
Multipartite networks are a generalization of bipartite networks. In a bipartite
network, the nodes (representing the interacting entities) are partitioned into
two disjoint sets and an edge links a node from one set to a node from the
other set (see Figure 1, left). In a multipartite network, the nodes are divided
into more than two sets and edges link entities from different sets (see Figure
1, middle). In what follows, these pre-specified sets of nodes will be referred to
as functional groups. Such multipartite networks arise in ecology when study-
ing the interactions between several groups of species such as the interactions
plant/pollinator, plants/ants, etc (Pocock et al., 2012; Dáttilo et al., 2016) or
in biology when analyzing networks issued from multi-omics datasets involving
proteins, etc. (see Pavlopoulos et al., 2018, for instance).
Generalized multipartite networks are an extension of multipartite networks:
the nodes are still partitioned into functional groups but the interactions may
occur not only between different functional groups but also inside some of the
functional groups. Ethnobiology (which is the scientific study of the relations
between environment and people) provides such networks. One of the problem-
atic of ethnobiology is to understand how social relations between individuals
(seed circulation in our example) may structure and guarantee biodiversity in
the cultivated crop species (see Thomas and Caillon, 2016, for example). As a
consequence, the network of interest has two types of nodes –namely farmers
and crop species– and we observe interactions between farmers and crop species
(who grows what) and inside the group of farmers (seed exchange). Marketing
also provides generalized multipartite networks when individuals are connected
through social networks and also interact with goods through their on-line pur-
chases.

Many statistical tools have been proposed to analyze simple or bipartite net-
works. However, when individuals or biological entities are involved in several
networks, there is a strong need to propose statistical tools handling these net-
works jointly. These tools are an essential step towards a better understanding
of the global interaction systems at stake. The aim of this paper is to propose
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Figure 1: Illustrations of bipartite (left), multipartite (center) and generalized
multipartite networks (right)

a probabilistic model suited for generalized multipartite networks.
A central issue in network analysis is to be able to cluster nodes sharing

the same connectivity patterns. To do so, two approaches are possible, either
relying on classical metrics detecting nestedness (Almeida-Neto et al., 2008),
modularity (Barber, 2007), etc, or adopting a probabilistic mixture strategy.
Since the original paper by Snijders and Nowicki (1997), probabilistic mixture
models - classically referred as Stochastic Block models (SBM)– have proven
their efficiency when aiming to cluster similar nodes based on their connectivity
patterns without any a priori hypothesis about the patterns to be found (e.g.
modularity, centrality, hierarchy). Latent Block Models (LBM) (Govaert and
Nadif, 2003) are the extension of SBM for bipartite networks, resulting into a
bi-clustering of the nodes.

In this paper, we propose a new probabilistic mixture model adapted to
generalized multipartite networks. This model assumes that each functional
group is partitioned into clusters gathering nodes sharing the same connection
behavior on the basis of all the networks they are involved in. The clusterings
are introduced through latent variables resulting into a mixture model on edges.

Inferring the parameters of such a model with latent variables is a complex
task, since the likelihood can not be computed in a close form. We resort
to a Variational Expectation-Maximization (VEM) algorithm to estimate the
parameters and supplying the multi-clustering of the nodes. The crucial task of
estimating the numbers of clusters in each functional group is tackled though
a model selection procedure based on an adapted penalized likelihood criterion
namely Integrated Classification Likelihood (ICL).

Related works Some extensions of standard descriptive tools –such as com-
munity detection– to more complex networks have been proposed in the liter-
ature (see for instance Yang and Leskovec, 2012; Gaskó et al., 2017). These
metrics or descriptive tools have the drawback to only look for specific types
of structures, contrary to clustering methods based on probabilistic mixture
models. To the best of our knowledge, no such a probabilistic model has been
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proposed for generalized multipartite network. However, latent block models do
exist for other kind of multi-layer networks. When the network is multiplex (i.e.
when several types of interactions are studied on the same set of nodes), the
SBM has been extended in Kéfi et al. (2016); Barbillon et al. (2016) by assuming
a multivariate Bernoulli distribution to model the set of multiple edges between
two individuals. Extending the SBM to a dynamic context where several snap-
shots of the networks at different time points are available, was proposed in
numerous papers. A main difference between these papers is whether the evolu-
tion is considered as been discrete (Xu and Hero, 2014; Matias and Miele, 2017)
or continuous (DuBois et al., 2013; Xin et al., 2017) in time.

Outline of the paper Section 2 is dedicated to the introduction of no-
tations supplying a flexible tool to describe generalized multipartite networks.
We also provide a description of the two datasets of interest and illustrate the
notations on these specific cases. The block model for multipartite networks
is described in Section 3. In Section 4, the variational inference the model se-
lection procedure are presented including the practical implementation of the
algorithm. Numerical illustrations of the robustness of the inference method
are provided in Section 5. Finally, the statistical analyses of the two datasets
with discussion are presented in Section 6. Perspectives are discussed in the
last section. Note that this document is accompanied with a appendix sections
divided into three parts: in the two first sections, the derivations of the up-
date formulas for the VEM algorithm of the ICL criterion are provided; finally,
detailed estimates on the two datasets are given.

2 Notations and data

A generalized multipartite network can be seen as a collection of networks in-
volving Q functional groups: each network may be simple, i.e. describing the
relations inside a given functional groups or bipartite, i.e. describing the rela-
tions between individuals belonging to two different functional groups. Let nq
be the number of individuals in the q-th functional group (q = 1, . . . , Q). We
index the collection of networks by pairs of functional groups (q, q′) (q and q′ in
{1, . . . , Q}). The set E denotes the list of pairs of functional groups for which
we observe an interaction network.
For any (q, q′) ∈ E , the interaction network is encoded in a matrix Xqq′ such

that Xqq′

ii′ 6= 0 if there is an edge from unit i of functional group q to unit i′ of

functional group q′, 0 otherwise. Each network may be binary (Xqq′

ii′ ∈ {0, 1}) or

valued (Xqq′

ii′ ∈ N or R). Xqq may be symmetric if the relation is non-oriented,

non-symmetric otherwise. X =
(
Xqq′

)
(q,q′)∈E

encodes the generalized multi-

partite network. For each network, Sqq′ is an additional notation which refers
to the list of all the possible interactions.

