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 29 

Abstract 30 

The vegetation optical depth (VOD), a vegetation index retrieved from passive or active microwave 31 

remote sensing systems, is related to the intensity of microwave extinction effects within the 32 

vegetation canopy layer. This index is only marginally impacted by effects from atmosphere, clouds 33 

and sun illumination, and thus increasingly used for ecological applications at large scales. Newly 34 

released VOD products show different abilities in monitoring vegetation features, depending on the 35 

algorithm used and the satellite frequency. VOD is increasingly sensitive to the upper vegetation layer 36 

as the frequency increases (from L-, C- to X-band), offering different capacities to monitor seasonal 37 

changes of the leafy and/or woody vegetation components, vegetation water status and aboveground 38 

biomass.  This study evaluated nine recently developed/reprocessed VOD products from the AMSR2, 39 

SMOS and SMAP space-borne instruments for monitoring structural vegetation features related to 40 

phenology, height and aboveground biomass.  41 

For monitoring the seasonality of green vegetation (herbaceous and woody foliage), we found that X-42 

VOD products, particularly from the LPDR-retrieval algorithm, outperformed the other VOD products 43 

in regions that are not densely vegetated, where they showed higher temporal correlation values with 44 

optical vegetation indices (VIs). However, LPDR X-VOD time series failed to detect changes in VOD 45 

after rainfall events whereas most other VOD products could do so, and overall daily variations are 46 

less pronounced in LPDR X-VOD. Results show that the reprocessed VODCA C- and X-VOD have 47 

almost comparable performance and VODCA C-VOD correlates better with VIs than other C-VOD 48 

products. Low frequency L-VOD, particularly the new version (V2) of SMOS-IC, show a higher 49 

temporal correlation with VIs, similar to C-VOD, in medium-densely vegetated biomes such as 50 

savannas (R~0.70) than for other short vegetation types. Because the L-VOD indices are more sensitive 51 

to the non-green vegetation components (trunks and branches) than higher frequency products, they 52 

are well-correlated with aboveground biomass: (R ~ 0.91) across space between predicted and 53 

observed values for both SMOS-IC V2 and SMAP MT-DCA. However, when compared with forest 54 

canopy height, results at L-band are not systematically better than C- and X-VOD products. This 55 

revealed specific VOD retrieval issues for some ecosystems, e.g., boreal regions. It is expected that 56 

these findings can contribute to algorithm refinements, product enhancements and further developing 57 

the use of VOD for monitoring above-ground vegetation biomass, vegetation dynamics and phenology. 58 

 59 
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1. Introduction 64 

Microwave vegetation optical depth (VOD), as a promising ecological indicator, is directly 65 

proportional to the vegetation water content (VWC) of the aboveground canopy biomass (Brandt et 66 

al., 2018; Jackson and Schmugge, 1991; Mo et al., 1982; Wigneron et al., 2017). Different VOD 67 

indices (referred to as VODs in the following) derived from microwave observations at relatively 68 

"high" frequencies such as Ku- (18.7 GHz), X- (10.7 GHz) or C- (6.9 GHz) band have been used to 69 

monitor phenology (Jones et al., 2011), vegetation fractional cover (Guan et al., 2012), the impact of 70 

El Niño events on vegetation in Australia (Liu, et al., 2007), isohydricity patterns (Konings and 71 

Gentine, 2017) and aboveground biomass  (AGB) dynamics (Liu, et al., 2015). In recent years, VOD 72 

at L-band (1.4 GHz) has been established as a useful indicator for estimating the dynamics in AGB in 73 

tropical forests. This was made possible because of the lower extinction of low frequency radiations 74 

within the canopy layer, making L-band arguably more efficient for monitoring biomass in dense 75 

vegetation canopies (Brandt et al., 2018; Fan et al., 2019; Tian et al., 2018; Wigneron et al., 2020). In 76 

comparison to optical-near infrared vegetation indices such as the Normalized Difference Vegetation 77 

Index (NDVI) and the Enhanced Vegetation Index (EVI), currently available VODs have a coarse 78 

spatial resolution, but are largely insensitive to effects from the atmosphere, clouds and sun 79 

illumination, in particular at low frequencies (L-, C- and X-bands).  80 

Several VOD datasets used in the above-mentioned studies are derived from multiple spaceborne 81 

microwave sensors operating at different frequencies (Fernandez-Moran et al., 2017a; Li et al., 2020a; 82 

Liu et al., 2011). Among these sensors (satellites), the Advanced Microwave Scanning Radiometer 2 83 

(AMSR2; Imaoka et al., 2012) is the successor of the Advanced Microwave Scanning Radiometer for 84 

EOS (AMSR-E; Koike et al., 2004), which enabled the fusion of the first long-term (1987-2008) 85 

global microwave‐based VOD product (Liu et al., 2011). The ESA's Soil Moisture and Ocean 86 

Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP) are two L-band sensors 87 

(Entekhabi et al., 2010; Kerr et al., 2010) which are designed for monitoring surface soil moisture (SM) 88 

in moderately and densely vegetated areas (Wigneron et al., 2017). While the main objective of these 89 

satellite missions was to monitor SM at global scale, the accurate retrieval of SM using radiative 90 

transfer models requires the consideration of the extinction effects of the vegetation layer, which are 91 

parameterized by the VOD index (Mo et al., 1982; Wigneron et al., 2007). In particular, the SMOS 92 

satellite has multi-angular capabilities, allowing simultaneous retrievals of SM and VOD (Wigneron et 93 

al., 2000), while multi-temporal VOD retrieval approaches have been developed for SMAP (Konings 94 

et al., 2016; 2017). Thus, both the SMOS and SMAP missions support the development of a separate 95 

VOD product in addition to the original SM product. Note that some specific satellite products focus 96 

only on SM, as the Japan Aerospace Exploration Agency (JAXA) standard SM products (Njoku et al., 97 
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2003). Recently, VOD products have been combined to long-term time series by blending multiple 98 

microwave sensors, such as the new global land parameter data record (LPDR) X-band VOD derived 99 

from AMSR-E and AMSR2 (Du et al., 2017b), and the global long-term microwave VOD Climate 100 

Archive (VODCA; Moesinger et al., 2020) produced by the Vienna University of Technology (TU 101 

Wien) including Ku-, X- and C-band VOD. 102 

Assessing the performance of these remotely sensed VOD retrievals is crucial to improve their 103 

quality and evaluate their potential applications in many fields such as monitoring AGB, vegetation 104 

dynamics and phenology. However, VOD, like NDVI, is a radiometric variable rather than a well-105 

defined and “easily validated” geophysical parameter (Liu et al., 2011). Evaluation based on field data 106 

of different vegetation components is rare (Brandt et al, 2019) and most evaluations of VOD datasets 107 

are based on a side-by-side comparison with proxies of the vegetation greenness based on optical 108 

vegetation indices (Du et al., 2017b; Grant et al., 2016; Jones et al., 2011; Karthikeyan et al., 2019; 109 

Lawrence et al., 2014; Li et al., 2020a; Liu et al., 2011; Moesinger et al., 2020; Tian et al., 2016; Tong 110 

et al., 2019), including NDVI, EVI and Leaf Area Index (LAI). These previous comparisons revealed 111 

that VOD can generally capture vegetation seasonal cycles and interannual variations in a similar 112 

fashion as NDVI (Li et al., 2020a; Liu et al., 2011) and LAI (Moesinger et al., 2020; Cui et al., 2020). 113 

However, unlike NDVI, which is restricted to the upper green canopy layer, microwave-based VOD is 114 

able to sense the entire vegetation deeper within the canopy, with different layers and depths 115 

depending on the penetration capability of the observation frequency. Hence, NDVI saturates quickly 116 

as vegetation density increases and the green canopy closes, while VOD is sensitive to both the leaf 117 

and woody component of vegetation and not restricted to the upper canopy. Moreover, VOD is related 118 

to the water content of the vegetation canopy (i.e., VWC) that cannot be observed by optical indices. 119 

Lower frequencies (L-band) observations are sensitive to the water content present in the whole 120 

vegetation layer including the woody components of the vegetation, while higher frequencies (C- and 121 

X-band) observations are more sensitive to the water content of the upper layer of the vegetation 122 

canopy and, consequently, to the green vegetation components (leaves and stems for herbaceous 123 

vegetation, crown and leafy part of trees in forests). Therefore, evaluating VOD against optical indices 124 

should be limited to relatively low-density vegetation canopies. In particular, the optical indices are 125 

not a good reference for evaluating the capabilities of low frequency VODs (such as L-band VOD) for 126 

monitoring biomass, in particular over moderate to highly dense forests, especially in tropical regions. 127 

As VWC is determined by the quantity of vegetation (parameterized by biomass) and the 128 

vegetation water status (parameterized by vegetation moisture content (Mg (kg/kg), the ratio between 129 

wet biomass and total (wet + dry) biomass, i.e., Mg=VWC/(VWC+Bs), where Bs represents vegetation 130 

dry biomass)), VOD can thus provide information on AGB and the vegetation water status and stress 131 

of the vegetation canopy (Frappart et al., 2020; Togliatti et al., 2019). By assuming that the yearly 132 
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average of Mg is relatively constant from year to year, which can be confirmed in intact forest regions 133 

and non‐affected by severe drought/mortality events (Frappart et al., 2020), the yearly average of 134 

VOD can be considered as a good proxy of AGB (Liu et al., 2015; Brandt et al., 2018). Moreover, the 135 

function relating VOD to AGB has been established from a spatial calibration in several studies (see 136 

Frappart et al., 2020 for a review and more details on that topic). As the yearly averaged VOD 137 

computed at different frequencies is strongly correlated with the woody vegetation (Brandt et al., 138 

2018; Brandt et al., 2019; Wigneron et al., 2017), the evaluation of VOD retrievals can be based on 139 

comparisons with AGB products. With the ongoing development of VOD retrieval 140 

algorithms/products at different frequencies, efforts have been made to compare the sensitivity of 141 

different VODs to forest carbon stocks. In the following, we will use L-VOD, C-VOD and X-VOD to 142 

denote the VOD products at L-, C- and X-bands, and so forth. Liu et al. (2015) computed a non-linear 143 

relationship between a reference map of AGB (Saatchi et al., 2011) and Ku/X/C-VOD products, and 144 

used this relationship to study the VOD-derived global biomass dynamics. Following this global 145 

analysis, Tian et al. (2016) confirmed the good relationship between AGB and Ku/C-VOD over the 146 

West African Sahel dryland ecosystems using temporal in-situ biomass measurements. Rodríguez-147 

Fernández et al. (2018) conducted an inter-comparison of the spatial patterns of SMOS L-VOD 148 

products against four AGB benchmark maps over the African continent and revealed a high 149 

performance of the SMOS-INRA-CESBIO or SMOS-IC V105 L-VOD product relative to other 150 

SMOS products. More recently, Chaparro et al. (2019) compared the sensitivity of different VOD 151 

products at X-, C- and L-bands to AGB over tropical forests of Peru, southern Colombia and Panama.  152 

However, very few studies have inter-compared VODs retrieved from different satellites and at 153 

different frequencies. For instance, inter-comparisons of VODs at L-band were limited to either the 154 

