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ARTICLE OPEN

Historical predictability of rainfall erosivity: a reconstruction
for monitoring extremes over Northern Italy (1500–2019)
Nazzareno Diodato 1, Fredrik Charpentier Ljungqvist 2,3,4✉ and Gianni Bellocchi 1,5

Erosive storms constitute a major natural hazard. They are frequently a source of erosional processes impacting the natural
landscape with considerable economic consequences. Understanding the aggressiveness of storms (or rainfall erosivity) is essential
for the awareness of environmental hazards as well as for knowledge of how to potentially control them. Reconstructing historical
changes in rainfall erosivity is challenging as it requires continuous time-series of short-term rainfall events. Here, we present the
first homogeneous environmental (1500–2019 CE) record, with the annual resolution, of storm aggressiveness for the Po River
region, northern Italy, which is to date also the longest such time-series of erosivity in the world. To generate the annual erosivity
time-series, we developed a model consistent with a sample (for 1981–2015 CE) of detailed Revised Universal Soil Loss Erosion-
based data obtained for the study region. The modelled data show a noticeable descending trend in rainfall erosivity together with
a limited inter-annual variability until ~1708, followed by a slowly increasing erosivity trend. This trend has continued until the
present day, along with a larger inter-annual variability, likely associated with an increased occurrence of short-term, cyclone-
related, extreme rainfall events. These findings call for the need of strengthening the environmental support capacity of the
Po River landscape and beyond in the face of predicted future changing erosive storm patterns.

npj Climate and Atmospheric Science            (2020) 3:46 ; https://doi.org/10.1038/s41612-020-00144-9

INTRODUCTION
Hydrological extremes1–3 are an important component of climate
variability and are partly governed by ocean dynamics4. Holocene
landscapes are generally believed to be more or less in an
equilibrium mode with external environmental driving forces5–7.
However, moderate changes in storminess are accompanied by
changes in hydrological extremes8–10. Storm (rainfall) erosivity, i.e.
the capacity of rainfall to cause soil erosion, depends on these
extremes. Greater awareness on the temporal variability of storm
erosivity is important as it has implications for the understanding
of geomorphological dynamics such as erosional soil degrada-
tion11 and other landscapes stresses like flash-floods and surface
landslides12. In fact, most of the damaging hydrological events
worldwide are associated with strong erosive rainfall13–17. Erosive
storm events usually result in accelerated soil erosion18,19 and
mud floods in urban areas20,21, and the consequences can be
severe in terms of reduced socio-economic sustainability22–24.
An intensification of the hydrological cycle25–27, in particular, is

likely to increase the magnitude of erosive events28,29 as well as storm
runoff extremes30. When the time-lapse decreases between succes-
sive shocks31, the responses of landscapes to changing disturbance
regimes are also increasingly likely to be affected by the linkage of
past damaging hydrological events32. In this way, shifts in erosive
rainfall patterns could have a large impact due to a more powerful
hydrological cycle and a concentration of storms in sporadic and
more erratic and exacerbation events33–36. Despite uncertainties in
total precipitation changes, extreme daily rainfall averaged over both
dry and wet climate regimes show robust increases15 in parts of the
world. In particular, the time-variability of storminess and its unequal
distribution create potential changes in the power of rainfall to drive
erosional processes in a landscape37,38.

Advances have been made in the understanding of the
dynamics of past and future extreme precipitation worldwide26,39.
However, while atmospheric thermodynamics may suffice to
explain how precipitation is started, the deterministic forecast of
the intensity and spatial extent of storms is often inaccurate. This is
mainly a result of the intrinsic uncertainty of precipitation, which
should also be based on probabilistic, statistical and stochastic
descriptions40,41. For the past, the reconstruction of long time-
series of climate extremes supports that naturally climatic
processes are governing the occurrence of erosive rainfall and,
thus, help us to understand present processes and to improve
future projections42. Attempts have been made to relate weather
types or climate indices, to temporally coincident multi-secular
trends in hydrological processes43,44. In this way, the predictive
performance of the trends leaves a small potential for long-term
predictability in rainfall45. Recognising trends may be helpful in
achieving mitigation and adaptation strategies to counter the
possible consequences of abrupt changes in the frequency or
severity of climate extremes. In such respect, research in historical
climatology adds an additional dimension to state-of-the-art
climate model simulation approaches of present-day and future
predicted conditions. Simulations with state-of-the-art climate
models are useful in studying climate changes, but they show
considerable uncertainty in terms of internal hydroclimate
variability46,47 while exacerbating risks associated with extreme
events48, especially for global-to-local estimation of erosion49,50. An
approach to address the uncertainty produced by climate models
is through the so-called stochastic synthesis, based on the function
of auto-covariance of different hydroclimatic processes51, which
directly stimulates the variability, stochasticity and fractality that
seems to be inherent and consistent in geophysical processes41.
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Long documentary records can help relating local and regional
hydrological extreme features to impacts52,53 and climatic
forcing54,55, and in integrated multi-disciplinary approaches to
climatic variability in hazard-exposed areas56,57. Studies in

historical climatology can contribute with valuable new perspec-
tives to the research of landscape preservation in the light of
climate change, especially in terrestrial river systems that are
highly dynamic and regulated by intricate climatic, geomorphic
and ecological processes58. The Po River landscape (PRL; Fig. 1),
whose Po Delta Regional Park was designated in 1999 as a World
Heritage Site by the UNESCO, is the area of Italy where the most
damaging hydrological extreme events are recorded59, and where
the population density of the country is the highest60.
The Po River Landscape (~70,700 km2; Fig. 2A) extends over