Illustration • The dataset 1 is issued from Dáttilo et al. (2016). This
ecological network gathers mutualistic relations between plants and pollinators,
plants and ants, and plants and frugivorous birds, resulting into Q = 4 func-
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tional groups, namely plants (q = 1), pollinators (q = 2), ants (q = 3) and

birds (q = 4 and E = {(1, 2), (1, 3), (1, 4)}. X1q′

ii′ = 1 if the plant species i has
been observed at least once in a mutualistic interaction with the animal species
i′ of functional group q′ during the observation period, 0 otherwise. Data set
is available at https://figshare.com/articles/Interaction_matrix_A_in_
which_elements_aij_1_represent_the_presence_of_an_interaction_between_

the_plant_species_i_and_the_animal_species_j_and_zero_for_no_observed_

interaction/3443210/2.
• The dataset 2 comes from Thomas and Caillon (2016) and Thomas et al.

(2015). They collected the oriented network of seed circulation between farmers
–resulting in a non-symmetric adjacency matrix – and the crop species grown by
the farmers, resulting in an incidence matrix. Noting q = 1 for the farmers and
q = 2 for crop species we get E = {(1, 1), (1, 2)}. X11

ii′ = 1 if farmer i gives seeds
to farmer i′ (oriented relation), 0 otherwise and X12

ij = 1 if farmer i cultivates
crop species j, 0 otherwise.

3 A block model for generalized multipartite net-
works

In order to account for heterogeneity among individuals, we propose a mixture
model explicitly describing the way edges connect nodes in the various networks.
We assume that each functional group q is divided into Kq blocks (or equivalently
clusters). ∀q ∈ {1, . . . , Q} and ∀i ∈ {1, . . . , nq}, let Zqi be the latent random
variable such that Zqi = k if individual i of functional group q belongs to cluster
k. The random variables Zqi ’s are assumed to be independent and such that:
∀k ∈ {1, . . . ,Kq},∀q ∈ {1, . . . , Q},∀i ∈ {1, . . . , nq}:

P(Zqi = k) = πqk, (1)

with πqk ∈ [0, 1], ∀k = 1, . . . ,Kq and
∑Kq

k=1 π
q
k = 1, ∀q ∈ {1, . . . , Q}. We set

Zq = (Zqi )i∈{1,...,nq}, Z = (Zq)q∈{1,...,Q} and π = (πqk)
k∈{1,...,Kq},q∈{1,...,Q}.

Then, the nodes connect as follows: for any (q, q′) ∈ E , ∀(i, i′) ∈ Sqq′ ,

Xqq′

ii′ |{Z
q
i = k, Zq

′

i′ = k′} ∼ind Fqq′(αqq
′

kk′). (2)

Fqq′ depends on the relation represented in Xqq′ . We assume that for any (q, q′),

Fqq′ is either the Bernoulli distribution if the relation in Xqq′ is binary, or the

Poisson distribution if Xqq′

ij is a counting or the Gaussian distribution if Xqq′

encodes a continuous strenght of interaction. Equations (1) and (2) define the
so-called Multipartite Block Model (MBM).

Remark 1 Our model is a generalization of the SBM and the LBM. Indeed,
Equations (1)-(2) reduce to the SBM if E = {(1, 1)} and to the LBM if E =
{(1, 2)}. Our extension assumes that the latent structures Z are shared among
the Xqq′ i.e. if a functional group q is at stake in several Xqq′ , the same Zq
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impacts the distributions of the corresponding interaction matrices. In other
words, the clusters gather individuals sharing the same properties of connection
in the collection of networks. Obviously, if each functional group appears in
only one element of E, the MBM reduces to independent SBMs or LBMs. In

terms of probabilistic dependence, conditionally on Z, the
(
Xqq′

ii′

)
are indepen-

dent. However, Z being latent, their marginalization introduces dependence not

only between the Xqq′

ii′ but also between the matrices
(
Xqq′

)
(q,q′)∈E

. As a con-

sequence, the clustering variables (Zqi )q∈{1,...,Q},i ∈{1,...,nq} are dependent once
conditioned by X.

For a given vector K = (K1, . . . ,KQ), let θK = (α,π) be the unknown

parameters of the MBM where α =
(
αqq

′

kk′

)
(k,k′)∈Aqq′ ,(q,q′)∈E

are the connection

parameters, with αqq
′

kk′ ∈ Γqq
′ ⊂ Rdqq′ . We have to perform two inference tasks:

first, for a given vector K, estimating θK and Z, second, selecting the right K.

4 Parameter inference and model selection

Let `(X,Z; θK) denote the complete likelihood of the observations X and the
latent variables Z for parameter θK . Equations (1) and (2) lead to:

log `c(X,Z; θK) =
∑Q
q=1

∑nq

i=1

∑Kq

k=1 1{Zq
i =k} log(πqk)

+
∑

(q,q′)∈E

∑
(i,i′)∈Sqq′

∑
(k,k′)∈Aqq′

1{Zq
i =k,Zq′

i′ =k
′}fqq′(X

qq′

ii′ , α
qq′

kk′)

(3)
where fqq′ is the log-density of Fqq′ . If q 6= q′, Aqq′ = {1, . . . ,Kq}×{1, . . . ,Kq′}.
If the interaction are oriented, then Aqq = {1, . . . ,Kq}2; otherwise Aqq′ =

{(k, k′) ∈ {1, . . . ,Kq}| k ≤ k′}2. Z being latent variables, the likelihood `(X; θK)
is obtained by integrating `c(X,Z; θK) over all the possible values of Z denoted
Z = {(zqi )i∈{1,...,nq},q∈{1,...,Q}|z

q
i ∈ {1, . . . ,Kq}}:

log `(X; θK) = log
∑
Z∈Z

`c(X,Z; θK). (4)

The summation over Z in Equation (4) becomes quickly computationally
intractable when Kq’s and/or the nq’s increase. Moreover, we are interested in
inferring the clusterings Z.

4.1 Variational EM algorithm

In such models with latent variables, the EM algorithm (Dempster et al., 1977)
is a standard tool to maximise the likelihood, taking advantage of the simple
form of log `c(X,Z; θK). However, when conditioned by the observations X,
the (Zqi ) are not independent (see Remark 1). As a consequence, the E step of
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the EM algorithm –which consists in the integration of log `c(X,Z; θK) against
P(Z|X; θ′K)– has no explicit expression. In the context of the SBM and the
LBM, the variational version of the EM (VEM) algorithm has proved to be a
powerful tool for maximum likelihood inference (see Govaert and Nadif, 2008;
Daudin et al., 2008). In the VEM, the problem of the E-step is tackled by
replacing P(Z|X; θ′K) by an approximation RX,τ sought among distributions
enforcing independence between the Zqi ’s:

RX,τ (Z) =

Q∏
q=1

nq∏
i=1

(τ qik)
1Z

q
i
=k , where τ qik = PRX,τ

(Zqi = k).

