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Abstract 55 

Predicting wheat phenology is important for cultivar selection, for effective crop 56 

management and provides a baseline for evaluating the effects of global change. Evaluating 57 

how well crop phenology can be predicted is therefore of major interest. Twenty-eight wheat 58 

modeling groups participated in this evaluation. Our target population was wheat fields in the 59 

major wheat growing regions of Australia under current climatic conditions and with current 60 

local management practices. The environments used for calibration and for evaluation were 61 

both sampled from this same target population. The calibration and evaluation environments 62 

had neither sites nor years in common, so this is a rigorous evaluation of the ability of modeling 63 

groups to predict phenology for new sites and weather conditions. Mean absolute error (MAE) 64 

for the evaluation environments, averaged over predictions of three phenological stages and 65 

over modeling groups, was 9 days, with a range from 6 to 20 days. Predictions using the multi-66 

modeling group mean and median had prediction errors nearly as small as the best modeling 67 

group. About two thirds of the modeling groups performed better than a simple but relevant 68 

benchmark, which predicts phenology by assuming a constant temperature sum for each 69 

development stage. The added complexity of crop models beyond just the effect of temperature 70 

was thus justified in most cases. There was substantial variability between modeling groups 71 

using the same model structure, which implies that model improvement could be achieved not 72 

only by improving model structure, but also by improving parameter values, and in particular 73 

by improving calibration techniques. 74 

Keywords: evaluation, phenology, wheat, Australia, structure uncertainty, parameter 75 

uncertainty 76 
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1. Introduction 78 

Crop phenology describes the cycle of biological events during plant growth. These 79 

events include, for example, seedling emergence, leaf appearance, flowering, and maturity. 80 

Timing of growing seasons and their critical phases as well as estimates of them are increasingly 81 

important in changing climate (Olesen et al., 2012, Dalhaus et al., 2018). Matching the 82 

phenology of crop varieties to the climate in which they grow is critical for viable crop 83 

production strategies (Rezaei et al., 2018, Hunt et al., 2019). Furthermore, accurate simulation 84 

of phenology is essential for models which simulate plant growth and yield (Archontoulis et 85 

al., 2014; Boote et al., 2010, 2008).  86 

In this study we focus on wheat phenology in Australia. Australia was the world’s ninth 87 

largest producer of wheat in 2018 and the sixth largest exporter (Workman, 2020). Crop model 88 

predictions of phenology have been used in various studies related to wheat production in 89 

Australia. In a study by Luo et al. (2018), the APSIM model was used to simulate changes in 90 

phenology, water use efficiency, and yield to be expected from global climate change. The 91 

APSIM model was used to evaluate changes in wheat phenology in Australia as a result of 92 

warming temperatures in recent decades (Sadras and Monzon, 2006). That model was also used 93 

to determine the flowering date at each location associated with highest average yield (Flohr et 94 

al., 2017).  95 

Given the interest in using crop models to predict phenology, it is important to evaluate 96 

those predictions. How well can wheat phenology be predicted? In trying to answer this 97 

question, one must first define exactly what aspect of the models is being evaluated, and then 98 

must choose an appropriate methodology for carrying out the evaluation. 99 

It is important to distinguish two different types of model evaluation, which might be 100 

termed evaluation of extrapolation predictions and evaluation of interpolation predictions. They 101 
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differ as to whether or not the data provided for calibration are representative of the target 102 

population, i.e. of the range of environments of interest. In one type of study, the objective is 103 

to evaluate how well models can extrapolate to conditions not represented in the calibration 104 

data. For example, in a multi-model ensemble study on the effect of high temperatures on wheat 105 

growth (Asseng et al., 2015), detailed crop measurements were provided for one planting date 106 

and the models were evaluated using other planting dates, some with additional artificial heating 107 

during growth. The evaluation data thus represented a much larger range of temperatures than 108 

represented in the calibration data. This was a test of how well the models can extrapolate to 109 

more extreme temperatures than those available for calibration. Other studies have evaluated 110 

how well crop models can extrapolate to environments with enhanced CO2, given calibration 111 

data for current ambient CO2 levels (Biernath et al., 2011).  112 

In the second type of study, the calibration data are meant to be representative of the 113 

target population. This evaluates how well crop models can generalize from the calibration 114 

environments to other similar environments. An example is the study by Ceglar et al. (2019), 115 

which used data on wheat phenology under current conditions in Europe for calibration and 116 

then predicted phenology for other environments from the same target population. This type of 117 

evaluation is adapted, for example, to the case where one has data from a network of variety 118 

trials and wants to predict for other sites and years from the same target population, as in Bao 119 

et al.. (2017) for yield. It is this aspect of crop phenology models, namely their ability to predict 120 

when provided with a sample of data from the target population, that is evaluated in the present 121 

study.  122 

A second aspect of evaluation that must be specified is the modeling group or groups 123 

that are being evaluated, where modeling group refers to the combination of crop model and 124 

the people responsible for running the simulations. We reserve the term “model” specifically 125 

for model structure, i.e. the model equations, while modeling group determines both the model 126 
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structure and the parameter values, which are chosen or estimated by the group running the 127 

model. It is clear that predictions depend not only on the model structure but also on the 128 

parameter values, so evaluation really refers to the modeling group. Model evaluation studies 129 

may refer to a particular modeling group or to an ensemble of modeling groups. Here, we 130 

evaluate an ensemble of 28 different modeling groups. The purpose is not to give information 131 