SMOS (Rodríguez-Fernández et al., 2018) or SMAP products (Chaparro et al., 2019), but to our 155 

knowledge the two products have rarely been inter-compared. Moreover, most inter-comparisons were 156 

conducted over limited study areas for specific biomes or on a limited time scale. For example, 157 

Rodríguez-Fernández et al. (2018) and Chaparro et al. (2019) mostly focused on the yearly averaged 158 

VOD without considering the seasonal variations. For a better understanding of remotely sensed 159 

VODs and to facilitate improvements of the retrieval algorithms for future space-borne missions, the 160 

evaluation/inter-comparison of VOD products from different sensors and frequencies for a variety of 161 

spatio-temporal conditions is essential. Furthermore, new VOD algorithms and new versions of VOD 162 

products, such as the SMOS-IC version 2 (V2) L-VOD recently designed by INRAE Bordeaux (Li et 163 

al., 2020b; Wigneron et al., Submitted), are not yet comprehensively evaluated and inter-compared. 164 

This study fills this gap by assessing and inter-comparing globally nine VOD products at three 165 

frequencies (X-, C- and L-bands; See Table 1). This evaluation considered the ability of VOD 166 

products to monitor both the seasonal vegetation cycle and the spatial distribution of AGB. 167 
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Consequently, the objectives of this study are: (1) to assess and inter-compare the sensitivity of VODs 168 

(at L-, C- and X-bands) to AGB, as well as to compare those products with optical vegetation indices 169 

from Moderate Resolution Imaging Spectroradiometer (MODIS) considering both seasonal and annual 170 

spatial variations at the global scale; and (2) to examine the performance of the nine VODs in various 171 

biomes reflecting different environmental conditions. The second objective provides insight in how 172 

satellite-based VOD retrievals may be impacted by land cover features (vegetation structure, 173 

phenology, etc.) and heterogeneity.  174 

2. Datasets  175 

2.1 Remotely sensed VOD products 176 

Table 1 presents an overview of the VOD datasets included in this study, mainly from SMOS, 177 

SMAP and AMSR2. More details about these satellite-based VOD products are provided in Appendix 178 

A. 179 

Table 1. Overview of the VOD datasets used in this study. Our study period is 04/2015-12/2017 as this 180 

period was sufficient to analyze seasonal variations in VOD. 181 
Variable name Dataset/ Sensor Frequency Metadata Period Sampling Method/Algorithm Reference 

SMAP L-VOD SMAP 1.4GHz 04/2015-09/2020 
Daily,  
9 km 

MT-DCA Konings et al. (2017) 

IC V105 L-VOD 
SMOS 1.4GHz 01/2010-09/2020 

Daily,  
25 km 

SMOS-IC V105 
Fernandez-Moran et al. 
(2017a) 

IC V2 L-VOD SMOS-IC V2 
Wigneron et 
al.(Submitted) 

AMSRU X-VOD 
AMSR-E and 
AMSR2 

10.7GHz 01/2002-12/2019 
Daily,  
25 km 

LPDR V2 Du et al. (2017a) 

AMSR2 X-VOD 
AMSR2 

10.7GHz 
07/2012-01/2020 

Daily,  
25 km 

LPRM V5 Owe et al. (2008) AMSR2 C1-VOD 6.9 GHz 
AMSR2 C2-VOD             7.3 GHz 

VODCA X-VOD 
WindSat, AMSR-E, 
AMSR2 and TMI 

10.65 GHz, 
10.7 GHz 

12/1997-12/2018 
Daily,  
0.25° 

LPRM V6 Moesinger et al. (2020) 
VODCA C-VOD 

WindSat, AMSR-E 
and AMSR2 

6.93 GHz, 
7.3 GHz, 
6.8GHz 

06/2002-12/2018 

MT-DCA = multi-temporal dual-channel algorithm; LPRM = Land Parameter Retrieval Model. 182 

To get an overview of the various approaches used in the VOD retrievals, we summarized the 183 

main differences in the algorithms used (Table 2). The brightness temperature (TB) measured by the 184 

passive microwave radiometers measures the natural microwave emission from the land surfaces. All 185 

these algorithms use a simple 0th-order Tau-Omega (τ-ω) radiative transfer model as the starting point 186 

to simulate the TB (Mo et al., 1982, Wigneron et al., 2017 for a review). As summarized in Table 2, 187 

the main differences in the VOD retrieval algorithms can be distributed in different categories, 188 

considering the parameterizations of the physical temperature including the effective soil and 189 

vegetation temperatures, surface roughness, effective scattering albedo, and dielectric mixing models. 190 

For example, unlike the other algorithms, where the roughness effects are estimated from a separate 191 

roughness correction step, the LPDR algorithm assumes a constant dry soil emissivity to facilitate the 192 

VOD retrieval process, thus its VOD incorporate the soil roughness effects (Jones et al., 2010; 193 
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Mladenova et al., 2014). VODCA is a fusion of VOD retrieval results from multiple sensors after co-194 

calibration via cumulative distribution function matching using AMSR-E as the scaling reference 195 

(Moesinger et al., 2020). We did not list the VODCA retrieval algorithm separately as it is an updated 196 

version of LPRM V5, not yet available to the public. Readers are referred to Table 2 in Scanlon et al. 197 

(2020) for more details about this algorithm.   198 

Table 2. Summary of key differences among the SMOS-IC, MT-DCA, LPDR V2 and LPRM V5 199 

retrieval algorithms. 200 
Algorithm SMOS-IC  MT-DCA LPDR V2 LPRM V5 

Observation 
Multi-angular and dual 

polarization SMOS L3 TB 

Enhanced SMAP dual 
polarization TB at a fixed 
incidence angle of 40° 

Calibrated TB retrieval records 
from both AMSR-E and 

AMSR2 

AMSR2 spatial-resolution-
matched TB (L1SGRTBR) 

Effective soil 
temperature 

• �� =
�(���	
_��� ,  ���	
_�����) 

• ���	
_��� , ���	
_�����  from 
Layer 1 & 3 of ECMWF 

• �� = min ����
 !

"#$ , 1&, Wo 

= 0.3 m3/m3; bo=0.3 

• �� =
�(���	
_��� , ���	
_�����) 

• ���	
_��� , ���	
_�����  from 
Layer 1 & 2 of GEOS-5 

• �� = 0.246 

• �� =
�(�,-(./.0�12),�,-(34./�12))  
(P = H, V) 

• using an iterative algorithm 
approach (Jones et al., 
2010) 

• �� = 56� = �(�,7(40�12)) 
• LST derived from the 

method of Holmes et al. 
(2009) 

Vegetation 
temperature 

• TC = ECMWF skin 
temperature  

• TC = TG • TC = TG • TC = TG 
 

Vegetation 
modelling 

• τ-ω model (Mo et al., 
1982) 

• τ-ω model (Mo et al., 
1982) 

• τ-ω model (Mo et al., 1982)  • τ-ω model (Mo et al., 1982) 

Soil roughness 
modelling 

• H-Q-N modelling (Wang 
and Choudhury,1981) 

• HR values from Parrens et 
al. (2016) 

• NRP = -1 (P = H, V) over 
short vegetation 

• NRV = -1, NRH = 1 over 
forests 

• QR = 0 

• H-Q-N modelling (Wang 
and Choudhury,1981) 

• Assuming a constant 
roughness root-mean-
square height of 0.13 
(being the basis for 
formulations of HR) 

• NRP = 0 (P = H, V) 
• QR = 0 

• dry bare soil emissivity 
• HR = −, QR = − 

• H-Q-N modelling (Wang 
and Choudhury,1981) 

• NRP = 1 (P = H, V) 
• HR(10.7GHz) = 0.18;  

HR(7.3GHz) = 0.09;  
HR(6.9GHz) = 0.09;  

• QR(10.7GHz) = 0.127;  
QR(7.3 GHz) =  0.115;  
QR(6.9 GHz) =  0.115;  
 
 

Effective  
scattering albedo  

• ω calibrated based on 
IGBP classifications 

• ω is retrieved 
simultaneously with SM 
and VOD 

• ω is prescribed as a constant 
value of 0.06 

• ω10.7GHz = 0.06 
• ω7.3GHz = 0.05 
• ω6.9GHz = 0.05 

Dielectric  
mixing model 

• Mironov et al. (2004) • Mironov et al. (2004) • Dobson et al. (1985) • Wang and Schmugge (1980) 

TB = brightness temperature; TG = effective soil temperature; TC = vegetation canopy temperature; LST = land surface temperature;  ���	
_��� = surface 201 
soil temperature; ���	
_����� = deep soil temperature; CT = parameters (Choudhury effective temperature scheme); Wo, bo = fitting parameters (Wigneron 202 
effective temperature scheme); ECMWF: European Centre for Medium-Range Weather Forecasts; GEOS-5: Goddard Earth Observing System Model, 203 
Version 5; HR = roughness parameter; NRP = roughness parameter accounting for polarization dependency; QR = polarization mixing coefficient; ω = 204 
effective scattering albedo; In LPDR, the Dobson dielectric model is only used for the retrieval of SM as the VOD retrieval  considers a constant dry soil 205 
emissivity (Mladenova et al., 2014). 206 

2.2 Evaluation datasets 207 

2.2.1 MODIS vegetation indices 208 

Two optical vegetation indices (VIs), NDVI and EVI, were compared with each VOD product. 209 

These two VIs were chosen as both are regarded as proxy for green vegetation cover (Weber et al., 210 

2020). In particular, NDVI climatology is also used to estimate VOD in the inversion algorithm of the 211 

official NASA SMAP soil moisture products (Chan et al., 2013; Dong et al., 2017). Compared to 212 

NDVI, EVI is designed to decouple the canopy background signals and reduce atmospheric influences 213 

and it is designed to be less susceptible to saturation over forest areas (Huete et al., 2002). More 214 

information on NDVI and EVI are summarized in Table S1. In this study, the 16-day MODIS product 215 

(MOD13A2 Collection 6) was used to obtain the NDVI and EVI. Global MOD13A2 data is provided 216 
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as a gridded level-3 product projected on the Sinusoidal projection with a spatial resolution of 1 km. 217 

To retain high-quality observations, we filtered out pixels not flagged as ‘good quality’ and pixels with 218 

snow/ice, cloud cover, and non-land as done by Grant et al. (2016). NDVI and EVI were subsequently 219 

aggregated to 25 km using nearest-neighbor interpolation. 220 

2.2.2 Lidar tree height 221 

The global tree height dataset from Simard et al. (2011) was used to assess the dependency of 222 

VOD on vegetation density. This height dataset was produced at 1 km resolution using lidar data 223 

collected in 2005 by the Geoscience Laser Altimeter System (GLAS) sensor. In addition, estimates 224 

over the areas not directly covered by the lidar footprint are made by combining relevant auxiliary data 225 

with Random Forest models. The lidar-derived data were chosen here not only because the total 226 

amount of vegetation is related to canopy height (Asner et al., 2013), but GLAS is also widely used as 227 

a primary source of information for carbon stock databases, reflecting the ability of tree height data for 228 

comparison purposes. Further details about this product and algorithm are described in Simard et al. 229 