At the VE-step, τ is chosen such that the Kullback-Leibler divergence KL[Rτ ,X ,P(·|X; θK)]

is minimized. The M-step is : θ̂K = arg maxθ ERτ,X
[log `c(X,Z; θ)] . Iterating

steps (VE) and (M) leads to the maximisation of a lower boud of the likelihood:
Iθ(Rτ ,X) = log `(X; θ)−KL[Rτ ,X ,P(·|X; θ)].
For the MBM, at iteration (t), the algorithm VEM is as follows:

VEM for MBM

• VE Step. Find (τ qik)i,k,q solving

τ qik ∝ exp

{
log πqk +

∑
q′∈Eq

nq′∑
i′=1

K′q∑
k′=1

fqq′(X
qq′

ii′ , α
qq′

kk′)τ
q′

i′k′


+1(q,q)∈E

∑
j|(i,j)∈Sqq

Kq∑
k′=1

fqq(X
qq
ij , α

qq
kk′)τ

q
jk′ + 1(q,q)∈E1(i,i)∈Sqqfqq(X

qq
ii , α

qq
kk)

}
.

• M Step. Update of the parameters:

πqk =
1

nq

nq∑
i=1

τ qik , αqq
′

kk′ =

∑
(i,i′)∈Sqq′ X

qq′

ii′ τ
q
ikτ

q′

i′k′∑
(i,i′)∈Sqq′ τ

q
ikτ

q′

i′k′

. (5)

Remark 2 Formula (5) on αqq
′

kk′ is valid for the expectations of the Bernoulli,
the Poisson and the Gaussian distributions. If Fqq′ is a Gaussian distribution

of variance vqq
′

kk′ , then:

vqq
′

kk′ =

∑
(i,i′)∈Sqq′ (X

qq′

ii′ )2τ qikτ
q′

i′k′∑
(i,i′)∈Sqq′ τ

q
ikτ

q′

i′k′

− (αqq
′

kk′)
2.

The details of the VEM algorithm are provided in the Section A. As for any EM-
type algorithm, its initialization is critical and will be discussed later. (θ̂K , τ̂ )
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denotes the VEM estimates. A by-product of this algorithm is an approximation
of the conditional distribution P(Z|X; θ̂K) by RX,τ̂ . Z is thus estimated by:

Ẑqi = arg max
k∈{1,...,Kq}

τ̂ qik. (6)

The consistency of the VEM estimates has been established for the SBM by
Bickel et al. (2013) and the LBM by Brault et al. (2017) while Mariadassou and

Matias (2015) study the behavior of P(Z|X; θ̂K) for the same models.

4.2 A penalized likelihood criterion

In practice, the number of clusters K = (K1, . . . ,KQ) is unknown and should
be estimated. We adopt a model selection strategy where a model MK refers
to the MBM with K clusters. Among many classical model selection criterion
such as AIC, BIC and their variants, Biernacki et al. (2000) proposed the Inte-
grated Classification Likelihood (ICL). ICL has proven its capacity to outline the
clustering structure in networks in Daudin et al. (2008) (for simple networks),
Keribin et al. (2014) (for bipartite networks) or Mariadassou et al. (2010) for
valued networks. Its success comes from the fact that when traditional model
selection criterion essentially involves a trade-off between goodness of fit and
model complexity, ICL values not only goodness of fit but also clustering sharp-
ness. Following the same line, we propose a modification of the ICL adapted to
generalized multipartite networks:

ICL(MK) = log `c(X, Ẑ; θ̂K)− pen(MK) (7)

where

pen(MK) =
1

2


Q∑
q=1

(Kq − 1) log(nq) +

 ∑
(q,q′)∈E

dqq′ |Aqq
′
|

 log

 ∑
(q,q′)∈E

|Sqq
′
|


and Ẑ has been defined in Equation (6). The better model is chosen as K̂ =
arg maxK ICL(MK). The penalization term pen(MK) is made up of two parts:∑Q
q=1(Kq − 1) log(nq) corresponds to the clustering distribution and involves

the number of nodes, while the other term depends on the size of αqq
′

kk′ and the

numbers of possible edges in each network |Sqq′ |. The derivation of the ICL
criterion is detailed in the Section B.

4.3 Practical algorithm

The practical choice of the model and the estimation of its parameters are
computational intensive tasks. Assume that Kq ∈ {1, . . . ,K?

q }, then, ideally, we

should compare
∏Q
q=1K

?
q models through the ICL criterion. For each model,

the VEM algorithm has to be run starting from a large number of initialization
points chosen carefully (due to its sensitivity to the starting point), resulting in

8



an unreasonable computational cost. Instead, we propose to adopt a stepwise
strategy, resulting in a faster exploration of the model space combined with
efficient initializations of the VEM algorithm. The procedure we suggest is the
following one.

Given a current model M(m) = M(K
(m)
1 , . . . ,K

(m)
Q ), the m-th iteration of

the procedure is written as follows.

Model selection strategy for MBM

• Split proposals. For any q such that K
(m)
q < K?

q , consider the model

M(m+1)q
+ =M(K

(m)
1 , . . . ,K(m)

q + 1, . . . ,K
(m)
Q ).

· Propose K
(m)
q initializations by splitting any of the K

(m)
q current clusters

into two clusters.

· From each of the K
(m)
q initialization points, run the VEM algorithm and

keep the better variational estimate θ̂M(m+1)q
+

.

· Compute the corresponding ICL(M(m+1)q
+ ) from formula (7).

• Merge proposals. For any q such that K
(m)
q > 1, consider the model

M(m+1)q
− =M(K

(m)
1 , . . . ,K(m)

q − 1, . . . ,K
(m)
Q ).

· Propose K
(m)
q (K

(m)
q −1)/2 initializations by merging any pairs of clusters

among the K
(m)
q clusters.

· From each initialization point, run the VEM algorithm and keep the better
variational estimate θ̂M(m+1)q

−

· Compute the corresponding ICL(M(m+1)q
− ).

• SetM(m+1) = arg max
M(m)

ICL(M) where M(m) = {M(m)}∪
⋃
q∈{1,...Q}{M

(m+1)q
+ }∪

{M(m+1)q
− }.
If M(m+1) 6=M(m) iterate, otherwise stop.