about each specific modeling group, but rather to evaluate how well currently active modeling 132 

groups can predict phenology for our target population (e.g. what is the error of the best 133 

predicting group), how well can one expect a modeling group chosen at random to predict (e.g. 134 

what is the mean or median prediction error), and what is the variability between modeling 135 

groups (e.g. what is the spread between the best and worst predictors).  136 

It is important to define precisely the evaluation problem (extrapolation or interpolation, 137 

single- or multi-group evaluation), but it is also important that the methodology of evaluation 138 

be such as to give reliable results. We focus here on the relation of the predictor (model plus 139 

parameter values) and evaluation data. It is well-known from statistics that if a predictor is not 140 

independent of the evaluation data, then the error for the evaluation data will in general be less 141 

than for new environments (Efron, 1986). That is, non-independence in general leads to 142 

underestimating prediction errors. The predictor could depend on the evaluation data if, for 143 

example, the evaluation data were also used to calibrate the model, or were used to modify the 144 

model equations, or were used to tune site characteristics. If the same sites are present in the 145 

calibration and evaluation data, then the model has to some extent been tuned to those sites, and 146 

so the predictor is not independent of the evaluation data even if the evaluation data have not 147 

been used directly to fit the model. Having the same sites in the calibration and evaluation data 148 

is often the case for evaluation studies (Andarzian et al., 2015; Asseng et al., 2008; Chauhan et 149 

al., 2019; Hussain et al., 2018; Yuan et al., 2017).  150 
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There do not seem to have been any evaluation studies of prediction of wheat phenology 151 

in Australia based on results from multiple modeling groups, where the calibration data are 152 

sampled from the target population (i.e. evaluation of interpolation predictions). The purpose 153 

of this study is to present such an evaluation, using a rigorous approach where the parameterized 154 

model is independent of the evaluation data.  155 

2. Materials and Methods  156 

2.1 Experimental data  157 

The data are a subset from a multi-cultivar, multi-location, and multi-sowing date trial 158 

for wheat in Australia, described in Lawes et al. (2016). The environments reflect the diversity 159 

in the wheat-growing regions of Australia (Fig. 1). Only the data for cultivar Janz, classified as 160 

a fast-moderate maturing cultivar, were used here. The data are from 10 sites, located 161 

throughout the grain growing region each with one to three sowing years and three planting 162 

dates in each year (overall 66 environments, i.e. site-sowing date combinations, Table 1). The 163 

sowing dates at each site correspond to early, conventional, and late sowing. Plant density was 164 

100-120 plants/m², and sowing depth was 20-35 mm. Nutrients were managed to be non-165 

limiting. There were 1-3 repetitions for each environment (average of 2.1 repetitions).  166 

  167 
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 168 

Figure 1  169 

Location of calibration (red circles) and evaluation (blue triangles) sites across the 170 

Australian cropping zones (shaded area; Source: Teluguntla et al., 2018). 171 

Plots were visited regularly (about every two weeks) starting soon after emergence of 172 

the early sowing and ending after crop maturity, and the Zadoks growth stage (Zadoks et al., 173 

1974), on a scale from 1-100, was determined. Overall, there were 709 combinations of 174 

environment and measurement date, with an average of 10.7 stage notations per environment. 175 

The stages to be predicted here are stage Z30 (Zadoks stage 30, pseudostem, i.e. youngest leaf 176 

sheath erection), stage Z65 (Zadoks stage 65, anthesis half-way, i.e. anthers occurring half way 177 

to tip and base of ear), and stage Z90 (Zadoks stage 90, grain hard, difficult to divide). These 178 

stages are often used for management decisions or to characterize phenology.  179 

In preparing the data for the simulation study, a linear interpolation was performed 180 

between each pair of stages, to give the date for every integer Zadoks stage from the first to the 181 

last observed stage. At 10 of the 709 measurement dates, observed Zadoks stage decreased 182 

slightly (by an average of 3 on the Zadoks scale) compared to the previous date, due to sampling 183 

variability. In that case both observed Zadoks stages were replaced by the average for the two 184 
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dates, before interpolation. The interpolated values were provided in order to avoid different 185 

modeling groups using different methods for interpolating the data, which would have added 186 

additional uncertainty unrelated to the model performance. 187 

The average standard deviation of observed Zadoks stages based on the replicates was 188 

0.93 days. The standard deviation of interpolated days after sowing to Z30, Z65, and Z90 was 189 

calculated using a bootstrap. For a day with r replicates, a sample of size r was obtained by 190 

drawing values at random with replacement, independently for each measurement date. Then 191 

the Zadoks values were interpolated as for the original data. This was done 1000 times, giving 192 

standard deviations of 1.8 days for observed days to Z30, 0.9 days for observed days to Z65, 193 

and 0.5 days for observed days to Z90, respectively.  194 

Part of the data was provided to the modeling groups for calibration , and part was never 195 

revealed to participants and used for evaluation . The calibration data originated from four sites, 196 

two years, and three planting dates, so overall 24 environments. The evaluation data were from 197 

six sites, one year, and three planting dates for a total of 18 environments (Table 1). Dates of 198 

Z30, Z65 and Z90 were observed at respectively 16, 18 and 5 of these 18 environments. The 199 

data were divided in such a way that the calibration and evaluation data had neither sites nor 200 

years in common.  201 

Table 1 202 

Sites and sowing dates for calibration (underlined) and evaluation (bold). Note that 203 

the calibration and evaluation data have neither sites nor years in common.  204 

site\ year 2010 2011 2012 

Bungunya 

(Queensland) 