(2011), and data can be freely downloaded at https://webmap.ornl.gov/ogc/dataset-.jsp?ds_id=10023. 230 

The dataset was aggregated (using linear averaging) to the VOD resolution (i.e. 25 km).  231 

2.2.3 Aboveground biomass 232 

We compared VOD with AGB provided by the global map updated from Saatchi et al. (2011) 233 

(Saatchi et al., unpublished results) to assess the relationships of different VOD products to the spatial 234 

variations in aboveground vegetation carbon stocks. The 1-km resolution Saatchi AGB map is 235 

produced from a variety of datasets (e.g., in-situ inventory plots, MODIS and Quick Scatterometer 236 

(QuikSCAT) products). The detailed methodology for generating this dataset is described in Saatchi et 237 

al. (2011). The map obtained in this study (referred as to Saatchi AGB) represents AGB circa 2015 238 

(Carreiras et al., 2017). We selected this dataset as an AGB benchmark map because it has been 239 

widely used as a reference map to obtain calibration coefficients for converting L-VOD to carbon 240 

density (Tong et al., 2019; Fan et al., 2019; Wigneron et al., 2020). In these studies, best correlation 241 

scores between VOD and AGB were generally obtained using Saatchi AGB, confirming the accuracy 242 

of the Saatchi et al. (2011) datasets. In our study, the static Saatchi AGB dataset was aggregated (using 243 

averaging) to 25 km scale to match the spatial resolution of the other datasets. 244 

2.2.4 Ancillary datasets 245 

  Several additional datasets resampled to 25 km were also used to interpret the results. The 246 

MODIS-based global land cover climatology map (Fig. 1) was applied to analyze the VOD inter-247 

comparison results as a function of land cover types. This land cover map is generated by combining 248 
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the 0.5 km MODIS product (MCD12Q1) in the International Geosphere-Biosphere Programme (IGBP) 249 

scheme, as described in Broxton et al. (2014). In addition, daily precipitation from NASA's Global 250 

Precipitation Measurement (GPM) IMERG Late Precipitation L3 1 day 0.1°×0.1° (version 06) was 251 

used to identify the influence of precipitation events on the temporal dynamics of VOD (Liu et al., 252 

2011).  253 

 254 

Fig. 1. Distribution of the IGBP land cover types. The boxes on the map indicate the selected sites 255 

(pixels) to illustrate the main features of the nine VOD products for a variety of vegetation conditions. 256 

3. Methodology 257 

3.1 VOD dataset pre-processing 258 

The accuracy of the retrieved VOD data is generally highly variable depending on topography, 259 

presence of frozen land surface conditions (e.g., ice, snow), radio frequency interference (RFI), and 260 

pixel heterogeneity (e.g., water or urban fractions) (Fernandez-Moran et al., 2017a). Filtering out 261 

potentially spurious observations was an important step for the reliability of this study. Hence, the 262 

following data pre-processing strategies were applied: i) to guarantee a fair inter-comparison, the 263 

assessment of the VOD products was conducted for the same dates for all products, which covers the 264 

period from April, 2015 to December, 2017. This time period of about 2 years and a half was 265 

sufficient to analyze seasonal variations in VOD; ii) the assessment was performed only over pixels 266 

considering statistical error indicators (for example, the p-value to estimate the robustness of the 267 

information provided by correlation coefficients), which will be introduced in the following Section 268 

3.2; iii) applying the following data filtering for all VOD retrievals:  269 
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- RFI. Microwaves emitted by artificial devices on the Earth's surface distort signals received by 270 

satellite sensors, resulting in unreliable VOD retrievals. RFI intensity varies with frequency and 271 

location and its impact varies with the sensor. For instance, at L-band, the SMAP sensor, which is 272 

more recent than SMOS, is equipped with improved RFI filtering techniques; SMOS is more 273 

affected by RFI in Asia and Europe than elsewhere (Al-Yaari et al., 2019). Daily observations 274 

affected by RFI are partly filtered out in this study by using corresponding flags in each dataset as 275 

recommended by the data producers. 276 

 277 

- Frozen soil. Due to the differences in the dielectric properties of water and ice, VOD retrievals are 278 

generally unreliable when the ground is frozen (Moesinger et al., 2020). Hence, we removed 279 

observations where the surface temperature was below 273.15 K. This was done with the available 280 

flags for those VOD datasets, e.g., SMOS-IC provides a flag corresponding to frozen conditions 281 

(Fernandez-Moran et al., 2017a). 282 

 283 

- Other potentially uncertain observations. In this study, we directly used land classification data to 284 

eliminate static water bodies. We also masked all pixels being “heterogeneous” or with a strong 285 

topography. Heterogeneity was determined when the summed fraction of urban, wetland, open 286 

water, and ice was greater than 10% (Fernandez-Moran et al., 2017a). Finally, negative VOD 287 

values, which are physically impossible, were removed.  288 

The above filtering rules were applied independently to all daily-scale VOD retrievals. We then 289 

adopted bilinear interpolation to resample SMAP MT-DCA, AMSR2 and VODCA VOD to the same 290 

projection with a spatial resolution of 25 km. The same method has been utilized in other studies 291 

involving VOD processing (Brandt et al., 2018; Chaparro et al., 2019; Fan et al., 2019; Liu et al., 292 

2018). Finally, the resulting daily VOD data were averaged per pixel to 16-day mean values to match 293 

the temporal resolution of the optical vegetation indices.  294 

3.2 Methods for inter-comparison 295 

A direct validation of the VODs at the global scale is not possible as there is a lack of consensus on 296 

the reference values from in-situ measurements or models to use (Li et al., 2020a).  Several studies 297 

have shown that at the global scale, VOD values not only have a high spatio-temporal consistency with 298 

optical vegetation indices (Du et al., 2017b; Lawrence et al., 2014), but also have a fairly consistent 299 

spatial distribution with vegetation biomass and forest canopy height (Liu et al., 2011; Tian et al., 300 

2016). Hence, comparing VOD values with related variables and proxies is an alternative method to 301 

evaluate the VOD performance which has often been used (Fernandez-Moran et al., 2017a; Li et al., 302 

2020a; Rodríguez-Fernández et al., 2018). In this study, the temporal and spatial correlation between 303 

different VOD products and evaluation (vegetation-related) datasets were assessed using the Pearson 304 
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correlation coefficient (R) (Grant et al., 2016; Lawrence et al., 2014; Li et al., 2020a). We also 305 

considered the probability value (p) as a measure of statistical significance; a level of p < 0.05 was used 306 

here. 307 

To evaluate the ability of VOD to monitor AGB, we directly compared the spatial correlation 308 

between VOD and aboveground carbon density. We used a logistic function to fit the relationship 309 

between VOD and AGB following the method used by Rodríguez-Fernández et al. (2018): 310 

89: = ;
.<�=>(?@A=B) + D                                                  (1) 311 

where AGB and VOD represent aboveground carbon density and vegetation optical depth at each 312 

frequency, respectively, and a, b, c and d are best-fit parameters. The fitted curve gives AGB (Mg ha-1) 313 

as a function of VOD (dimensionless). Thus, the units of a and d are Mg ha-1, while b and c are 314 

dimensionless quantities. Spatial correlation computed between predicted (using the AGB – VOD fit 315 

given in Eq. (1)) and observed AGB is also presented to evaluate the accuracy of the AGB predictions 316 

based on different VOD products. 317 

In addition to the above metric, we adopted the Hovmöller diagram to compare the spatio-temporal 318 

patterns of VOD for the nine products. This diagram is a two-dimensional plot that shows the time–319 

latitude variations of a longitudinally averaged variable (Hovmöller, 1949), highlighting consistency 320 

and differences between the nine VOD products. Moreover, an analysis at the pixel-scale was 321 

conducted to compare the nine VOD datasets for a variety of biomes: seven pixels taking into 322 

consideration relatively homogeneous land cover conditions (measured using the Gini–Simpson index; 323 

Simpson, 1949) and contrasting vegetation types (see Fig. 1 and Table 3) were selected to compare the 324 

VOD time series from different products. Although this comparison was limited to seven locations that 325 

cannot cover the full range of climatic, vegetation, and soil conditions at a global scale, the comparison 326 

at the pixel-scale allowed us to analyze and illustrate some of the main characteristics of the nine VOD 327 

datasets (Al-Yaari et al., 2014; Karthikeyan et al., 2019). 328 

All the above defined statistical indicators were only calculated on common pixels that contained 329 

observations for all nine VOD products. For example, to obtain the spatial R values between VOD and 330 

the evaluation datasets, we used the time averaged values computed only when each of the nine 16-day 331 

mean VOD data were available from the different datasets. However, in a second step, to ensure a good 332 

overview of all datasets in the analysis of the spatial patterns and of the Hovmöller diagram, all 333 

available data has been kept for the different VOD products.  334 

Table 3. Location and type of biome of the seven sites (pixels) selected to compare the different VOD 335 

time series. 336 
 Location Latitude Longitude Land Cover 
1 Congo  2.060° N 18.545° E Evergreen broadleaf forest   
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2 Mexico  25.641° N 106.988° W Mixed forests   
3 Brazil  15.993° S 51.484° W Savannas 
4 South Australia  30.747° S 124.106° E Open shrublands 
5 Nigeria  11.551° N 7.133° E Croplands 
6 South Africa  31.432° S 27.882° E Grasslands 
7 South East US  35.173° N 86.758° W Cropland/natural vegetation mosaic 

4. Results 337 

4.1 Spatial patterns and temporal dynamics at global scale 338 

At a global scale, all VODs show a similar spatial pattern, matching MODIS LAI and canopy 339 

height, with highest VOD values in tropical (e.g., Amazon and Congo basins) and boreal (e.g., Canada, 340 

Northern Russia) forests and low VOD values in sparsely vegetated and dry areas (e.g., Sahara in 341 

northern Africa, desert areas in Australia and central Asia) (Fig. 2a-l). The same patterns can be found 342 

in the AGB map (Fig. 2o). There are a few exceptions and notably the AGB values are much higher in 343 

the tropical and eastern Russia forests than in western Russia, Canada and Alaska forests, while VOD is 344 

about equally high in each of these areas. In terms of absolute VOD values, it can be seen that there are 345 

large differences even for a given frequency. For instance, considering X-band, LPDR V2 VOD is 346 

obviously larger than LPRM V5 and VODCA VOD (by a factor of about 2 in some densely vegetated 347 

regions). Considering C-band, the harmonized VODCA C-VOD value is generally lower than the value 348 

of LPRM V5 C1- and C2-VOD, while the latter two are very similar. As for L-VOD, both versions of 349 

SMOS-IC have lower values than SMAP MT-DCA, especially in eastern Brazil, southern China, and 350 

boreal forests. According to the theoretical principle that propagation of the microwave radiations 351 

decreases with frequency due to increasing extinction effects, the VOD values in the high frequency 352 

band should theoretically be larger than those in the lower frequency bands (Moesinger et al., 2020). 353 

However, the VOD values obtained from the LPRM algorithm do not seem to support this theory; in 354 

particular, over southern Mexico, Amazon and Congo basins LPRM V5 X-VOD has lower values than 355 