Initializing the VEM from the clusters obtained on a smaller or larger model
is much more efficient than other strategies such as random initialization or
spectral clustering. Note that the tasks at each iteration can be parallelized.

5 Illustration on simulated datasets

We illustrate the efficiency of our inference procedure on simulated data. Sim-
ulation parameters We generate datasets mimicking the two real datasets

9



K̂

K̂1 K̂2 K̂3 K̂4 Nb of simulations
7 2 2 1 73
7 2 1 1 6
7 1 2 1 3
6 2 2 1 18

Table 1: Results for Scenario 1: estimated numbers of clusters (K̂1, K̂2, K̂3, K̂4).
The simulated number of clusters is equal to (7, 2, 2, 1).

studied in Section 6, i.e. we generate 100 datasets under the following two
scenarios.

Simulations are implemented as vignette of the R-package available on Github
(https://github.com/Demiperimetre/GREMLIN) in order to ensure reproducibil-
ity of the results.
• Scenario 1: We set Q = 4 functional groups of respective sizes n =

(141, 173, 46, 30), E = {(1, 2), (1, 3), (1, 4)} and K = (7, 2, 2, 1). The simulation
parameters are the following: π1 = (0.3651, 0.1270, 0.1190, 0.1460, 0.0842, 0.0794, 0.0794),
π2 = (0.1, 0.9), π3 = (0.1, 0.9),

α12 =



0.0957 0.0075
0.0100 0

0 0.0003
0.1652 0.0343
0.2018 0.1380

0 0
0 0


, α13 =



0 0.0006
0.5431 0.0589

0 0
0.6620 0.1542

0 0
0 0

0.8492 0.3565


, α14 =



0.0013
0

0.0753
0

0.0163
0.5108

0


.

(8)
• Scenario 2: Mimicking our second dataset, we set Q = 2 functional

groups such that n1 = 30, n2 = 37, E = {(1, 1), (1, 2)} and K = (3, 2). The
simulation parameters are: π1 = (0.31, 0.42, 0.27), π2 = (0.65, 0.35).

α11 =

 0.025 0.123 0.053
0.159 0.3 0.07
0.374 0.585 0.357

 α12 =

 0.186 0.653
0.559 0.905
0.390 0.696

.
On each simulated dataset, we run the algorithm described in Section 4.3

with K?
q = 10, for all q. We start the stepwize algorithm on Kq = 1 and on the

clusterings obtained by inferring the LBM separately on each matrix Xqq′ . For
each dataset, it takes a few minutes for the algorithm to converge.

Results for Scenario 1
Among the 100 simulated datasets, the true numbers of clusters are exactly

recovered for 73 datasets as can be seen in Table 1. Three other estimated con-
figurations are observed as detailed in Table 1, each of them corresponding to
K̂q = Kq − 1. A scrutiny shows that cases where K3 is estimated to 1 instead
of 2 correspond to datasets where one simulated cluster (meaning the simulated
Z3) is reduced to 1 or 2 individuals.
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α12 α13 α13

α12
k1 α12

k2 α13
k1 α12

k2 α14
k1

Biais RMSE Biais RMSE Biais RMSE Biais RMSE Biais RMSE

-9e-04 0.0102 0 0.0011 0 4e-04 1e-04 6e-04 -1e-04 9e-04
8e-04 0.0064 1e-04 2e-04 -0.0036 0.0557 0.0013 0.0085 0 0
1e-04 7e-04 -1e-04 4e-04 0 0 0 2e-04 0.0026 0.0155
2e-04 0.0194 4e-04 0.0038 0.0038 0.0515 -6e-04 0.0119 0 0
0.0024 0.0281 -0.0023 0.0099 0 0 0 0 -0.0012 0.0077
0 0 0 0 0 0 0 0 -0.0081 0.0323
0 0 0 0 0.002 0.0553 -0.0039 0.0212 0 0

Table 2: Simulation scenario 1 : Biais and RMSE for αqq
′

kk′ .

We measure the ability of the procedure to recover the clusters by computing

the Adjusted Rand Index (ARI by Hubert and Arabie, 1985) between Ẑ
1

and
the simulated Z1. ARI compares two clusterings with a correction for chance.
It is close to 0 when the two clusterings are independent and equals 1 when the
clusterings are identical (up to label switching). The boxplots of the ARI’s are
plotted in Figure 2a. All the ARI are high (> 0.7), even when K̂1 = 6, which
means that the clusters are always globally recovered and the structure of the
multipartite network is well discovered.
We also investigate the quality of the parameters estimation. For the 73 datasets
such that K̂ = (7, 2, 2, 1), we compare the estimated parameters α̂ to the simu-
lation parameters (after a relabeling of the clusters to match the true clustering,
if required). The results in terms of biais and Root Mean Square Error (RMSE)
are reported in Table 2. We observe that the parameters are estimated without

noticeable biases and with small RMSE. In particular, the null αqq
′

kk′ ’s are always
recoverered.

Results for Scenario 2 The same analysis is done for Scenario 2. K̂ =
K = (3, 2) for 82 simulated datasets over 100. The unique alternative observed

configuration is K̂ = (2, 2).
Here again, in order to assess the ability of the method to recover the clusters,
we compute the ARI for Z1 and Z2. These quantities are reported in Figure
2b for the two functional groups (left au right) and for K̂1 = 3 (triangles) and
K̂2 = 2 (circles). As can be noticed, the clusterings are well recovered when the
number of clusters are exactly recovered (triangle), with a noticeable number
of cases where the clusters are exactly recovered (ARI= 1). As expected, we
observe a lower ARI when K̂1 = 2 (circle), but with globally high values.

We also pay attention to the estimation of the parameters of connection αqq
′

kk′ .
Biais and RMSE are reported in Table 3. Once again, the biais and RMSE are
small.
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(a) (b)

Figure 2: (a) : Simulation scenario 1 : distribution of the ARI for q = 1 when
K̂1 = 6 (under-estimation) on left and K̂1 = 7 (exact estimation) on right. (b)

Simulation scenario 2 : Boxplots of the ARI for Ẑ
1

(on left) and Ẑ
2

(on right)
with K̂1 = 2 (circle) and K̂1 = 3 (triangle).