  2012-05-10 

2012-05-22 
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2012-06-23 

Corrigin 

(West Australia) 

  2012-05-02 

2012-05-21 

2012-06-21 

Eradu 

(West Australia) 

2010-05-14 

2010-05-27 

2010-06-22 

2011-04-29 

2011-05-24 

2011-06-23 

 

LakeBolac 

(Victoria) 

2010-05-03 

2010-05-19 

2010-07-08 

2011-05-09 

2011-06-03 

2011-06-16 

 

Minnipa 

(South Australia) 

2010-04-30 

2010-05-31 

2010-06-24 

2011-05-13 

2011-05-27 

2011-06-24 

 

Nangwee 

(Queensland) 

  2012-05-17 

2012-05-31 

2012-06-23 

Spring Ridge 

(New South Wales) 

2010-05-10 

2010-06-11 

2010-07-01 

2011-05-09 

2011-06-06 

2011-06-23 

 

Temora 

(New South Wales) 

  2012-05-05  

2012-05-23  

2012-06-25 

Turretfield 

(South Australia) 

  2012-05-30  

2012-06-15  

2012-07-05 
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Walpeup 

(Victoria) 

  2012-04-27 

2012-06-04 

2012-07-18 

 205 

  206 
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 207 

To characterize the environments, we calculated for each environment the average 208 

temperature from sowing to Z30, Z65, and Z90, the average photoperiod from Z30 to Z65 using 209 

the daylength function in the R package insol (Corripio, 2019.; R Core Team, 2017) and days 210 

to full vernalization using the model in van Bussel et al. (2015) with a required duration of 211 

exposure to vernalizing temperatures ( Vsat ) of  25 days, estimated from the figure in their paper. 212 

Figure 2 shows the range of average temperature, day length, and days to vernalization for the 213 

calibration and evaluation environments as well as the range of observed calendar days to Z30, 214 

Z65, and Z90. The range of values for the evaluation data is always within the range of the 215 

calibration data, with the single exception of photoperiod. While the median and maximum day 216 

lengths were very similar for the two sets of environments, the shortest day length was 11.5 217 

hours among calibration environments, while among the evaluation environments the shortest 218 

day length was 10.1 hours.  219 

  220 
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 221 

Figure 2 222 

Boxplots of a) average temperatures from sowing to Zadoks stages Z30, Z65, and 223 

Z90 b) average day length between observed days of Zadoks stages Z30 and Z65 c) 224 

average days from sowing to complete vernalization d) average days from sowing to 225 

Zadoks stages Z30, Z65, and Z90. Results are shown separately for the calibration (ca) 226 

and evaluation (ev) environments. Boxes indicate the lower and upper quartiles. The solid 227 

line within the box is the median. Whiskers indicate the most extreme data point which is 228 

no more than 1.5 times the interquartile range from the box, and the outlier dots are those 229 

observations that are beyond that range. 230 
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2.2 Modeling groups 231 

Twenty-eight different modeling groups participated in this study, where modeling 232 

group refers to the group of people conducting the modeling exercise.  Each modeling group is 233 

associated with  some specific model structure (some specific named model) and also with some 234 

specific parameter values. The model structures involved are presented in Supplementary Table 235 

S1. Models were considered to have the same structure even if the version number was different, 236 

because version differences are expected to be negligible for phenology. Three of the model 237 

structures were used by more than one group. Since different groups using the same structure 238 

obtained different results, identifying the contributions by the name of the model would be 239 

misleading. Furthermore, the performance of specific groups was not of major interest here. 240 

Therefore the modeling groups were anonymized, and only identified by a number. There is no 241 

model M5 because that group dropped out in the course of the study. The model structures used 242 

by more than one group are noted S1 (three groups), S2 (three groups) and S3 (two groups).  243 

Details about the way phenology is modeled by each model structure can be found in  244 

the references for each model (Supplementary Table S1). Here we give only a brief overview. 245 

The principal factors that affect winter wheat developmental rate are temperature, day length 246 

and degree of vernalization (Johnen et al., 2012). Most, but not all, model structures take into 247 

account all three factors. The simplest approach to modeling the effect of temperature is to 248 

assume that development rate increases linearly with daily average temperature above some 249 

base temperature (a parameter). In other models the rate may be constant above some optimal 250 

temperature (a parameter), development rate may decline above the optimum temperature at 251 

some rate (a parameter), or development rate may be some more complex function of 252 

temperature (Kumudini et al., 2014; Wang et al., 2017). The parameters of the temperature 253 

response curve may differ depending on development stage. The effect of photoperiod on 254 

development rate is often modeled as a multiplier that is a piecewise linear function of 255 
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photoperiod. The function increases with some slope (a  parameter) up to a threshold 256 

photoperiod (a parameter), and then is 1 for photoperiods longer than the threshold. 257 