LPRM V5 C-VOD (Fig. 2a, e-f). A deeper analysis of this signature is discussed in Section 5.1. Zonal 356 

VOD averages (side plots of Fig. 2) confirm the results presented above. It can be seen that the zonal 357 

averaged distribution of X-, C-, L-VOD and AGB is similar, that is, two obvious high VOD and AGB 358 

peaks can be noted around latitudes of ~ 0°N and ~ 60°N corresponding to regions of dense tropical 359 

and boreal forests. The sharp peak presented by L-VOD for the SMOS and SMAP products correspond 360 

better to the AGB peaks (Fig. 2p) as compared to the X- and C-VOD products which show more gentle 361 

and flat peaks (Fig. 2d and h). These results are in line with the fact L-VOD is more sensitive to the 362 

whole biomass, including stems, while higher frequency VODs are more sensitive to the top of canopy 363 

and to leaf biomass, as found over Africa (Brandt et al., 2018). 364 
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 365 
Fig. 2. Time averaged global maps of VOD from April, 2015 to December, 2017 for a) AMSR2 LPRM V5 X-VOD, b) AMSRU LPDR V2 X-VOD, c) 366 

VODCA LPRM X-VOD, e) AMSR2 LPRM V5 C1-VOD, f) AMSR2 LPRM V5 C2-VOD, g) VODCA LPRM C-VOD, i) SMOS-IC V105 L-VOD, j) 367 

SMOS-IC V2 L-VOD, k) SMAP MT-DCA L-VOD and of m) MODIS LAI (m2/m2), n) lidar vegetation height (m) and o) Saatchi AGB (Mg ha-1).  Side 368 

plots show zonal averages for d) X-VOD, h) C-VOD, l) L-VOD and p) biomass. Note: to ensure a good overview of all datasets after quality control, no 369 

inter-mask is applied here. 370 
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Boxplots of the average VOD values per land cover class show that grasslands and shrublands as 371 

well as croplands have the lowest VOD values, followed by savannas (Fig. 3). In contrast, forests and 372 

biomes with more woody vegetation such as deciduous broadleaf, deciduous needleleaf, and mixed 373 

forests show higher VOD values, which is consistent with previous findings using in-situ biomass data 374 

and AMSR-E VODs over Sahel drylands (Tian et al., 2016). All VODs consistently show that 375 

evergreen broadleaf forest, mainly distributed in the wet tropics, has the highest VOD values. 376 

Interestingly, VODs from different algorithms/products were found to have a wide range of quantile 377 

values over shrublands and grasslands, but a narrow range over croplands despite the fact that planting 378 

density, crop types, and growing season vary across regions, and despite the fact that biomass and 379 

hydraulic behavior varies depending on crop types (Konings et al., 2017). As noted before, for a given 380 

IGBP class, the VOD values should theoretically increase with frequency. However, even if we exclude 381 

the reprocessed VODCA VOD and only compare the VODs obtained from the same algorithm and for 382 

the same mission, this theory is not fully supported. For example, for evergreen broadleaf forest, the 383 

median X-VOD value (~0.93) obtained from AMSR2 LPRM V5 is lower than the values of C1-VOD 384 

and C2-VOD (both ~1.05). There are also variations for observations in the same frequency range: at 385 

L-band, VOD values derived from SMAP MT-DCA are higher than those derived from both versions 386 

of SMOS-IC for all IGBP categories. As observed from the spatial patterns shown in Fig. 2, the average 387 

VOD values of the two versions of SMOS-IC are very similar. It can also be seen that L-VOD values 388 

generally follow the decreasing trend in the AGB values from left to right in the plot, which is not clear 389 

in other VOD products. 390 

 391 
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 392 

Fig. 3. Boxplots of VOD at three frequencies (X-, C- and L-band) and of biomass for different IGBP 393 

land cover classes. The vegetation IGBP classes are sorted by decreasing median values of the AGB 394 

values. The central mark within each box shows the median value, and the bottom and top edges mark 395 

the extent of the 25th and 75th percentiles. Whiskers include 99.3% of all data. EBF = evergreen 396 

broadleaf forest, ENF = evergreen needleleaf forest, MF = mixed forests, DNF = deciduous needleleaf 397 

forest, DBF = deciduous broadleaf forest, WS = woody savannas, CNVM = cropland/natural 398 

vegetation mosaic, S = savannas, C = croplands, SH = shrublands, G = grasslands, BSV = barren or 399 

sparsely vegetated.  400 

VOD varies temporally and spatially, and this variability depends mainly on the season and 401 

latitude (Tian et al., 2018). We also evaluated the ability of all VODs to detect the spatio-temporal 402 

variations in the vegetation cycle, e.g., growth and senescence (Fig. 4). All nine VODs have some 403 

common periodical features. For instance, similarly to NDVI, a distinct seasonal pattern for all products 404 

can be seen in the Northern Hemisphere ( > 35°N) with higher VOD values during the summer months 405 

corresponding to the period of maximum vegetation growth and leaf production (as expected). 406 

However, the amplitude (maximum – minimum) of the VODs in response to seasonal changes in 407 

vegetation structure and production differs. Specifically, the order of this amplitude is X-VOD > C-408 

VOD > L-VOD. In the high latitudes of the Northern Hemisphere (between 45°N and 60°N), all X-409 
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VODs show a clear seasonality comparable to that of NDVI, followed by all C-VODs while all L-410 

VODs present weaker seasonal dynamics. This can be related to the fact that VOD contains more 411 

information on the non-green woody component (e.g. woody stems and branches which are vegetation 412 

components with less seasonal changes than leaves) with decreasing frequency (Grant et al., 2016; Tian 413 

et al., 2016). So, even during leaf development in deciduous forests, L-VOD values are almost 414 

insensitive to leaf density, in agreement with tower-based experiments (Guglielmetti et al., 2007). This 415 

phenomenon is even more pronounced in tropical regions, where all L-VODs are almost constant. 416 

Surprisingly, since June 2015, the C1-VOD and C2-VOD values obtained by AMSR2 LPRM V5 are 417 

globally systematically lower than before and we did not find related literature to point out the specific 418 

reason for this discontinuity, nor if there a reason to think the raw AMSR2 observations changed in that 419 

time period. 420 

 421 
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Fig. 4. Hovmöller diagrams showing the 16-day mean values per latitude for the nine VOD products 422 

at X-, C- and L-bands and for NDVI. Note that frozen soil conditions were removed during the data 423 

pre-processing (Section 3.1), so that there is no-data at higher latitudes in winter. 424 

4.2 Evaluating VOD against MODIS NDVI & EVI 425 

4.2.1 Spatial correlation 426 

The spatial correlation (R) of the nine VODs with mean NDVI and EVI is presented in Table 4, 427 

while the corresponding density plots are shown in Fig. 5 and Fig. S3 (with EVI). When considering 428 

the IGBP vegetation types altogether, all VODs were found to have a slightly higher correlation with 429 

NDVI (Bold items in Table 4; R=0.79-0.89) than with EVI (R=0.73-0.84). This could be related to the 430 

fact EVI is more sensitive to forest cover than to AGB as suggested by Chaparro et al. 2019. The 431 

highest correlation values were obtained between LPDR V2 X-VOD and NDVI/EVI, while SMOS-IC 432 

V105 L-VOD had the lowest correlation with NDVI/EVI, although its value is very close to the other 433 

L-VODs. We found that the slope between VOD and NDVI varies with VODs. The correlation 434 

between VOD and NDVI or EVI is found to be generally higher for higher frequencies (L-VOD < C-435 

VOD < X-VOD), which is related to the fact that high-frequency VOD is sensitive to green vegetation 436 

which is not the case for low frequency VOD (Jones et al., 2013). Moreover, both NDVI and EVI 437 

saturate at moderate L-VOD values (~ 0.5) (Fig. 5 and Fig. S3). Therefore, as we mentioned in the 438 

introduction, only comparing with optical vegetation indices is not enough to evaluate low frequency 439 

VODs (such as L-VOD) that are relatively insensitive to green vegetation and more sensitive to non-440 

green vegetation components. 441 
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 442 
Fig. 5. Density scatter plots showing the spatial relationship between time averaged VOD values for 443 

the nine products at X-, C- and L-bands and NDVI at the global scale. 444 

As the optical vegetation indices saturate over densely vegetated areas (Fig. 5) we listed only the 445 

spatial correlation between VODs and optical indices for relatively short vegetation IGBP types (i.e., 446 

non-forest and non-bare land types) in Table 4. The highest spatial correlation between VOD and 447 

vegetation indices can generally be found within shrublands, while the lowest correlation is for woody 448 

savannas followed by croplands, regardless of frequency or product (or algorithm). For X-VOD, the 449 

same R value ranking (AMSRU LPDR V2 > AMSR2 LPRM V5 > VODCA LPRM) was found over all 450 

short vegetation IGBP land cover types, except for woody savannas where VODCA LPRM has a 451 

higher correlation value than AMSR2 LPRM V5 compared to EVI. AMSR2 C1-band (6.9 GHz) VOD 452 

is generally found to have higher (or comparable) correlations with optical indices than the C2-band 453 

(7.3 GHz) VOD for these IGBP vegetation types. Considering low frequency L-VOD, SMOS-IC V2 454 

has higher or comparable spatial correlation values with NDVI or EVI for all vegetation types than 455 

V105 and SMAP MT-DCA. The spatial correlation (R) values between the three L-VODs and NDVI 456 

(or EVI) were found to be lower than those of C-VOD and X-VOD over grasslands and croplands, 457 

while the R values are comparable over the other IGBP types. SMOS-IC V2 L-VOD presents even 458 

higher correlation values than C-band VODs for savannas, woody savannas and cropland/natural 459 

vegetation mosaic. 460 
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Table 4. Spatial correlation between the nine VOD products at X-, C- and L-bands and NDVI/EVI for 461 

different short vegetation IGBP types.                          462 

Frequency Product 
NDVI EVI 

SH WS S G C CNVM R_total SH WS S G C CNVM R_total 

X-VOD 

AMSR2 LPRM V5 0.81 0.38 0.72 0.72 0.60 0.73 0.87 0.77 0.23 0.71 0.64 0.53 0.65 0.80 

AMSRU LPDR V2 0.83 0.43 0.75 0.74 0.62 0.74 0.89 0.78 0.41 0.76 0.65 0.59 0.74 0.84 

VODCA LPRM 0.79 0.34 0.69 0.71 0.57 0.70 0.86 0.75 0.27 0.69 0.63 0.51 0.63 0.79 

C-VOD 

AMSR2 LPRM V5 C1 0.81 0.36 0.68 0.73 0.59 0.71 0.87 0.77 0.26 0.68 0.64 0.53 0.65 0.80 

AMSR2 LPRM V5 C2 0.82 0.33 0.63 0.71 0.48 0.65 0.84 0.78 0.15 0.62 0.63 0.49 0.56 0.76 

VODCA LPRM C 0.79 0.30 0.56 0.70 0.58 0.71 0.86 0.76 0.27 0.57 0.62 0.52 0.63 0.80 

L-VOD 

SMOS-IC V105 0.78 0.42 0.68 0.55 0.47 0.72 0.79 0.73 0.23 0.67 0.46 0.43 0.70 0.73 

SMOS-IC V2 0.78 0.41 0.69 0.57 0.48 0.72 0.80 0.74 0.27 0.68 0.48 0.44 0.71 0.75 

SMAP MT-DCA 0.77 0.33 0.64 0.52 0.44 0.69 0.80 0.74 0.18 0.65 0.44 0.41 0.69 0.75 

Note: all the correlation coefficients are significant considering the criteria p < 0.05. 463 