α11 α12

α11
k1 α11

k2 α11
k3 α12

k1 α12
k2

Biais RMSE Biais RMSE Biais RMSE Biais RMSE Biais RMSE

-0.0039 0.0211 -1e-04 0.0299 -5e-04 0.0271 -0.0043 0.0263 -0.0192 0.0552
0.0021 0.0342 -0.0014 0.045 6e-04 0.0264 -0.007 0.0348 -0.026 0.0378
-0.0041 0.0636 -0.0032 0.0479 0.003 0.0826 -0.0179 0.0377 -0.0202 0.0534

Table 3: Simulation scenario 2 : Biais and RMSE for αqq
′

kk′ .

6 Applications

6.1 Ecology: interactions plants / animals

Dataset The dataset –compiled and conducted by Dáttilo et al. (2016) at Cen-
tro de Investigaciones Costeras La Mancha (CICOLMA), located in Mexico– in-
volves three general types of plant-animal mutualistic interaction: pollination,
seed dispersal by frugivorous birds, and protective mutualisms between ants
and plants with extrafloral nectaries. The dataset –which is one of the largest
compiled so far with respect to species richness, number of interactions and
sampling effort– includes n1 = 141 plant species, n2 = 173 pollinator species,
n3 = 46 frugivorous bird species and n4 = 30 ant species, inducing 753 observed
interactions of which 55% are plant-pollinator interactions, 17% are plant-birds
interactions and 28% are plant-ant interactions.

Inference We run the procedure described in Subsection 4.3 starting from
several automatically chosen initial pointsK(0), with numbers of clusters bounded
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between 1 and 10. The computational time on an Intel Xeon(R) CPU E5-1650
v3 3.50GHz x12 using 6 cores is less than 10 minutes. The ICL criterion selects
7 clusters of plants, 2 clusters of pollinators, 1 cluster of birds and 2 clusters of
ants. The estimated parameters are reported in Tables 5 and 6 in the supple-
mentary material. They are really similar to the ones used for the simulation
study and provided in Equation 8. The resulting mesoscopic view of the multi-
partite network is plotted in Figure 3.

Figure 3: Mesoscopic view of the interconnected network. The size of the nodes
are proportional to the size of the clusters and the width of the edges are pro-
portional to the probability of connection between/within clusters. Edges cor-
responding to probabilities of connection lower than 0.01 are not plotted.

Discussion From Figure 3, we conclude that plants of Clusters 7 and 2
only interact with ants (plants of Cluster 7 attract more ant species belonging
to Cluster 1). The plants of Clusters 3 and 6 are only in interaction with
birds, the difference between the two clusters being due to the strength of the
connection. The difference between the two clusters of pollinators derives from
the existence of Cluster 1 of plants.

In order to illustrate the contribution of our method, we also analyze each
bipartite network separately (using an LBM) and compare the results in terms
of clustering. The clusterings are compared through the Adjusted Rand Index
(ARI): if ARI = 1 then the clusterings are equal (up to a label switching
transformation). The ARIs are given in Table 4.
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Using standard LBM, we obtain 2 clusters of ants, 1 cluster of birds and
3 clusters of pollinators. The clusterings of ants and birds are not modified
by the ecosystemic approach, their ARI being equal to 1. The clustering of
the pollinators is slightly modified, going from 3 clusters to 2 clusters but the
additional block only contains few individuals, thus leading to a high ARI. Since
the plants functional group is involved in the three bipartite networks, we obtain
3 clusterings when analyzing them separately. These three clusterings are –as
expected– very different from our MBM clustering (the ARIs being respectively
equal to 0.118, 0.415 and 0.163, see Table 4). When aiming at proposing a
clustering taking into account the 3 bipartite networks, one may adopt a naive
strategy by combining (by intersection) these three clusterings. We then obtain
12 blocks of plants and the ARI with the MBM clustering is 0.617. However,
this number of clusters (12) is too large with respect to the model selection
criterion. Our MBM clustering is a parsimonious trade-off.

Finally, Figure 3 highlights the central role played by the pollinators in the
complete network also involving ants and seed dispersal birds. Our ecosystemic
approach unables us to unravel such a central position of pollinators in general
with respect to ants and seed dispersal birds, which would have been impossible
when performing separate analysis.

Table 4: Comparison of clusterings when the networks are jointly modeled by
the MBM (denoted Full) and when the networks are considered apart as bipar-
tite networks. Inter denotes the clustering obtained by intersecting the three
clusterings on plants for each bipartite network. The selected number of clusters
(in parenthesis) and the ARIs are provided.

Full/Flovis Full/Ants Full/Birds Full/Inter

Plants
(7/3) (7/3) (7/3) (7/12)
0.118 0.415 0.163 0.617

Flovis
(2/3)
0.997

Ants
(2/2)
1.000

Birds
(1/1)
1.000

6.2 Seed circulation and crop species inventory

Dataset Seed circulation among farmers is a key process that shapes crop
diversity (Coomes et al., 2015; Pautasso et al., 2013). Data on seed circulation
within a community of first-generation migrants (30 farmers) were collected by
a field survey in the island of Vanua Lava in the South Pacific archipelago nation
of Vanuatu. A farmer is considered as a giver for another farmer if he/she has
given at least one crop since they arrived in the new settlement site in Vanua
Lava. It results in a connected and directed network of seed circulation. Besides
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the circulation network, inventory data for each farmer were also collected. They
consist in the list of crop landraces they grow. This was aggregated at the species
level, leading to 37 crop species. These inventory data can be seen as a bipartite
network. The seed circulation data were analyzed in Thomas and Caillon (2016)
and the inventory data were analyzed in a meta-analysis in Thomas et al. (2015).
On the basis on the joint modeling we propose in this paper, we aim to provide
a clustering on farmers and crop species on the basis of the seed circulation
network and the inventory bipartite network.

Inference Three clusters of farmers and two clusters of crop species were
selected. The inferred parameters are given in Table 7 and a a mesoscopic view
is displayed in Figure 4. The clusters were renumbered to make them correspond
to the probability of connection: the larger cluster number, the larger marginal
probability of connection for the members of the cluster.