Vernalization, which must be accomplished before the plant can flower, requires a period of 258 

cold temperatures. Vernalization parameters can include the upper limit for temperature to 259 

count as vernalizing, and the required number of vernalizing days. Some models also relate 260 

development to the rate of leaf appearance (called the phyllochron, a parameter) or rate of 261 

tillering. Finally, several models also take into account the effect of cold or drought stress on 262 

development rate. If drought stress is taken into account, then development rate is related to all 263 

the processes that determine soil moisture and plant water uptake.  264 

The multi-model ensemble here was an “ensemble of opportunity” meaning that any 265 

modeling group that asked to join was accepted. The activity was announced on the list server 266 

of the Agricultural Modeling Inter-comparison and Improvement Project (AgMIP) and on the 267 

list servers of several models. In addition to the original models, we defined two ensemble 268 

models. The model e-mean has predictions equal to the mean of the simulated values. The 269 

model e-median has predictions equal to the median of the simulated values.  270 

2.3 Simulation experiment 271 

Each participating modeling group was provided with weather, soil, and management 272 

data for all environments, as well as all available observed and interpolated values for days to 273 

each Zadoks stage for the calibration data. Participants were requested to return simulated 274 

values for number of days from sowing to emergence (even though days to emergence was 275 

never observed) and values for number of days from sowing to stages Z30, Z65, and Z90 for 276 

all environments, including both the calibration environments and the evaluation environments. 277 
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2.4Evaluation 278 

As our basic metric of model error, we use the mean absolute error (MAE). For a model 279 

m, MAE is  280 

 ,

1

ˆ(1/ )
n

m i i m

i

MAE n y y
=

= −   (1) 281 

where iy  is the observed value for environment i and 
,

ˆ
i my  is the value simulated by modeling 282 

group m for that environment. The sum is over either calibration environments, to evaluate 283 

goodness-of-fit, or over evaluation environments, to estimate prediction error. This is 284 

preferred over mean squared error (MSE) or root mean squared error (RMSE), because unlike 285 

MSE, MAE does not give extra weight to large errors (Willmott and Matsuura, 2005). To test 286 

whether MAE is the same for prediction of days to different stages, we used the R function 287 

pairwise.t.test, with method=”holm” to correct for multiple comparisons. We also calculated 288 

MSE, RMSE, and NRMSE (normalized root mean squared error) for comparison with other 289 

studies.  290 
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  (2) 291 

where y  is the average of the observed values.  292 

We considered two skill measures. A skill measure compares prediction error of the 293 

modeling group to be evaluated with the error of a simple model used for comparison. We 294 

define two simple models, and therefore two skill measures. Both use MSE, rather than MAE, 295 

as the measure of model error, in keeping with usual practice. The first simple model, noted 296 

“naive”, predicts that days to each stage will be equal to the average number of days to that 297 
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stage in the calibration data. The predictions of the naïve model here are 77.1, 123.1, and 166.5 298 

days from sowing to stages Z30, Z65, and Z90, respectively. The first skill measure, modeling 299 

efficiency (EF), is defined as  300 

  1 /m m naiveEF MSE MSE= −   (3) 301 

The naive model ignores all variability and predicts that days to any stage will be the same 302 

regardless of the environment. A model with EF ≤ 0 is a model that does no better than the 303 

naive model, and so would be considered a very poor predictor. A perfect model, with no error, 304 

has modeling efficiency of 1. Often modeling efficiency is based on the fit of a calibrated model 305 

to the data used for calibration (McCuen et al., 2006). Here, in contrast, the naïve model is 306 

based on calibration data and used to predict for independent data.  307 

The naïve model is a very low baseline for evaluating a crop model. We therefore 308 

introduce a more realistic, but still simple model which takes into account the effect of 309 

temperature on phenology. This “onlyT” model predicts that degree days (°D) from sowing to 310 

each stage will be equal to the number of degree days from sowing to that stage in the calibration 311 

data, where degree days on any calendar day is equal to average temperature that day. The 312 

predictions of the onlyT model are that Z30 will occur 893.7 °D after sowing, Z65 will occur 313 

1476.0 °D after sowing, and Z90 will occur 2245.7 °D after sowing. The second skill measure, 314 

noted skillT, is then  315 

 1 /m m onlyTskillT MSE MSE= −   (4) 316 

where 
onlyTMSE  is MSE for the onlyT model. As for any skill measure, a perfect model has 317 

skillT = 1 and a model that does no better than the onlyT model has skillT ≤ 0 318 
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2.5 Sources of variability 319 

A major interest of ensemble studies is that they provide information on the variability 320 

in simulation results between different modeling groups. This variability can arise from 321 

differences in model structure between different modeling groups or differences in parameter 322 

values for groups that use the same model structure. In this study, three of the model structures 323 

are used by more than one modeling group. This makes it possible to estimate separately the 324 

variance in simulated values due to structure and the variance due to modeling group nested 325 

within structure (i.e. due to differences in parameter values). We treat the simulated values as a 326 

sample from the distribution of plausible model structures and plausible parameter values. 327 

According to the law of total variance (Casella and Berger, 1990), the total variance of 328 

simulated values can be decomposed into two parts as  329 

 ( ) ( )ˆ ˆ ˆvar( ) var | var |y E y S E y S= +         (5) 330 

where ŷ  are the simulated values, S is model structure, E is the expectation, var is the variance, 331 

and the notation |S means that the expectation (in the first term on the right hand side) or the 332 

variance (in the second term on the right hand side) is taken separately for each value of model 333 

structure. We estimated the first term by first calculating the average simulated value for each 334 

structure (if a structure is represented by a single modeling group, this is just the value simulated 335 

by that group), and then calculating the variance of those average values. This is the between-336 

structure variability. To estimate the second term, we first calculated the variance between 337 

simulated values for each of the three structures with multiple groups. Then we calculated the 338 

average of those variances. This is the within-structure variability (i.e. variability due to 339 

parameters). 340 
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3.Results  341 

3.1 Prediction error and skill 342 

MAE values for the evaluation data are shown in Figure 3 and summarized in Table 2. 343 