Note that optical indices (i.e., NDVI or EVI) saturate when the vegetation cover is dense, so their 464 

applicability for a proper evaluation is limited to high frequency VOD. For a complementary 465 

comparison of VODs considering separately sparse and dense forest areas (i.e., evaluating VOD against 466 

forest canopy height), we refer to the supplementary material. 467 

4.2.2 Temporal correlation 468 

We found that the spatial patterns of the temporal correlation (R) values between VODs and NDVI 469 

or EVI are generally similar for all VOD products, whether they are obtained at the same frequency or 470 

not (Fig. 6 and Fig. S4). LPDR V2 X-VOD presents the highest temporal R values with NDVI or EVI 471 

among the nine VOD products over most of the globe, especially in central and eastern Russia 472 

(R > 0.75, Fig. 6) where most other products show relatively low correlations. More generally, all X-473 

VODs are better correlated with NDVI than C- and L-VODs over most regions of the globe, in 474 

particular in areas where annual rainfall controls vegetation production, e.g., over Australia, southern 475 

Africa, Sahel, eastern Brazil, Mexico, and also in eastern Canada, and eastern Russia. All VODs were 476 

found to have non-significant R values (p > 0.05) over desert areas in central Asia and northern Africa 477 

and in most tropical areas (e.g., Congo and Amazon basins) with a low inter-annual green vegetation 478 

dynamic. The temporal R values between VOD and NDVI (or EVI) increase with frequency (L-VOD < 479 

C-VOD < X-VOD) over most regions of the globe, e.g., eastern Canada, Russia, India, central and 480 

eastern Europe; another fact is that the proportion of pixels with non-significant correlation values is 481 

also decreasing. However, there are some exceptions. For instance, reprocessed VODCA C- and X-482 

VOD have almost comparable performance and both versions of SMOS-IC L-VOD still have higher 483 

temporal R values than AMSR2 LPRM V5 C1- and C2-VOD over eastern Brazil, western Sahel, south 484 

Africa and Australia. Interestingly, all L-VODs show a negative temporal correlation with NDVI or 485 

EVI (Fig. 6 and Fig. S4) in the dry tropical woodlands around the rain forests in the Congo Basin, in 486 

line with previous findings of the decoupling between seasonal changes in L-VOD (stem water content) 487 

and leaf phenology estimated from LAI (Tian et al., 2018, regions (i) and (ii) in their Fig. 3).  488 
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 489 

Fig. 6. Per-pixel temporal correlation (R) for the relationship between 16-day average values of the 490 

nine VODs at X-, C- and L-bands and MODIS NDVI from April, 2015 to December, 2017. Grey areas 491 

correspond to pixels where correlation is not significant (p > 0.05; their percentages are also given in 492 

the figure). White areas denote “no valid data”.  493 

To get an easier overview of the comparison considering the observation frequency, a map 494 

showing which VOD product has the strongest per-pixel correlation with NDVI (and by a difference in 495 

correlation R of 0.1 at least in absolute terms) is provided for each frequency separately in Fig. 7 (and 496 

in Fig. S5 for EVI). Note that the relationship to NDVI can be negative especially for L-VOD in dry 497 

tropical woodlands, as discussed above (Fig. 6g-i). At X-band, the strongest correlations are generally 498 

found for AMSRU LPDR V2 (over 36.24% of the pixels without considering non-significant 499 

relationships), while VODCA VOD shows highest R values over the eastern US and western Russia, 500 

and has a comparable performance with AMSR2 LPRM V5 X-VOD for other regions (Fig. 6). At C-501 

band, VODCA C-VOD presents the highest correlation values over 53.92% of the pixels (Fig. 7b); in 502 

the eastern US AMSR2 LPRM V5 C2 generally shows the highest correlation values. For L-VOD, 503 

SMOS-IC V2 shows generally the highest correlation values (42.44% of the pixels), except in some 504 

Northern Siberian regions, eastern Sahel, Kenya and Miombo woodlands in Tanzania, where stronger 505 

correlation values are obtained with SMAP MT-DCA (32.44% of the pixels). It is worth to note that the 506 

temporal correlation between SMOS-IC V2 and NDVI is generally better than that obtained using 507 

V105 in most regions of the globe, especially over Mexico, eastern Brazil, southern Africa and 508 

Australia (Fig. 6 and Fig. 7). When considering frequencies rather than products (Fig. 7d), it is also 509 

interesting to note that, although X-VOD presents stronger correlation values with NDVI over most of 510 

the globe, L-VOD correlates better with NDVI than X-VOD in some regions (e.g., eastern US, mid-511 

west Brazil and Miombo woodlands (Fig. S5)). This may be caused by the different time lags between 512 

NDVI and VOD at different frequencies. So, more generally, a higher correlation value between NDVI 513 
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and VOD cannot be directly interpreted as the ability of the VOD product to better capture the seasonal 514 

changes of vegetation. More details about the effects of time lags are discussed in 5.2. Similar plots 515 

using MODIS EVI confirm the results presented above for NDVI (Fig. S5) and, as for spatial 516 

correlation, lower temporal correlation values were obtained for the VOD / EVI relationship as 517 

compared to the VOD / NDVI relationship over most of the globe except in some eastern Europe and 518 

Northern Siberian regions (Fig. S6). 519 

 520 

Fig. 7. Maps of VOD products showing the strongest correlation (R) values with MODIS NDVI for a) 521 

X-VOD; b) C-VOD; c) L-VOD; d) All-band VOD for each pixel. The pixels for which the difference 522 

in R is lower than 0.1 in absolute terms are indicated by a blue color. Grey areas correspond to pixels 523 

where the correlation is not significant (p > 0.05). White areas denote “no valid data”. 524 

The highest temporal correlation with NDVI or EVI per IGBP vegetation type (Table S4) is found 525 

for savannas regardless of frequency or product; this case is illustrated by the time series of VOD and 526 

NDVI at the savannas site (Fig. 8c). In general, the VODCA C-VOD has temporal correlation values 527 

comparable (or relatively closer than the other C-VODs) to X-VOD for the listed vegetation types 528 

(Table 4). Excluding this reprocessed product, the temporal correlations between L- and C- VODs and 529 

NDVI (or EVI) were found to be lower than those obtained with X-VOD for these short vegetation 530 

types (including considering the IGBP types altogether), while both versions of SMOS-IC L-VOD and 531 

C-VOD have comparable correlations over most IGBP types except woody savannas and croplands. 532 

Among the three L-band VOD products, SMAP MT-DCA L-VOD shows relatively low temporal 533 

correlations with NDVI and EVI for these short vegetation types, which is reflected in Fig. 8 where the 534 

SMAP L-VOD time series remain relatively stable, even when NDVI has strong dynamics. A deeper 535 

analysis of this is discussed in Section 5.1. SMOS-IC (V2) shows higher temporal correlations than C-536 

band VODs (e.g., AMSR2 LPRM V5 C1- and C2-VOD) for shrublands and savannas (Table S4), 537 



22 

 

which is surprising. This may be due to the fact that L- and C-bands can both penetrate the canopy of 538 

medium-densely vegetated biomes well. 539 

4.2.3 VOD Time series 540 

An analysis of the seasonal dynamics in the different VODs is here conducted based on daily time 541 

series of the nine VOD products along with precipitation and NDVI at seven selected sites (Fig. 8, 542 

Table 3). In general, LPDR V2 X-VOD was found to show smoother daily variations than the other 543 

VOD products over all sites. It is also observed that SMOS-IC V2 VOD has a strongly reduced high 544 

frequency variability compared to its previous version (V105), especially in dense vegetation, for 545 

example over the evergreen broadleaf forest site in the Congo basin (Fig. 8a) and the mixed forests site 546 

over Mexico (Fig. 8b). This is because SMOS-IC adopted in V2 a new constraint method accounting 547 

for the fact that L-VOD has relatively low variations over short time periods (Wigneron et al., 2000). 548 

Consistent temporal patterns were found between most VOD products and NDVI at sites with low 549 

vegetation density, e.g. the savannas site over Brazil (Fig. 8c), the open shrublands site over south 550 

Australia (Fig. 8d) and the croplands site over Nigeria (Fig. 8e). An interesting feature of the time series 551 

is that some relatively small but distinct fluctuations in most VODs can be visually related to rainfall 552 

events; some examples are the December 2015 rainfall event at the savannas site, the November 2015 553 

rainfall event at the open shrublands site, the January 2017 rainfall event for the grasslands site. These 554 

rainfall-related VOD variations could be a result from canopy-intercepted water and/or from changes in 555 

the vegetation water status due to the increase in the soil moisture availability (Feldman et al., 2018; 556 

Saleh et al. 2006). 557 

Generally, for all sites, all VOD products and NDVI show a clear seasonality, i.e. increases during 558 

the vegetation growing season and decreases in the senescence period. However, this pattern is more or 559 

less pronounced depending on the sites and products, and some interesting features over the different 560 

sites are described below: At the evergreen broadleaf forest site, all L-VOD products, LPRM V5 C1- 561 

and C2-VOD, and LPDR V2 X-VOD show more dynamic variations in comparison with the LPRM V5 562 

X-VOD, VODCA X- and C-VOD, and NDVI time series. However, even so, it seems that the seasonal 563 

change in VOD for LPRM V5 C1- and C2-band, and LPDR V2 X-band is less stable than that of the L-564 

VOD products. Such a result was also found over the mixed forests site. These signatures may result 565 

from the saturation effects in the high frequency VOD values (see Section 4.3) in densely vegetated 566 

regions, which in turn lead to increased uncertainty in the retrievals. Over the savannas site in Brazil, 567 

the seasonal dynamics in all VODs and NDVI are very consistent and highly correlated (e.g. R values 568 

between 16-day averaged VOD of SMOS-IC V2 and NDVI is 0.94). 569 

At the open shrublands site, a sudden decrease of AMSR2 LPRM V5 C1- and C2- VOD is 570 

observed at the end of February 2016, which is abnormal (seen as well in the Hovmöller diagrams Fig. 571 
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4). Ignoring this period, over that site, we found that most products could detect the relatively small but 572 

distinct fluctuations of VOD due to increased precipitation, whereas the LPDR V2 X-VOD time series 573 

failed to do so; for instance this can be noted for rainfall events that occurred in December 2016, 574 

January 2017, and March 2017. In the case of the croplands site, all VODs were found to lag with 575 

NDVI by ~ 16 days for LPDR V2 X-VOD and both versions of SMOS-IC L-VODs, and of ~30 days 576 

for the other VODs. A similar behaviour is also observed, at the grasslands site, although less 577 

pronounced. All these results are consistent with Lawrence et al.  (2014), who found that the SMOS L-578 