Discussion The discovered clusters are straightforwardly interpretable: Clus-
ter 3 gathers farmers who circulate seeds within the cluster and give to the two
other clusters, Cluster 2 circulates seeds within the cluster contrary to Cluster
1 who only receives from Cluster 3; the two clusters of crop species are Cluster
2 with more common crop species and Cluster 1 with other species. Clusters 3
and 2 of farmers grow crop species from Clusters 1 and 2 whereas Cluster 1 of
farmers grows mainly crop species from Cluster 2. It turns out that Cluster 3
gathers mainly the first migrants and Cluster 1 the last migrants. The pattern
of connection is then explained by the fact that first migrants helped the others
to settle by providing seeds. Moreover, the first migrants had more time to
collect more crop species to grow. In order to compare the clusterings obtained
by the MBM and the ones obtained from the circulation network (clustering on
farmers from SBM) and the inventory network (clusterings of farmers and plants
with a LBM), we compute the ARI. The clusterings on crop species remain quite
close since their ARI is equal to 0.891. However, the clusterings on farmers are
quite different (ARI smaller than 0.3), indeed the MBM shall make a trade off
between the circulation and the inventory for farmers. To ease the comparison
between clusterings on farmers, the same renumbering rule was applied for all
the different clusterings so that the larger cluster numbers correspond to larger
marginal probability of connection. Figure 5 is an alluvial plot which compares
the three obtained clusterings of farmers. It shows how the trade-off is made be-
tween the two stand-alone clusterings in the MBM clustering. It appears quite
obvious that Cluster 1 given by the MBM gathers only farmers from Cluster 1
in the seed circulation network and from Clusters 1 and 2 from the inventory
data since this cluster aggregates farmers with fewer connections and who grow
less crop species than the others. The same kind of observation can be made for
Cluster 3 given by the MBM which aggregates farmers who were in the cluster
of the most connected farmers and in the two clusters of farmers who grow more
seed.
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Figure 4: Summarized network provided by the MBM. Nodes correspond to
the clusters detected by the MBM: clusters of farmers are in red and clusters
of crop species are in green. Size of a node is proportional to the number of
farmers or crop species belonging to the considered cluster. The width of the
edges are proportional to the probability of connection between/within clusters.
The probability of connection below 0.2 are not plotted.

7 Discussion

In this paper, we proposed an extension of LBM and SBM which can handle
multipartite networks, resulting in the so-called MBM. Multipartite networks
encompass a lot of various situations such as the two examples dealt with in
the paper. Besides, MBM can be also useful for many other contexts with
different multipartite structures. The main limiting factor of the parameter in-
ference and model selection methods we propose, is the size of networks. Indeed,
the inference algorithm is suitable for networks up to 1000 nodes in order to
keep computational time reasonable. If willing at studying larger networks, one
should develop adapted inference algorithms.
Several extensions can be thought of with no additional significant difficulty.

For instance, covariates can be taken into account by writing P(Xqq′

ii′ = 1|Zqi =

k, Zq
′

i′ = k′) = φ
(
αqq

′

kk′ + yqq
′

ii′ β
)

where yqq
′

ii′ are the covariates describing the

pair of individuals (i, i′). A more challenging extension could be to include ex-
tra parameters in the model to account for degree heterogeneity in the vein of
the degree-corrected SBM (Karrer and Newman, 2011). However, this should
lead to cluster individuals independently of their degrees which is not always
desirable. For instance in the seed circulation example, the in-degrees and
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Figure 5: Alluvial plot comparing the clustering on farmers obtained from an
SBM on the circulation network (clExc), an LBM on the inventory network
(clInv) and the MBM (clMBM) on both networks. The cluster numbers are
related with the probability of connection, the larger cluster number, the larger
marginal probability of connection (between farmers for clExc, between farmers
and crop species for clInv).

1

2

1

2

3

1

2

3

clExc clMBM clInv

out-degrees of farmers are key factors to explain their social structure. In the
interaction networks in ecology, distinguishing generalist (high degree) from spe-
cialist (low degree) species is a part of the expected outcomes of the clusterings.
More recent works (Zhu et al., 2014) propose to use node degrees and edge
orientations to help the clustering while tolerating heavy-tailed distribution of
degrees. Incorporating these variants may be of interest in the MBM framework
and could lead to further developments.

In a more general perspective, the study of ecological or sociological inter-
actions supplies a wide variety of complex networks such as multilevel networks
or multi-layer networks(Pilosof et al., 2017; Lazega and Snijders, 2015). Some
of them can be treated as multipartite networks and then by a MBM (possibly
by incorporating some extensions discussed above). The others require the de-
velopment of suited models which might also rely on a latent variable modeling.
They will be the subject of future works.
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A Variational EM for MBM: details

The variational version of the EM algorithm maximizes a lower bound of the
observed likelihood. More precisely, let Rτ ,X be any probability distribution
on Z, we define Iθ(Rτ ,X) as:

Iθ(Rτ ,X) = log `(X; θ)−KL[Rτ ,X ,P(·|X; θ)] (9)

= ERτ,X
[log `c(X,Z; θ)] +H(Rτ ,X) (10)

≤ log `(X; θ) (11)

where KL is the Kullback-Leibler divergence and H(Rτ ,X) is the entropy of
Rτ ,X . The inequality in (11) derives from the positivity of the KL divergence.
The equality Iθ(Rτ ,X) = log `(X; θ) holds iff Rτ ,X(Z) = P(Z|X; θ) which
results in the classical identity of the EM algorithm (Dempster et al., 1977).

The principle of the VEM algorithm is to chooseRτ ,X in a family of distribu-
tions P parametrized by τ , such that the conditional expectation ERτ,X

[log `c(X,Z; θ)]
can be computed explicitly. Iteration (t) of VEM consists in the two following
steps:

• M Step

θ(t) = arg max
θ

Iθ(Rτ (t−1),X)

= arg max
θ

ERτ,X
[log `c(X,Z; θ)]

• VE Step

τ (t) = arg max
τ

ERτ,X
[log `c(X,Z; θ)] +H(Rτ ,X)

= arg min
τ

KL[Rτ ,X ,P(·|X; θ(t))] .

The variational EM generates a sequence (θ(t), τ (t))t≥0 increasing the lower
bound Iθ(Rτ ,X) of the likelihood log `(X; θ).

Choice of P The key point of the procedure is the choice of P, making
the calculus tractable but rich enough to be a good approximation of the true
conditional distribution P(Z|X; θ). Following Govaert and Nadif (2008) and
Daudin et al. (2008), we adopt the mean-field strategy (Jaakkola, 2000) and
chose P as:

P =

{
Rτ |Rτ (Z) =

Q∏
q=1

nq∏
i=1

hKq
(Zqi ; τ qi )

}
,

where hKq
(·; ξ) is the density of a 1 trial - multinomial distribution of parameter

ξ ∈ TKq
, i.e. RX,τ is such that the latent variables Z are independent and
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PRτ,X
(Zqi = k) = τ qik with

Kq∑
k=1

τ qik = 1, ∀q ∈ {1, . . . , Q},∀i ∈ {1, . . . , nq}.