Results for individual modeling groups are given in Supplementary Table S2. Median MAE 344 

values (and ranges) were 12 days (8-25 days) for days to Z30, 10 days (5-24 days) for days to 345 

Z65, and 7 days (1-22 days) for days to Z90. The median (and range) of MAE averaged over 346 

the three stages was 9 days (6-20 days). The ensemble predictors e-mean and e-median both 347 

had averaged MAE values of 7 days. They were both only marginally worse than the best two 348 

individual modeling groups, and e-median was marginally better than e-mean. For comparison 349 

with other studies, we also report other criteria of error in Table 2.  350 

Table 2 351 

Summary of prediction errors for the evaluation and calibration environments, 352 

in each case averaged over predictions of days to stages Z30, Z65, and Z90 except for 353 

NRMSE, where the values refer to predictions of number of days to stage Z65. The 354 

median, minimum, and maximum error over modeling groups are shown. 355 

  median minimum maximum 

Evaluation data MAE (days) 9 6 20 

RMSE (days) 12 9 25 

NRMSE 0.094 0.056 0.227 

EF 0.51 -1.51 0.70 

skillT 0.2 -3.34 0.49 

Calibration data MAE (days) 8 6 19 

RMSE (days) 11 6 24 
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NRMSE 0.068 0.041 0.197 

 356 

Figure 3 357 

Boxplot of mean absolute error (days) for each development stage and averaged 358 

over stages, for the evaluation data. The variability is between different modeling groups. 359 

Boxes indicate the lower and upper quartiles. The solid line within the box is the median. 360 

Whiskers indicate the most extreme data point which is no more than 1.5 times the 361 

interquartile range from the box, and the outlier dots are those observations that are 362 

beyond that range. 363 

 364 

 365 
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Boxplots of EF and skillT for the evaluation data are shown in Figure 4. The median 366 

EF value of the individual modeling groups, averaged over stages, was 0.51, and 86 % of the 367 

modeling groups had EF > 0. The median skillT value of the individual modeling groups, 368 

averaged over stages, was 0.20, and 68% of the modeling groups had skillT > 0. 369 

 370 

Figure 4 371 

Boxplots of skill scores for prediction of days to Zadoks stages Z30, Z65, and Z90, 372 

and averaged over stages (all) for the evaluation data. Skill score is 1 for a modeling group 373 

that predicts perfectly, and is less than or equal to 0 for a modeling group that does no 374 

better than using average days to each stage in the calibration data (EF skill score) or than 375 
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using the average number of degree days to each stage in the calibration data (skillT skill 376 

score). Boxes indicate the lower and upper quartiles. The solid line within the box is the 377 

median. Whiskers indicate the most extreme data point which is no more than 1.5 times 378 

the interquartile range from the box, and the outlier dots are those observations that are 379 

beyond that range. For readability the y axis is cut off at –1. 380 

 381 

Overall MAE for the evaluation data and the calibration data for the same modeling 382 

group were correlated.  The calibration value explains 46 % of the variability in the evaluation 383 

data (R² = 0.46).  384 

 385 

3.2 Sources of variability 386 

There was substantial variability between modeling groups for each individual 387 

prediction, including between modeling groups that share the same model structure 388 

(Supplementary Figure S1). Averaged over the evaluation environments and over all three 389 

stages Z30, Z65, and Z90, the estimated within-structure standard deviation was 4.3 days and 390 

the estimated between-structure standard deviation was 11.9 days, so the within-structure 391 

standard deviation was 36 % as large as the between-structure standard deviation.  392 

 393 

4. Discussion 394 

4.1 Comparison of calibration and evaluation environments 395 

The calibration and evaluation environments were drawn from the same target 396 

population, namely wheat crops in the major wheat growing regions in Australia, with current 397 
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climate and local management practices. We compared the calibration and evaluation 398 

environments for the main characteristics that are likely to affect phenology, namely 399 

temperature, day length, and accumulation of vernalizing temperatures. Temperatures and 400 

vernalizing durations of the evaluation environments were within the ranges of the calibration 401 

environments, but the evaluation data had a larger range of day lengths than the calibration data. 402 

This is the result of sampling variability, and may have led to larger prediction errors than if 403 

the calibration data had a range of day lengths comparable to that of the evaluation data. 404 

However, the range of days to each phenology stage for the evaluation data was always within 405 

the range for the calibration data. We conclude that this study represents a case where the 406 

calibration and evaluation data represent a similar range of conditions (with the caveat just 407 

mentioned concerning photoperiod). This type of situation is of particular importance, for 408 

example, where one wants to calibrate a crop model using current conditions and subsequently 409 

test possible sowing dates within a limited range, or to compare phenology of multiple potential 410 

cultivars at specific sites within the calibration domain.  411 

4.2 Prediction error 412 

The evaluation here was based on data which had neither sites nor years in common 413 

with the calibration data. This was thus a rigorous estimate of how well crop modeling groups 414 

can predict wheat phenology for unseen sites and weather, when provided with calibration data 415 

sampled from the target population. The median MAE among models averaged over phenology 416 

stages was 9 days, which was substantially larger than the standard deviation of observed stages, 417 

which was in the range 1-2 days. The best modeling group had an average MAE of 7 days, 418 

which was still substantially larger than the  standard deviation of observed stages. MAE values 419 

were significantly larger for prediction of days to Z30 than for prediction of days to later Zadoks 420 

stages. This may be due to the large variability between groups in predicting time to emergence, 421 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.06.06.133504doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.133504