VOD values (which are more related to the whole vegetation canopy including leaves, stems and 579 

fruits/grains) generally peaked later than the MODIS LAI values (more related to the vegetation green 580 

fraction) with an estimated time difference of about 19 days over crop zones of the USA.  581 

 582 

 583 

 584 

 585 

(d) South Australia (Open Shrublands)   

(e) Nigeria (Croplands)   

(c) Brazil (Savannas) 

(b) Mexico (Mixed Forests)   
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 586 

 587 

 588 

Fig. 8. Time series of the nine VOD products (smoothed with a moving window filter of seven days) at 589 

X-, C- and L-bands at selected sites from April 2015 to December 2017. Each plot also includes NDVI 590 

(shown in magenta dots; axis on the right) and daily precipitation (mm/day, shown in black; axis on 591 

the rightmost side) observed during the same period. Note: for completeness, Fig. 8a used data without 592 

quality control for LPDR VOD. 593 

4.3 Evaluating VOD against aboveground biomass 594 

Density scatter plots of VOD-AGB relationships for the nine VOD products at the global scale 595 

reveal (1) an obvious non-linear saturating relationship between VOD and AGB, and (2) less 596 

pronounced saturation for L-VOD (Fig. 9). The spatial correlation of the relationship between VOD 597 

and AGB is ~ 0.80 for the L-VODs and between 0.61 and 0.67 for X-VODs and C-VODs, respectively. 598 

At X-band, VOD obtained from reprocessed VODCA and AMSR2 LPRM V5 showed a similar 599 

dispersion and distribution shape, and the correlation values with AGB are lower than that obtained 600 

with LPDR V2 (Fig. 9a-c). At C-band, unlike LPRM V5 C1-band and C2-band which have a gradually 601 

smooth slope transition, the reprocessed VODCA VOD has a steep increase near AGB ~ 50 Mg ha-1 602 

(VOD ~ 0.3) (Fig. 9d-f). At L-band, the shape of the density distribution obtained with SMOS-IC V2 603 

has less distortion around VOD ~ 0.3 and AGB ~ 120 Mg ha-1 compared to V105, similar as SMAP 604 

MT-DCA (Fig. 9g-i). Notably, low-frequency L-VODs exhibit a high sensitivity to AGB, with a 605 

smooth relationship and without strong signs of saturation, which is not the case for high-frequency X-606 

VODs and C-VODs. 607 

(f) South Africa (Grasslands)   

(g) South East US (Cropland/natural Vegetation Mosaic)   
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Using the logistic function fitting (Section 3.2), both SMOS-IC V2 and SMAP MT-DCA L-VODs 608 

predict surface AGB very well, with a correlation (R) of ~0.85 computed between predicted and 609 

observed AGB (Fig. 9). Best results were obtained from L-VODs followed by X-band LPDR V2 610 

(R=0.76), which performed better than the other X-band products (i.e., AMSR2 LPRM V5 and 611 

VODCA LPRM X-VOD) and the C-band products. To achieve a fair comparison, we used identical 612 

pixels for the nine products at X-, C- and L-bands, filtering out many pixels corresponding to 613 

evergreen broadleaf forest (EBF) in tropical regions. This filtering was particularly due to the LPDR 614 

V2 X-VOD product, which includes many regions with no data in the tropical area after quality 615 

control (Fig. 2b) (such data gaps do not appear in the other VODs). This filtering leads to an 616 

underestimation in the ability of the other products (e.g., L-VOD) to estimate AGB. So, in a second 617 

step, we removed LPDR V2 from the comparison (the number of pixels increased by 8446 (6.02%) for 618 

the remaining comparisons), and the spatial correlation and prediction ability of the reprocessed 619 

VODCA was found to be slightly lower than LPRM V5 at both X-band and C-band when compared 620 

with AGB (results in parentheses in Table 5 and in Fig. S7). In summary, the sensitivity of all the 621 

VODs to AGB follows the order L-VOD > C-VOD > X-VOD and the correlation between predicted 622 

AGB and observed AGB decreases from R ~ 0.92 to ~ 0.73 as the frequency increases. 623 

 624 
Fig. 9. Density scatter plots showing the spatial relationship between time averaged VOD at X-, C- 625 

and L-bands with AGB values. The mean AGB distribution in bins of VOD are displayed as blue 626 

circles, while solid blue lines are the fits obtained using a logistic function (Eq. 1). R1 represents the 627 
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spatial correlation between VOD and AGB, while R2 represents the relationship between predicted 628 

AGB and reference AGB. All regressions are significant (p-value < 0.001, the best-fit parameters are 629 

shown in Table S5). 630 

All nine VOD products were found to have the highest spatial R values with AGB for shrublands 631 

(Table 5). However, after removing LPDR V2 which has more data gaps, a comparably high R value 632 

for evergreen broadleaf forest was obtained for L-VODs (Table S6). Lower R values for X-VODs and 633 

C-VODs were generally found over forest biomes. At X-band, both LPRM V5 and VODCA showed a 634 

higher R value with AGB than LPDR V2 for evergreen needleleaf forest and grasslands, while it was 635 

the opposite for the other IGBP types. At C-band, LPRM V5 C1-VOD (or VODCA C-VOD) was 636 

found to have the lowest (or non-significant) R value over deciduous broadleaf forest. Interestingly, 637 

the correlation obtained by LPRM V5 C2-band (7.3 GHz) was higher than that obtained by C1-band 638 

(6.9 GHz) over most forest types, while the opposite result was found over the short vegetation types 639 

(Table 5). More generally, for most vegetation types, VODCA VOD shows slightly lower R values 640 

than LPRM V5. For low frequency L-VOD, higher R values were obtained for SMOS-IC V2 vs V105 641 

over most vegetation types, while the R values obtained by both versions of SMOS-IC were lower 642 

than those of SMAP MT-DCA over mixed forests. As expected, due to the improved propagation 643 

capabilities of the microwave radiations as the frequency decreases, the spatial correlation between 644 

VOD and AGB increased with decreasing frequency, and this feature is more obvious in dense forests, 645 

even from X-band to C-band (except VODCA VOD). However, for short vegetation, although the L-646 

band still has the leading edge, results obtained at X-bands are very good and almost comparable to 647 

those obtained with C-VODs, in particular over woody savannas, savannas and cropland/natural 648 

vegetation mosaic. 649 

Table 5. Spatial correlation of the nine VOD products at X-, C- and L-bands with AGB for different 650 

IGBP land cover classes. 651 

Frequency Product ENF EBF DNF DBF MF SH WS S G C CNVM B R_total R_estimate 

X-VOD 

AMSR2 LPRM V5 0.28 0.22 0.36 0.26 0.38 0.66 0.34 0.48 0.56 0.49 0.57 0.34 0.63(0.66) 0.69(0.75) 

AMSRU LPDR V2 0.14 0.19 0.40 0.25 0.41 0.68 0.44 0.52 0.54 0.51 0.63 0.37 0.67 ( × ) 0.76 ( × ) 

VODCA LPRM 0.24 0.16 0.38 - 0.38 0.66 0.33 0.46 0.55 0.45 0.54 0.36 0.61(0.64) 0.68(0.73) 

C-VOD 

AMSR2 LPRM V5 C1 0.31 0.32 0.42 0.28 0.40 0.68 0.40 0.51 0.58 0.51 0.58 0.28 0.66(0.73) 0.73(0.84) 

AMSR2 LPRM V5 C2 0.34 0.36 0.42 0.42 0.44 0.67 0.34 0.46 0.58 0.44 0.52 0.26 0.63(0.71) 0.69(0.81) 

VODCA LPRM C 0.32 0.28 0.34 - 0.35 0.64 0.34 0.39 0.56 0.47 0.54 0.35 0.63(0.68) 0.71(0.78) 

L-VOD 

SMOS-IC V105 0.37 0.59 0.66 0.54 0.18 0.73 0.53 0.63 0.63 0.61 0.73 0.39 0.79(0.86) 0.83(0.90) 

SMOS-IC V2 0.41 0.61 0.63 0.57 0.34 0.72 0.59 0.63 0.64 0.67 0.74 0.39 0.81(0.88) 0.86(0.92) 

SMAP MT-DCA 0.47 0.61 0.66 0.55 0.50 0.73 0.59 0.59 0.65 0.68 0.69 0.41 0.79(0.85) 0.85(0.91) 

Note: [-] indicates that correlation is not significant (p-value>0.05). The number in brackets indicates the comparison result after removing LPDR V2 (the 652 
number of pixels increased from 140302 to 148748 (6.02%)). 653 

5. Discussion 654 

The results presented in this study have implications in two main fields. First, we revealed 655 

specific features and deficiencies in the VOD products that may provide useful hints for the remote 656 
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sensing community dedicated to VOD retrieval improvements. Second, our results may be useful for 657 

the research community more dedicated to the use of the VOD products for vegetation monitoring. 658 

These two main types of implications are discussed in the following sections. 659 

5.1 Possible ways to improve the VOD retrievals 660 

The analysis of the different results obtained in this study revealed specific features or 661 

deficiencies of some products: 662 

(i) For LPRM V5 products, the magnitude of X-VOD < C-VOD over some dense forests (Fig. 2 663 

and Fig. 3) does not meet the theoretical principle that the penetration of microwave radiations within 664 

the vegetation canopy should decrease with frequency due to increasing extinction effects; 665 

(ii) LPDR V2 X-VOD time series failed to detect changes in VOD after rainfall events (Fig. 8) 666 

whereas most VOD products could do so, and overall LPDR V2 X-VOD has smoother daily variations; 667 

(iii) The MT-DCA approach for SMAP has lower correlation with optical datasets (NDVI, EVI) 668 

than SMOS-based L-band products (Fig. 8 and Table S4); 669 

(iv) The spatial correlations between L-VODs and MODIS VIs were found to be lower than those 670 

of C- and X-VODs particularly over grasslands and croplands (Table 4), while all VODs have 671 

comparable performances over the other relatively short vegetation IGBP types. 672 

(v) C- and X-VODs have a comparable or even higher spatial correlation with respect to canopy 673 

height than L-VODs over evergreen needleleaf forest and mixed forests (Table S2). This relative 674 

deficiency of the L-VODs was noted particularly in boreal regions. 675 

All these findings indicate that there is some margin to improve the current VOD products or 676 

algorithms, but also keeping in mind their field of application. Concerning deficiencies (i), the 677 

evaluation/calibration of the model parameters (e.g., roughness (HR) and effective scattering albedo 678 

(ω)) may need to be reconsidered to develop improved products. Considering the calibration of ω, 679 

divergences could be noted in different studies. For instance, Baur et al. (2019) found that ω decreased 680 

slightly with frequency or showed highest values at C-band when retrieving simultaneously VOD and 681 

ω at X-, C-, and L-bands. However, the setting of ω in the LPRM V5 algorithm is reversed (the 682 

calibrated value of ω is increasing with frequency) (Table 2). Uncertainties associated with the 683 

roughness and ω parameters affect all VOD products, not just those from LPRM - there is still no 684 

consensus on how the roughness parameters change with frequency (even though Wigneron et al. 685 