From this particular choice of P, we derive the VE-step and M-step for the
MBM in what follows.

Explicit expression for Iθ(Rτ ,X) Using the expression of the complete log-
likelihood given in Equation (3), we obtain:

Iθ(Rτ ,X) = −
∑
q,i,k τ

q
ik log τ qik +

∑
q,i,k τ

q
ik log(πqk)

+
∑

(q,q′)

∑
(i,i′)

∑
(k,k′) E

[
1Zq

i =k1Zq′
i′ =k

′

]
fqq′(X

qq′

ii′ , α
qq′

kk′)
(12)

fqq′(X
qq′

ii′ , α
qq′

kk′) =


Xqq′

ii′ log(αqq
′

kk′) + (1−Xqq′

ii′ ) log(1− αqq
′

kk′) for binary networks

−αqq
′

kk′ +Xqq′

ii′ log(αqq
′

kk′)− log(Xqq′

ii′ !) for weigthed Poisson networks.

log φ(Xqq′

ii′ , µ
qq′

kk′ , σ
qq′

kk′) for Gaussian networks.
(13)

E
[
1Zq

i =k1Zq′
i′ =k

′

]
has to be carefully calculated, when i = i′. To that purpose,

let us introduce the following notations :

• ∀q, Eq = {q′ ∈ {1, . . . , Q} | q′ 6= q and (q, q′) ∈ E} . Eq is the set of inci-
dence matrices involving the functional group q.

• ∀(q, q′) ∈ E ,∀i ∈ [1, nq} we define :

Sqqi = {i′ ∈ {1, . . . , nq} | i′ 6= i, (i, i′) ∈ Sqq} .

Using these notations we detail the expression of Iθ(Rτ ,X).∑
(q,q′)

∑
(i,i′)

∑
(k,k′)

E
[
1Zq

i =k1Zq′
i′ =k

′

]
fqq′(X

qq′

ii′ , α
qq′

kk′)

=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′fqq′(X
qq′

ii′ , α
qq′

kk′) + 1(q,q)∈E
∑
(i,i′)

∑
(k,k′)

E
[
1Zq

i =k1Zq

i′=k
′

]
fqq′(X

qq
ii′ , α

qq
kk′)

=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′fqq′(X
qq′

ii′ , α
qq′

kk′) + 1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′)

E
[
1Zq

i =k1Zq

i′=k
′

]
fqq(X

qq
ii′ , α

qq
kk′)

+1(q,q)∈E
∑
i

∑
(k,k′)

E
[
1Zq

i =k1Zq
i =k′

]
︸ ︷︷ ︸

=0 if k 6=k′

fqq(X
qq
ii , α

qq
kk′)
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=
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′)

τ qikτ
q′

i′k′fqq′(X
qq′

ii′ , α
qq′

kk′) + 1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′)

τ qikτ
q
i′k′fqq(X

qq
ii′ , α

qq
kk′)

+1(q,q)∈E
∑

i | (i,i)∈Sqq

∑
k

E
[
12
Zq

i =k

]
︸ ︷︷ ︸
=1Z

q
i
=k

fqq(X
qq
ii , α

qq
kk) .

As a consequence, we get:

Iθ(Rτ ,X) = −
∑
q,i,k τ

q
ik log τ qik +

∑
q,i,k τ

q
ik log(πqk)

+
∑
q

∑
q′∈Eq

∑
(i,i′)

∑
(k,k′) τ

q
ikτ

q′

i′k′fqq′(X
qq′

ii′ , α
qq′

kk′)

+1(q,q)∈E
∑
i

∑
i′∈Sqq

i

∑
(k,k′) τ

q
ikτ

q
i′k′fqq(X

qq
ii′ , α

qq
kk′)

+1(q,q)∈E
∑
i | (i,i)∈Sqq

∑
k τ

q
ikfqq(X

qq
ii , α

qq
kk) .

(14)

Optimization of Iθ(Rτ ,X) with respect to τ , (θ being fixed)

For a fixed θ, we need to find τ such that ∀q ∈ {1, . . . , Q}, ∀k ∈ {1, . . . ,Kq},
∀i ∈ {1, . . . , nq}:

∂

∂τ qik

Iθ(Rτ ,X) +

Q∑
q′=1

nq′∑
j=1

λq
′

j

 Kq∑
k′=1

τjk′ − 1

 = 0 (15)

where (λq
′

j )1≤q′≤Q,1≤j≤nq′ are the Lagrange multipliers. Combining Equations
(12) and (14), we get:

0 = −(1 + log τ qik) + log πqk +

∑
q′∈Eq

nq′∑
i′=1

K′q∑
k′=1

fqq′(X
qq′

ii′ , α
qq′

kk′)τ
q′

i′k′


+1(q,q)∈E

∑
j∈Sqq

i

Kq∑
k′=1

fqq(X
qq
ij , α

qq
kk′)τ

q
jk′ (16)

+1(q,q)∈E1(i,i)∈Sqqfqq(X
qq
ii , α

qq
kk)

+λqi .

This system has no explicit solution but can be solved numerically using a fixed
point strategy as in Daudin et al. (2008).

Optimization of Iθ(Rτ ,X) with respect to θ, τ being fixed.
We have to compute the derivatives of Iθ(Rτ ,X) with respect to θ, the vari-
ational parameters τ being fixed. We thus obtain: ∀(q, q′) ∈ E ,∀(k, k′) ∈
{1, . . . ,Kq} × {1, . . . ,Kq′}:

αqq
′

kk′ =

∑
(i,i′)∈Sqq′ X

qq′

ii′ τ
q
ikτ

q′

i′k′∑
(i,i′)∈Sqq′ τ

q
ikτ

q′

i′k′
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and ∀q ∈ {1, . . . , Q},∀k = {1, . . . ,Kq}:

πqk =
1

nq

nq∑
i=1

τ qik .

Clustering and initializations
We denote by θ̂ and τ̂ the resulting estimates. The estimated clustering is the
maximum a posteriori (MAP) estimate: ∀q ∈ {1, . . . , Q},∀i ∈ {1, . . . , nq},

Ẑqi = arg max
k∈{1,...,Kq}

τ̂ qik.
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B Derivation of the ICL criterion

As exposed in Section 4.2 of the paper, we resort to the ICL criterion to perform
model selection. The ICL is an asymptotic approximation of the integrated
marginal complete likelihood. We supply here the details of the calculations.