24 

which is discussed in more detail below. Time to emergence is a major part of the time to Z30, 422 

but a smaller fraction of time to Z65 or Z90. 423 

Chauhan et al. (2019) reported a value of NRMSE of 0.062 for prediction of time to 424 

flowering of wheat in Australia, for a version of APSIM taking the effect of water stress on 425 

phenology into account. In that study, the model was adjusted to some extent to the data used 426 

for evaluation, so the reported error probably underestimates the error for new environments. 427 

That reported value was in any case within the range of NRMSE values found for different 428 

modeling groups here, for both the evaluation data (NRMSE here from 0.056 to 0.227) and the 429 

calibration data (NRMSE here from 0.041 to 0.197). Asseng et al. (2008), using the APSIM 430 

model, found RMSE of 4 days for wheat phenology predictions (mostly predictions of days to 431 

anthesis) for 44 different environments in Western Australia, a level of error which was smaller 432 

than the minimum RMSE of 9 days found here for the evaluation data, and even smaller than 433 

the minimum RMSE of 6 days found here for the calibration data. In that study, the phenology 434 

model was again adjusted to some extent to the data (S. Asseng, 2020, pers. comm.), which 435 

could explain the smaller errors.  436 

The above comparisons suggest that prediction errors are very roughly similar between 437 

studies, but that there are differences depending on the details of the prediction problem and 438 

the way prediction error is evaluated. It is clearly useful to build up a knowledge base 439 

concerning phenology prediction error, as a baseline for comparison for future studies or even 440 

as a default value if evaluation is not done. Contributions to the knowledge base will be all the 441 

more useful, to the extent that the details of the prediction problem are clearly specified 442 

(including whether it is of type interpolation or extrapolation and including a characterization 443 

of the target population) and to the extent that the evaluation has a rigorous separation between 444 

the predictor and the evaluation data. The present study should therefore be a valuable 445 

contribution to such a knowledge base.  446 
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It is of interest to compare the results here with those from a study structured like the 447 

present study (calibration and evaluation environments with similar characteristics, evaluation 448 

data not used for model development or tuning) but where the evaluation concerned prediction 449 

of two phenological stages of wheat in France, namely BBCH30 (equivalent to Z30) and 450 

BBCH55 (equivalent to Z55) (Wallach et al., 2019). To a large extent, the same modeling 451 

groups participated in both studies. Specifically, the French study included 27 different 452 

modeling groups, 26 of which participated in the present study. A comparison between the two 453 

studies gives an indication of variability in prediction error for the same modeling groups but 454 

for different target populations (Australian wheat in one case, French wheat in the other) and 455 

for somewhat different calibration data and predicted stages.  456 

MAE averaged over the evaluation environments and over predicted stages ranged from 457 

3 to 13 days (median 6 days) for the French data compared to 6 to 20 days (median 9 days) for 458 

the Australian data. The target population (wheat fields in Australia versus wheat fields in 459 

France) thus had a substantial effect on prediction errors. A detailed analysis of the underlying 460 

reasons for the larger errors in Australia is beyond the scope of this study. However, one 461 

possible contributing cause is the simulation of time to emergence. The average simulated time 462 

to emergence for all French environments was 10 days after sowing, and the mean standard 463 

deviation between modeling groups was 4 days. The corresponding values for the Australian 464 

environments were a mean emergence time of 15 days after sowing, and a mean standard 465 

deviation between modeling groups of 18 days. This very large standard deviation for the 466 

Australian environments, pointing at major differences between modeling groups, may be due 467 

to dry conditions in some environments and the uncertainty regarding initial soil conditions, 468 

leading some models to simulate very long times to emergence (up to 107 days, Supplementary 469 

Figure S1). This suggests that for Australian environments, it would be valuable to have 470 

observations of time to emergence for calibration. It seems that for many modeling groups, it 471 
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would be worthwhile to revisit the predictions of time to emergence under conditions like those 472 

of the Australian environments, taking advantage of specific modeling studies of time to 473 

emergence for wheat (Lindstrom et al., 1976; Wang et al., 2009). 474 

An important question in modeling is whether the same modeling groups perform best 475 

for all target populations, or whether different groups are best for different target populations. 476 

There is quite a bit of scatter in the graph of MAE for the Australian versus French environments 477 

(Supplementary Fig. S2), but the rank correlation between the two (Kendall’s tau) is 0.31, which 478 

is statistically significant (p=0.013). This suggests that there are modeling groups which 479 

perform better than others over a wide range of environments. Once again, it is prudent to repeat 480 

that this applies to the case where calibration is based on environments that are sampled from 481 

the target distribution. Prediction errors for extrapolation to conditions very different than those 482 

of the calibration data might behave very differently. 483 

4.3 Skill measures 484 

While prediction error is of course of interest, skill scores may be even more useful, as 485 

they indicate how models compare to alternative methods of prediction. Note that the EF skill 486 

score used here is somewhat different than the usual definition. Here, the naïve model is based 487 

solely on the calibration data, so this is in fact a feasible predictor. The more usual definition 488 

of the naïve model is the mean of all the data, including the data used for evaluation. Overall, 489 

all except four modeling groups had smaller MSE (were better predictors) than the naïve model.  490 