(2017) found these changes are relatively low), and how these changes affect the VOD retrievals at 686 

different frequencies. Indeed, differing assumptions for the values of these ancillary parameters may 687 

also explain the very different magnitudes of the X-VOD values between the LPDR and LPRM 688 
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datasets (although these could also be caused by differing corrections for the effects of open water 689 

bodies and land surface temperature between the datasets). In addition, the HR roughness parameter 690 

may also have a considerable effect on the retrieved values of VOD, SM and ω (Fernandez Moran et 691 

al., 2017a, 2017b; Karthikeyan et al., 2019). For instance, at L-band, changes in roughness can be 692 

partially accounted for by changes in L-VOD, leading to a low impact on the SM retrievals but a 693 

strong impact on L-VOD (Hornbuckle et al., 2017; Parrens et al., 2016).  694 

Issues (ii) and (iii) are both related to assumptions made in the algorithm development. For 695 

instance, the LPDR algorithm assumes a constant dry bare soil emissivity in the VOD retrievals (Table 696 

2), which may balance/ignore the impact of rainfall on the simulated TB in the original τ-ω equation 697 

(Du et al., 2017). Another possible reason is that a 30-day moving median filter is applied to its daily 698 

VOD values (Jones et al., 2011), which also makes its time series smoother than for the other products 699 

in Fig. 8.  As for SMAP, to solve the under-determined retrieval problem of the dual-channel 700 

algorithm (DCA) from its single-angle TB, MT-DCA was developed assuming that VOD is constant 701 

over a time window. However, this assumption is likely to be violated especially over grasslands and 702 

croplands where vegetation growth can be very fast, e.g., the VOD value can increase by ~ 0.2 [-] per 703 

10 days in a cornfield (Jackson et al., 2004), or right after a rain storm, when the relative vegetation 704 

water content increases quickly. Besides, the temporal changes of emissivity are not evenly distributed 705 

across the globe, which may also affect the performance of MT-DCA (Gao et al., 2020b). One 706 

possible way to improve the weak assumption in MT-DCA is to take into account the slow changes of 707 

VOD using a smooth-regularization technique (Gao et al., 2020a). 708 

Issues (iv) and (v) could be partly related to the fact the IGBP classification used here does not 709 

match the study period, and pure biomes are also very rare in the 25 km land classification: in reality 710 

all pixels are more or less heterogeneous and include a variety of IGBP land vegetation types. On the 711 

other hand, it is likely issues (iv) and (v) revealed specific retrieval issues for some ecosystems, e.g., 712 

grasslands, croplands and boreal regions. Possible reasons are briefly discussed in the following. 713 

Grasslands exhibit complex microwave signatures at L-band, due to the presence of a thatched litter 714 

layer of dead grass under the green vegetation in non-plowed areas (Grant et al., 2016; Saleh et al., 715 

2007). Such a thatched litter layer, particularly when it is wet, can have a large effect on the L-band 716 

emission and/or may lead to complex coherent scattering effects within the vegetation layer, for 717 

specific moisture status of the vegetation, litter and soil layers (Grant et al., 2009). These effects may 718 

be lower for high-frequency observations as the latter are more sensitive to the top-of-the-canopy layer. 719 

For croplands, changes in surface roughness due to farming practices may impact the VOD retrievals 720 

(Fernández-Morán et al., 2015; Patton and Hornbuckle, 2012) and this impact may be more 721 

pronounced at L-band than at X- and C-bands for some specific soil/vegetation conditions (Montpetit 722 

et al., 2015).  723 
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In boreal regions, the VOD retrievals may be intricate due to specific features (e.g., open water 724 

bodies and frozen conditions) of the ecosystems in the northern regions. In the latter regions, large 725 

climatic variations support the existence of diverse conifer forests types, with very different tree 726 

densities with specific phenological behaviors, in particular for deciduous needleleaf forest (DNF) 727 

which are prevalent in east Siberia (Crowther et al., 2015). Moreover, both broadleaf and needleleaf 728 

species coexist in most boreal forests, making VOD temporal averaging delicate and temporal 729 

averaging can be only calculated over a limited period, since the data in winter are often affected by 730 

frozen/snow conditions. Furthermore, soils in the boreal regions are characterized by a high content of 731 

organic matter leading to distinct dielectric behaviors, as organic materials differ from the mineral 732 

ones by their complex structure, large specific surface area, high porosity and small bulk density 733 

(Wigneron, et al., 2017). Such an effect is not considered in VOD retrieval algorithms (Table 2) and 734 

particularly in the two L-VOD retrieval algorithms (SMOS-IC and SMAP MT-DCA) which currently 735 

use the Mironov dielectric mixing model (Mironov et al., 2004) based only on the clay fraction. Thus, 736 

adopting a new dielectric model applicable to organic soils in boreal regions may be considered in 737 

future generations of the VOD retrieval algorithms (Mironov et al., 2019). Finally, the RFI impact is 738 

also very important in the boreal regions, especially at L-band (Al-Yaari et al., 2019). 739 

5.2 Limitations of the evaluation approach 740 

It should be noted that there are some limitations in the VOD evaluation made here that should be 741 

considered for a better interpretation of the results in VOD application studies. First, temporal 742 

correlation between VOD and optical VIs (Fig. 6 and Fig. 7) cannot be used as an "absolute" criterion 743 

for judging the quality of the different products as low or even negative temporal R values can be 744 

explained by a temporal lag between different climate and vegetation variables (SM, X/C/L-VOD, 745 

LAI, EVI) in some ecosystems (Jones et al., 2011). For instance, Jones et al. (2014) found that the 746 

period of canopy biomass growth (indicated by X-VOD), maximum water availability and net leaf 747 

flush in the Amazon forests are asynchronous and follow a gradient from west to east, which reveals 748 

the adaptability of the Amazon forests to water and light availability. Similarly, Tian et al. (2018) 749 

found that SMOS L-VOD lags the leaf development by up to ~180 days in dry tropical woodlands, 750 

explaining that L-VOD vs optical VIs showed a negative correlation in some regions such as the large 751 

Miombo woodlands south of the Congo basin (Fig. 6g-i). A time lag of ~19 days between L-VOD and 752 

LAI was also found for crops in the USA (Lawrence et al., 2014), similarly to the site analysis 753 

presented in this study (Fig. 8e) (a time lag was found here for all the X-, C- and L-band VODs).  754 

 Additionally, the proxies we chose, MODIS VIs, Lidar tree height and AGB, although widely 755 

used in VOD evaluation studies (Fan et al., 2019; Liu et al., 2011; Rodríguez-Fernández et al., 2018), 756 

cannot be considered as “truth” (Li et al., 2020a). Moreover, the impact of daily or seasonal changes in 757 
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the vegetation water status as considered in other fields of research by Konings et al. (2019) and Tian 758 

et al. (2018), were not evaluated/removed here when evaluating VOD against annual AGB maps. 759 

Similarly, averaging VOD retrievals to 16-day to analyze its ability to monitor the vegetation 760 

dynamics may also ignore some information observed by daily-scale VOD, e.g., pulse-reserve 761 

paradigm (Feldman et al., 2018). This latter topic would require a specific analysis based on other 762 

proxies of the vegetation water status and water stress (Konings et al., 2019) and will be considered in 763 

more focused future studies. Nevertheless, in spite of their limitations, we think the chosen proxies are 764 

relatively complementary in this study to evaluate VOD retrievals as (i) correlation with MODIS VIs 765 

could be regarded as a criterion more pertinent for short vegetation canopies. We noted too that higher 766 

correlation values in both temporal and spatial terms and for most vegetation types were generally 767 

found between VOD and NDVI as compared to VOD and EVI; (ii) correlations with global tree height 768 

and biomass is considered relevant for woody vegetation types. In the future, triple collocation (TC) or 769 

TC-related methods may also be used to estimate the correlation metric of satellite vegetation optical 770 

products relative to unknown ground truth (Dong et al., 2019; Gruber et al., 2016), once an 771 

independent vegetation optical product is available (e.g., ASCAT active VOD; Liu et al., 2020).  772 

6. Concluding remarks and outlook 773 

In this study, the performance of nine recently developed/reprocessed microwave satellite VOD 774 

products at L-, C- and X- bands for monitoring vegetation features, were assessed and inter-compared 775 

in relation to seasonal change and of sensitivity to biomass at the global scale. The nine VODs were 776 

evaluated against MODIS VIs (i.e., NDVI and EVI), tree height, and AGB across different IGBP 777 

vegetation types. We found that: 778 

(i) X-VODs, particularly in the LPDR version, have a stronger ability than C- and L- VODs to 779 

monitor seasonal changes in the green vegetation components in regions which are not densely 780 

vegetated, and they show higher temporal correlation values (R) with MODIS VIs (median R 781 

values of 0.74 at the global scale). More surprisingly, low frequency L-VOD, particularly the new 782 

SMOS-IC V2 version also shows high temporal correlation values with VIs similar to C-VODs in 783 

some biomes such as savannas (R~0.70). 784 

(ii) L-VODs which have stronger penetration capabilities within the vegetation canopies than high-785 

frequency products, show a high spatial correlation with canopy height, with SMOS-IC V2 and 786 

SMAP MT-DCA showing similar scores at global scale (R ~ 0.90). Moreover, we reveal a good 787 

linear relationship with a low dispersion with respect to tree height, even in tall forests. 788 

(iii)  L-VODs are more sensitive to the non-green vegetation components (trunks and branches) than 789 

the higher frequency (i.e., X- and C-VOD) products, thus showing a high correlation with 790 
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aboveground biomass. Logistic fitting function provided a correlation between predicted AGB 791 

and observed AGB of R ~ 0.91 for SMOS-IC V2 and SMAP MT-DCA L-VOD at a global scale. 792 

Our results suggest that it may be very interesting to analyze the time lags of VODs computed at 793 

different frequencies and vegetation or climate variables, as it may help us to better understand the 794 

adaptability of the vegetation ecosystems to water and light availability and temperature conditions, as 795 

done by Jones et al., (2014) in the Amazon forests. Further studies can now be made, considering the 796 

availability of long-term and improved sequences of L-VODs, that can provide information on forest 797 

dynamics for deeper layers of the canopy, e.g., SMOS-IC L-VOD is now available for 10 years (Table 798 

1). Moreover, VODs can be particularly useful in regions where the optical observations are affected 799 

by atmospheric and aerosol effects and by cloud cover, as VODs are retrieved independently of the 800 

optical-near infrared remote sensing-based VIs and are relatively insensitive to signal perturbation 801 

from sun-sensor illumination conditions and atmospheric effects. Conversely, optical VIs have a 802 

relatively higher spatial resolution and VOD and optical VIs may thus be used complementary. Their 803 

synergistic use could provide a more comprehensive assessment of dynamic vegetation features such 804 

as phenology (Jones et al., 2011) and carbon stocks (Chaparro et al., 2019).  805 

We expect that our findings can contribute to improve the satellite vegetation optical depth 806 

retrieval algorithms by reporting on strengths and weaknesses of current VODs depending on the 807 

vegetation features (leaf development, structure, height and biomass). Our findings could also help 808 

selecting best suited VOD product depending on the applications and contribute to promote the use of 809 

VODs for vegetation monitoring on the subjects of carbon stocks, vegetation dynamics and phenology.  810 