Explicit expression of the marginal complete likelihood The ICL being
a based on a Bayesian model selection criterion, we first set the following prior
distribution:

αqq
′

kk′ ∼ B(a, a) and (πq1, . . . π
q
Kq

) ∼ Dir(b, . . . , b). (17)

where B(a, a) denotes the Beta distribution and Dir(b, . . . , b) is the Dirichlet
distribution. By definition,

logmc(X,Z;MK) = log

∫
`c(X,Z; θK)π(θK ;MK)dθK .

The prior on θ being such that π(θ) = π(α)π(π) we obtain:

logmc(X,Z;MK) = log

∫
f(X|Z;α)π(α)dα+ log

∫
f(Z;π)π(π)dπ .

Taking advantage of the conditional independences in the model defined by
Equations (1) and (2) combined with the independence of the parameters in the
prior distribution, we can decompose logmc into the following sum:

logmc(X,Z;MK) =
∑

(q,q′)∈E

log

∫
f(Xqq′ |Zq,Zq

′
; (αqq

′
))π(αqq

′
)dαqq

′

+

Q∑
q=1

log

∫
f(Zq;πq)π(πq)dπq .

Using the fact that f(Zq;πq) =
∏Kq

k=1(πqk)N
q
k with

Nq
k =

nq∑
i=1

1Zq
i =k (18)

and the conjugacy of the Dirichlet prior distribution, we easily deduce the fol-
lowing formula:∫

f(Zq;πq)π(πq)dπq =
Γ(bKq)

Γ(b)Kq

∏Kq

k=1 Γ(Nq
k + b)

Γ(nq + bKq)

where Γ is the Gamma function.
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Now, we can reformulate f(Xqq′ |Zq,Zq
′
;αqq

′
) as:

f(Xqq′ |Zq,Zq
′
;αqq

′
) =

∏
(i,i′,k,k′)

(αqq
′

kk′)
Xqq′

ii′ 1Z
q
i
=k1Z

q′
i′

=k(1− αqq
′

kk′)
(1−Xqq′

ii′ )1Z
q
i
=k1Z

q′
i′

=k

=

Kq,Kq′∏
k,k′=1

(αqq
′

kk′)
Sqq′

kk′ (1− αqq
′

kk′)
Nqq′

kk′−S
qq′

kk′

with
Sqq

′

kk′ =
∑

(i,i′)∈Sqq′ X
qq′

ii′ 1Zq
i =k1Zq′

i′ =k

Nqq′

kk′ =
∑

(i,i′)∈Sqq′ 1Zq
i =k1Zq′

i′ =k
.

(19)

With the beta prior distribution on each αqq
′

kk′ , we get:∫
f(Xqq′ |Zq,Zq

′
; (αqq

′
))π(αqq

′
)dαqq

′
=

Kq,Kq′∏
k,k′=1

Γ(2a)

Γ(a)2

Γ(a+ Sqq
′

kk′)Γ(a+Nqq′

kk′ − S
qq′

kk′)

Γ(2a+Nqq′

kk′)
.

Finally, we obtain:

logmc(X,Z;MK) =

 ∑
(q,q′)∈E

|Aqq
′
|

 (log Γ(2a)− 2 log Γ(a))

+
∑

(q,q′,k,k′)

log Γ(a+ Sqq
′

kk′) + log Γ(a+Nqq′

kk′ − S
qq′

kk′)

−
∑

(q,q′,k,k′)

log Γ(2a+Nqq′

kk′)

+

Q∑
q=1

log Γ(bKq)−Kq log(b)− log Γ(nq + bKq)

+

Q∑
q=1

Kq∑
k=1

log Γ(Nq
k + b)


where Nq

k has been defined in Equation (18) and Sqq
′

kk′ and Nqq′

kk′ in Equation
(19)

Asymptotic approximation Using the same arguments as in Daudin et al.
(2008) and Brault (2014), we obtain the following asymptotic approximation.
Assume that ∀q ∈ {1, . . . , Q}, nq →∞, then :

logmc(X,Z;MK) = max
θK∈ΘK

log `c(X,Z; θK)− pen(MK)

where

pen(MK) =
1

2

Q∑
q=1

(Kq − 1) log(nq)
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+
1

2

 ∑
(q,q′)∈Sqq′

|Aqq
′
|

 log

 ∑
(q,q′)∈Sqq′

|Sqq
′
|

 .

The first term comes from the application of the Stirling formula to the Gamma
function when approximating f(Zq;πq). The second term comes from a BIC

approximation of the part f(Xqq′ |Zq,Zq
′
;αqq

′
). Obviously, the parameters of

the prior distribution (a, b) disappear from the formula since asymptotically the
importance of the prior distribution vanishes.

C Detailed Estimates for the MBM on the two
Datasets

Pollinators Ants Birds

α̂qq
′

kk′ 1 2 1 2 1

P
la

n
ts

1 0.0957 0.0075 0 0.0006∗ 0.0013∗

2 0.0042∗ 0 0.5431 0.0589 0
3 0 0.0003∗ 0 0 0.0753
4 0.1652 0.0343 0.6620 0.1542 0
5 0.1918 0.0638 0 0 0.0163
6 0 0 0 0 0.5108
7 0 0 0.8492 0.3565 0

Table 5: α̂qq
′

kk′ for MBM on the plant/animals interactions dataset. Elements
with ∗ are not plotted in Figure 3.

π̂1

1 0.4675
π̂2 1 0.06

2 0.1606 2 0.94
3 0.1351

π̂3 1 0.1
4 0.0784∗ 2 0.9
5 0.1061 π̂4 1 1
6 0.0142
7 0.0380

Table 6: π̂qk for MBM on the plant/animals interactions dataset
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Table 7: Estimated parameters for MBM on the seed circulation dataset: π̂qk
are in the first row and column, other rows and columns contain the estimates

α̂qq
′

kk′ . α̂
qq′

kk′ identified by ∗ are not plotted in Figure 4.

Farmers Species
1 2 3 1 2

π̂qk 0.31 0.42 0.27 0.65 0.35

F
ar

m
er

s 1 0.025∗ 0.123∗ 0.053∗ 0.186 0.653
2 0.159∗ 0.300 0.070∗ 0.559 0.905
3 0.374 0.585 0.357 0.390 0.696
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