The EF criterion is a rather low baseline for evaluating the usefulness of crop models 491 

for predicting phenology. Our second skill measure compares model MSE and MSE of the 492 

onlyT model, which assumes a constant number of degree days from sowing to each Zadoks 493 

stage, and estimates that number based on the calibration data. This should be a better predictor 494 

than the naïve model if photoperiod and vernalization effects are limited, and so is a more 495 
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stringent test of usefulness of process models. We found that the onlyT model was indeed a 496 

better predictor than the naïve model. Nonetheless, 19 of the modeling groups performed better 497 

than the onlyT model. It seems that in most cases here, the added complexity in crop models 498 

beyond a simple sum of degree days is warranted. More generally, we suggest that 499 

systematically calculating a skill measure like skillT would give valuable information about the 500 

usefulness of more complex models. 501 

4.4 Model averaging 502 

As found in many studies, e-median and e-mean had prediction errors comparable to 503 

the best modeling groups. This confirmed previous evidence and theoretical considerations 504 

showing that the use of e-mean or e-median is often a good strategy (Bassu et al., 2014; Palosuo 505 

et al., 2011; Rötter et al., 2012; Wallach et al., 2018). The e-mean model is based on a simple 506 

average over simulated values, so the results from every modeling group are weighted equally. 507 

An open question in using model ensembles is whether it would be better to give more weight 508 

to models that have smaller prediction errors for the calibration data (Christensen et al., 2010), 509 

for example using Bayesian Model Averaging (Wöhling et al., 2015). The results here show 510 

that phenology predictive performance for the calibration environments is significantly 511 

correlated with predictive performance for new environments. This was also found to be the 512 

case for a study evaluating phenology prediction by modeling groups based on phenology in 513 

French environments (Wallach et al., 2019) and suggests that in these cases, it may be 514 

worthwhile to use performance-weighted model ensembles. This may be due to the fact that in 515 

these studies, the calibration and evaluation environments were similar to one another. In cases 516 

where one is extrapolating to conditions quite different than those represented by the calibration 517 

environments, performance weighting may be less useful. This once again emphasizes that it is 518 

important to define for each evaluation study whether it is an evaluation of type “interpolation” 519 

or “extrapolation”.  520 
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4.5 Sources of variability 521 

A major outcome of model ensemble studies is the variability in simulated values 522 

between modeling groups, which is an indication of the uncertainty of model-based predictions 523 

(Asseng et al., 2013).  Beyond a measure of the variability, it is of interest to understand the 524 

origins of the variability. One important aspect here is how differences in the model equations 525 

between model structures affect the simulated values. This however is difficult to untangle, 526 

given the multiple differences between structures. It seems that specific studies, for example 527 

modifying one specific aspect of multiple models, are needed to understand the various sources 528 

of structure uncertainty (Maiorano et al., 2016).  The present study does not allow us to relate 529 

specific differences in model structure to differences in simulated results. However, it does 530 

allow us to separate two contributions to variability, namely the overall variability between 531 

model structures and the variability between different parameter values for the same model 532 

structure.   An important question is the relative importance of the two, to determine priorities 533 

for reducing overall uncertainty. Parameter uncertainty can arise from uncertainty in the default 534 

values of those parameters that are fixed, from uncertainty in the choice of calibration approach 535 

(for example, the form of the objective function or the choice of parameters to estimate) and 536 

from the values of the estimated parameters, which are uncertain because there is always a 537 

limited amount of data. The within-structure variability here is a measure of the uncertainty due 538 

to choice of default values and calibration approach, but not of uncertainty in the values of the 539 

calibrated parameters. The within-structure standard deviation here is 4.3 days, compared to a 540 

between-structure standard deviation (contribution of structure) of 11.9 days. The study based 541 

on French environments found a within-structure standard deviation of 5.6 days and a between-542 

structure standard deviation of 8.0 days (Wallach et al., 2019). Confalonieri et al. (2016) also 543 

found that the within-structure effect was in general, but not in all cases, smaller than the 544 

between-structure effect on variability.  545 
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Other studies have on the contrary focused on structural uncertainty versus uncertainty 546 

in the calibrated parameters, without taking into account uncertainty in all the default parameter 547 

values, nor uncertainty in the calibration approach chosen. Zhang et al. (2017) found that model 548 

structure explained about 80 % of the variability in simulated time to heading in rice and about 549 

92 % of the variability in simulated time to maturity in rice, the remainder of the variability 550 

being due to parameter uncertainty. Wallach et al. (2017) found that model structure uncertainty 551 

contributed about twice as much variance as parameter uncertainty to overall simulation 552 

variance. It would be of interest to have a fuller treatment of parameter uncertainty, including 553 

both different groups using the same model structure and an estimate of the uncertainty in the 554 

parameters estimated by each group.  555 

5. Conclusions 556 

We evaluated how well 28 crop modeling groups simulate wheat phenology in 557 

Australia, in the case where both the calibration data and the evaluation data were sampled from 558 

fields in the major wheat growing areas in Australia under current climate and local 559 

management. It is important to distinguish between interpolation type prediction, as here, and 560 

extrapolation type, since they are not evaluating the same properties of modeling groups. It is 561 

also important to emphasize that evaluation concerns both model structure and parameter 562 

values, and therefore the modeling group and not just the underlying model structure. MAE for 563 

the evaluation data here ranged from 6 to 20 days depending on the modeling group, with a 564 

median of 9 days. About two thirds of the modeling groups performed better than a simple but 565 

relevant benchmark, which predicts phenology assuming a constant temperature sum for each 566 

development stage. The added complexity of crop models beyond just the effect of temperature 567 