Appendix A. remotely sensed VOD products 811 

A.1 SMOS-IC (V105&V2) 812 

The ESA’s SMOS mission, which was launched on November 2, 2009, was the first L-band 813 

space-borne mission dedicated to monitoring global land soil moisture (Kerr et al., 2010). It is 814 

equipped with a microwave synthetic aperture radiometer (1.4 GHz) which can provide multi-angle 815 

and dual-polarized brightness temperature (TB) observations over a range of incidence angles (~ 0–816 

60°). This observational feature allows to robustly infer properties of the soil and vegetation (i.e., 817 

retrieving SM and VOD) simultaneously from the SMOS data (Wigneron et al., 2017). In this context, 818 

to make efficient use of the TB observations (that is, to be as much as possible independent from 819 

auxiliary datasets), an alternative SMOS SM and VOD product (initially called SMOS-INRA-820 

CESBIO or SMOS-IC) was developed and the first publicly released version was V105 (Fernandez-821 

Moran et al., 2017a, 2017b). SMOS-IC has the main following features:  822 
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i) independent of auxiliary data: contrary to the official algorithms no ECMWF modelled SM data or 823 

MODIS LAI products are used in SMOS-IC; only ECMWF temperature is used currently 824 

(Fernandez-Moran et al., 2017a; Li et al., 2020a); 825 

ii) relative to the baseline SMOS algorithms, it is simpler and avoids uncertainties and errors 826 

associated with inconsistent auxiliary datasets and decision trees which are adopted to characterize 827 

the pixel heterogeneity in the other SMOS algorithms (Wigneron et al., 2018);  828 

iii) it is based on new maps of model parameters for soil roughness and vegetation scattering effects 829 

(Fernandez-Moran et al., 2017a; Parrens et al., 2016). 830 

 All the above features make SMOS-IC products very performant compared to other products 831 

for both SM (Al-Yaari et al., 2019; Dong et al., 2020; Ma et al., 2019; Sadeghi et al., 2020) and VOD 832 

(Rodríguez-Fernández et al., 2018). For instance, in terms of SM, recent inter-comparison studies have 833 

shown that the SMOS-IC SM product is very accurate and close to the performances of SMAP (Al-834 

Yaari et al., 2019), and possibly reaching best performances over dense vegetation canopies (Ma et al., 835 

2019). In terms of VOD, the SMOS-IC VOD products have been found to provide more accurate 836 

relationships than the CATDS (Centre Aval de Traitements des Données SMOS) official SMOS 837 

products to estimate above ground biomass (Rodríguez-Fernández et al., 2018). The SMOS-IC VOD 838 

products have been increasingly used over the very recent years in a number of applications, such as 839 

monitoring vegetation seasonality (Tian et al., 2018), crop modelling (Chaparro et al., 2018), and 840 

carbon cycle (Bastos et al., 2020; Brandt et al., 2018; Fan et al., 2019; Wigneron et al., 2020), etc.  841 

Since the release of the first version V105, several improvements have been applied to the SMOS-842 

IC algorithm, leading to the production of the version 2 (V2), based on a collaboration between 843 

INRAE and China Scholarship Council. A major improvement concept is that VOD has low time 844 

variations over short time periods (Tian et al., 2018; Wigneron et al., 2007), which was not properly 845 

considered in V105. To implement this concept, the optimization processing of the a priori information 846 

on VOD to constrain the retrievals has been modified in SMOS-IC V2: to retrieve VOD at a date t, 847 

previously retrieved VOD values (over a period of 10 days before date t) are used to initialize the first 848 

guess value of VOD (VODini) in the cost function. Readers are referred to Wigneron et al. (Submitted) 849 

for more detailed description of the SMOS-IC V2 retrieval algorithm.  It should be noted that the 850 

improvements in SMOS-IC V2 are obvious for both SM and VOD. As the focus of this study is VOD, 851 

the assessment of SM is not presented here (Li et al., 2020b; Wigneron et al., Submitted). 852 

Both versions of SMOS-IC products are projected on a global Equal Area Scalable Earth Grid 853 

version 2 (EASE-Grid 2.0), and the SM datasets of V105 are available in the Network Common Data 854 

Form (NetCDF) format through CATDS for both ascending (6:00 am) and descending (6:00 pm) 855 

orbits with a spatial resolution of 25 km. In this study, we used both versions of SMOS-IC VOD 856 
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retrieved using observations acquired from the ascending orbits, at early morning, which are less 857 

sensitive to the vegetation water status than observations acquired in the afternoon from the 858 

descending orbits. 859 

A.2 SMAP MT-DCA 860 

The NASA’s SMAP mission, which was launched on January 31, 2015, is the most recent L-band 861 

space-borne satellite for global soil moisture and landscape freeze/thaw state mapping (Entekhabi et 862 

al., 2010). Since the radar instrument (1.26 GHz) failed after about 11 weeks of operation, SMAP has 863 

only relied on the passive radiometer (1.41 GHz) to collect fully-polarized TB operating at a single 864 

incidence angle of 40°. This single-angle configuration limits the robustness of retrievals of both SM 865 

and VOD from a dual-channel algorithm (DCA) as the Horizontal (H-) and Vertical (V-) polarized TB 866 

observations contain some shared information (O'Neill et al., 2015; Konings et al., 2016). After 867 

comparing several algorithms, the driving SM inversion algorithm of the SMAP mission is a single-868 

channel algorithm (Jackson, 1993) based on V polarization (SCA-V), which NDVI data is used as 869 

ancillary information to estimate VOD in the retrieval process (Chan et al., 2013). In contrast, by 870 

considering multi-temporal (MT-) observation information in the DCA approach, a new algorithm 871 

called MT-DCA was developed for simultaneously retrievals of SM, VOD and effective scattering 872 

albedo without using ancillary datasets on vegetation (Konings et al., 2016; 2017). One of the main 873 

assumptions of MT-DCA is that the temporal variations of VOD is slower than that of SM and the 874 

values of VOD are assumed to be almost constant for two consecutive overpasses. Readers are 875 

referred to Konings et al. (2016, 2017) for more information about this algorithm.  876 

The latest SMAP MT-DCA (V4) L-VOD including 9 km and 36 km is available in a binary 877 

format (.mat) on a global EASE-Grid 2.0 through http://afeldman.mit.edu/mt-dca-data. In this study, 878 

we used the 9 km SMAP MT-DCA L-VOD covering about 2 years and a half (see Section 3.1). This 879 

dataset was retrieved from the SMAP Level 1C Enhanced Brightness Temperature Product 880 

(L1C_TB_E) with the descending orbit (6:00 AM) as input.  881 

A.3 AMSR2 (LPRM&LPDR) 882 

The AMSR2, which was launched by JAXA on May 17, 2012, is an improved successor of 883 

AMSR-E onboard GCOM-W1. AMSR2 has similar orbits, bands and local overpass times (1:30 am 884 

for descending orbit and 1:30 pm for ascending orbit) as AMSR-E (Imaoka et al., 2012). In addition, it 885 

also includes a second C-band channel (C2-band, 7.3 GHz), which can be applied to cover areas where 886 

RFI exists in the main C1-band channel (6.9 GHz). In this study we used AMSR2 VOD products for 887 

the descending orbits computed from two reference algorithms (i) LPRM (Land Parameter Retrieval 888 

Model; Owe et al., 2008) and (ii) LPDR (Land Parameter Data Record; Du et al., 2017b). These 889 
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AMSR2 VOD products have the same sample resolution of 25 km and are briefly described in the 890 

following. 891 

In the LPRM algorithm, based on the 0th-order Tau-Omega emission model (Mo et al., 1982), 892 

both SM and VOD are obtained simultaneously from the Microwave Polarization Difference Index 893 

(MPDI) with the use of an analytical retrieval methodology (Meesters et al., 2005). In the present 894 

study, we used the AMSR2 VOD product retrieved from LPRM V5 (Owe et al., 2008), as the latest 895 

version (V6) is not publicly available (van der Schalie et al., 2017). The LPRM V5 retrieval process 896 

used AMSR2 spatial-resolution-matched TB (L1SGRTBR) as input TB data, and the input land 897 

surface temperature was retrieved separately from the AMSR2 Ka-band (36.5 GHz; Holmes et al., 898 

2009). Here, we used the descending VOD products from AMSR2 C1-, C2-, X-band (Vrije 899 

Universiteit Amsterdam and NASA GSFC, 2014).  900 

The LPDR version 2 (V2) is an enhanced data record over prior (V1) LPDR, in which X-band 901 

VOD is obtained by inverting the land-water microwave emissivity slope index (Du et al., 2017b). In 902 

comparison to the previous version (Jones et al., 2010), V2 has advantages in both temporal coverage 903 

and retrieval accuracy, and the main refinements and updates include: i) extended time period from 904 

AMSR-E (June 19, 2002) to AMSR2 (December 31, 2018) by empirically calibrating the AMSR2 905 

multi-frequency TB retrieval algorithm on the same channel as AMSR-E; ii) refined AMSR2 906 

estimation of the daily maximum and minimum surface air temperature by considering terrain and 907 

latitude effects (Du et al., 2015); iii) improved SM retrieval by using a dynamic selection of 908 

vegetation-scattering albedos (Du et al., 2016). We refer readers to Du et al. (2017b) for further 909 

detailed information on this algorithm. The LPDR V2 X-VOD is projected on global EASE-Grid (V1) 910 

with a GeoTIFF format and is freely available via (https://nsidc.org/data/nsidc-0451). 911 

A.4 VOD Climate Archive (VODCA) 912 

The TU Wien’s VODCA product, which combined multiple single-sensor VOD retrievals derived 913 

using LPRM algorithm, is a global daily VOD product with a sampling resolution of 0.25 degrees 914 

(Moesinger et al., 2020). This product was inspired by Liu's long-term (1987–2008) harmonized multi-915 

sensor VOD dataset (Liu et al., 2011) and ESA’s first long-term satellite-based climate data record of 916 

soil moisture within the Climate Change Initiative (ESA CCI SM; Gruber et al., 2019). It is based on a 917 

similar core methodology as Liu et al. (2011) but incorporates new insights into VOD and the 918 

strategies in the production of ESA CCI SM climate data records in recent years (Moesinger et al., 919 

2020). Specifically, unlike Liu et al. (2011), which harmonized all observations to AMSR-E's high-920 

quality C-VOD, this product is a frequency-specific VOD dataset as different frequencies carry 921 

valuable specific information suitable for various applications (Teubner et al., 2019). VODCA 922 

combined VOD observations from AMSR2, WindSat, AMSR-E, Tropical Rainfall Measuring Mission 923 
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(TMI), and Special Sensor Microwave/Imager (SSM/I) into long-term VOD datasets at C-band (period 924 

2002–2018), X-band (1997–2018), and Ku-band (1987–2017). The biases between the VOD values 925 

retrieved from different sensors were eliminated by scaling them to AMSR-E VOD using a new 926 

implementation of the cumulative distribution function matching technique; further detailed 927 

information about the retrieval algorithm are given in Moesinger et al. (2020). In this study, we only 928 

used VODCA X- and C-VOD, as the Ku-VOD products were incomplete in 2017 (no data from 929 

August to December). 930 
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