is therefore justified in most cases. As found in many other studies, the multi-modeling group 568 

mean and median had prediction errors nearly as small as the best modeling group, suggesting 569 

that using these ensemble predictors is a good strategy. Prediction errors for calibration and 570 
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evaluation environments were found to be significantly correlated, which suggests that for 571 

interpolation type studies, it would be of interest to test ensemble predictors that weight 572 

individual models based on performance for the calibration data. The variability due to 573 

modeling group for a given model structure, which reflects part of parameter uncertainty, was 574 

found to be smaller than the variability due to model structure, but was not negligible. This 575 

implies that model improvement could be achieved not only by improving model structure but 576 

also by improving parameter values. 577 

 578 
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 798 

Figure S1 799 

Predictions of days from sowing to Zadoks stages Z10 (emergence), Z30, Z65 and 800 

Z90 by each modeling group for each evaluation environment. Modeling groups that 801 

used the same model structure are identified by color (red for structure S1, green for 802 

structure S2, blue for structure S3).  803 
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Table S2 805 

Prediction errors for each modeling group and for the models e-mean, e-median, naive and onlyT. The columns are 806 

MAE averaged over the stages Z30, Z65 and Z90 for the evaluation environments (days), MAE for each of the stages Z30, Z65 807 

and Z90 for the evaluation environments (days), root mean squared error (RMSE)  averaged over the stages Z30, Z65 and Z90 808 

for the evaluation environments (days), the skill measures EF and skillT averaged over the stages Z30, Z65 and Z90 for the 809 

evaluation environments (unitless) and MAE averaged over the stages Z30, Z65 and Z90 for the calibration environments 810 

(days). The models are ordered by average MAE (value in first column). NA indicates that that modeling group didn’t predict 811 

the time to the indicated stage. 812 
 

MAE
_eval 

MAE
_Z30 

MAE
_Z65 

MAE
_Z90 

RMSE
_eval 

EF_
eval 

skillT
_eval 

MA
E_cal 

M9 6.3 NA 9.3 3.2 7.2 0.7 0.489 6.2 

eme
an 

6.3 8.8 7.3 2.9 8.1 0.6
4 

0.38 6 

M24 6.4 9 6.8 3.2 8.6 0.6
2 

0.351 8.5 

eme
dian 

6.4 8.6 7.4 3.3 8.3 0.6
3 

0.367 5.9 

M21 6.6 8.7 6.6 4.4 8.5 0.6
4 

0.379 5.9 

M4 6.7 9.8 6.4 3.8 8.4 0.6
5 

0.39 5.7 

M2 6.8 10.4 7.3 2.8 8.8 0.5
7 

0.263 6.3 

M13 7.2 10.6 7.9 3.2 9 0.5
5 

0.231 8.3 

M18 7.2 NA 10.8 3.6 8.6 0.6
2 

0.336 7.7 

M15 7.3 11.7 4.6 5.6 8.5 0.6
4 

0.383 8 
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M11 7.3 7.7 7.4 6.8 10 0.5
3 

0.18 9 

M25 7.4 10.7 6.7 4.8 8.9 0.6 0.307 6.1 

M23 7.8 10.6 8.5 4.2 10 0.5 0.14 6.7 

M26 7.9 9.3 10.3 4.2 10.3 0.4
7 

0.082 7.4 

M3 8 NA 10.1 6 9 0.6
1 

0.322 7.7 

M27 8 9.7 10.9 3.4 10.1 0.4
6 

0.066 6.7 

M29 8.2 8.2 8.1 NA 11.2 0.4
4 

0.029 9.7 

only
T 

8.2 10.7 10.6 3.2 10.5 0.4
2 

0 8 

M17 8.4 7.3 7.3 10.6 10.4 0.5
2 

0.165 7 

M19 8.5 11.4 10.2 3.8 10.4 0.4
4 

0.032 7.9 

M12 9.3 12.4 7.3 8 11.4 0.3
9 

-
0.058 

8.1 

M7 9.3 15.4 9 3.4 11.5 0.2
3 

-
0.323 

13.3 

M20 9.3 NA 11.5 7.2 11.4 0.4 -
0.041 

8.3 

M8 9.4 12.4 8.8 6.8 11.6 0.3
5 

-
0.117 

12 

M22 9.5 9.1 15.8 3.4 12.1 0.2
1 

-
0.362 

7.3 

M10 10.6 24.8 5.9 1 13.3 -
0.54 

-
1.664 

12 
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naiv
e 

11.3 12.2 14.3 7.5 14.6 0 -
0.727 

17.1 

M14 13 15.2 13.3 10.5 16.2 -
0.18 

-
1.044 

18.7 

M6 14 9.9 10 22 17.6 -
0.47 

-
1.537 

8.1 

M16 14.2 11.8 10 20.8 16.6 -
0.29 

-
1.228 

13.9 

M1 15.8 20.6 10.4 16.4 16.8 -
0.33 

-
1.301 

12.8 

M28 20 18.3 24.2 17.4 23.5 -
1.51 

-
3.343 

17.4 
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 816 

Fig. S2 817 

Relation between mean absolute error (MAE) for the Australian environments 818 

and MAE for the French environments, for modeling groups that participated in both 819 

studies. Values are averages over predicted development stages. Points are identified by 820 

modeling group. Modeling groups that shared the same structure (S1, S2 or S3) are 821 

identified by filled squares, triangles or circles, respectively. The regression line is 822 

y=8.23+0.24x.        823 
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