large portions of northern Italy, in the transition zone between
Central Europe to the north and the Mediterranean region to the
south. Small portions extend into Switzerland (5.2%) and France
(0.2%). Geographic features change across the three main sectors
of the landscape61. The Alpine sector (45% of the total area) forms
an imposing mountain range to the north, west and south-west,
with a length of ~570 km and a width varying from 25 to 110 km.
The Apennine sector (15% of the total area) consists of western
hilly reliefs and minor reliefs bordering it to the south, with a
length of ~210 km and a width varying from 25 to 90 km. The Po
River Valley (40% of the total area) develops as a strip of territory
that extends along with the two previous sectors over ~490 km
and is 20 to 120 km in width. The basin has a roughly rectangular
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Fig. 1 Perspective of the Po River landscape’s hazard-exposed to
the storms aggressiveness. Perspective of the Po River landscape’s
hazard-exposed to the storms aggressiveness, which develops as a
strip of territory inserted between Alps (to the north and west) and
Apennine (to the south); the winding curve (in dark blue) is the Po
River that within the town of Pavia and surrounded cities and
villages goes up towards the town of Turin and thus the Alps
(arranged from OpenStreet Map https://demo.f4map.com/#camera.
theta=0.9).
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Fig. 2 Environmental setting and rainfall erosivity across northern Italy. Study region in the European context (A) spatial pattern of mean
annual precipitation over the central Mediterranean area (B), and mean annual rainfall erosivity across Po River landscape (orange curve) over
the period 1994–2013 (C) (arranged with Geostatistical Analytics by ArcGIS-ESRI on the ESDAC-dataset, https://esdac.jrc.ec.europa.eu/content/
global-rainfall-erosivity)123.
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shape and with a preferential east–west orientation of the surface
drainage. The hydrographic network is set according to a dendritic
drainage pattern. The highest point is the summit of Mont Blanc
(4810m a.s.l.), at the border between Italy and France, with an
average altitude of ~740 m.
The climate of the study area is rather complex and diversified

given its geographical position and the different morphology of
the sectors composing it. The meteorological conditions of the
PRL largely depend on the fronts formed between polar and
tropical air masses. In particular, different situations are produced
that depend on the cell that is interposed between the subpolar
cold air and the warm Mediterranean air on one side, and
between the damp maritime climate of the west and the dry
continental climate of the east on the other62. In this way, the PRL
climate shows a transitional character between the sub-
continental climate of Central Europe (Alpine and Boreal) and
the Mediterranean one (Warm Alpine)63. The average rainfall over
the PRL is ~1100mm yr−1, while for the mountain and Apennine
sectors the precipitation is ~2000 mm yr−1, and for the lowland
sector it is ~750mm (Fig. 2B). The precipitation regime is
characterised by summer and early autumn maxima (mostly
erosive), and winter and spring minima. The spatial pattern of
mean annual of rainfall erosivity over the PRL shows considerable
values in the central sector (~2000 MJ mm ha−1 h−1 yr−1), and until
4000 MJ mm ha−1 h−1 yr−1, across Valle d’Aosta, northern Piedmont
and the central Alps. In the western Alps, and in some limited areas
over the low river basin, the erosivity is somewhat low, reaching
values between 700 and 1000 MJ mm ha−1 h−1 yr−1 (Fig. 2C).
To obtain actual rainfall erosivity values following the Revised

Universal Soil Loss Equation ((R)USLE) methodology64, careful
precipitation measurements on short time-scales are required. In
its original formulation65, the rainfall erosivity factor (R) is
calculated by an empirical relationship of the measured 30-min
rainfall intensities (R= E·I30). For a given site, the monthly values of
R (Rm) are given by the sum of all the single-storm EI30 values for
the month of interest. The term EI30 (MJ mm h−1 ha−1) is the
product of storm kinetic energy (E), calculated over time steps of
minutes of constant storm intensity, and the maximum 30min-
intensity (I30). This makes it challenging to perform historical
studies since measurements of this type are typically not available
prior to the modern instrumental period. Hence, the only
possibility is offered by modelling approaches, making use of
long-term precipitation inputs. Model-based erosivity estimates
back in time can consequently only be performed at a lower
resolution, both in time (i.e. annual resolution or lower) and space
(i.e. non-locally calibrated)66. For that, parsimonious models can

be used since they overcome the limitations imposed by detailed
models, which are data demanding and inapplicable to historical
times67. In the event satisfactory instrumental input data are
unavailable, data recorded in historical documentary sources can
be used to support rainfall erosivity estimates68.
In this study, we first acquired comprehensive knowledge about

potential drivers of rainfall erosivity in the PRL, where high-
intensity rainfalls occur from June to October due to the
prevalence of thunderstorms during this part of the year in the
region. Autumn precipitation is also triggered by synoptic
disturbances coming from the North Atlantic Ocean, fed by
moisture flukes from the hot surface of the Mediterranean Sea and
maintained by mesoscale processes69. We use these factors
(amounts of precipitation and weather anomalies) to develop a
parsimonious model for reconstructing annual rainfall erosivity
over the period 1500–2019 CE, allowing us to capture a wide
range of climate variability, and identifying landscape-stress
changes. The results of this study complement, for the past five
centuries (1500–2019 CE), the twelve century-long (800–2018 CE)
reconstructions of extreme hydro-meteorological events across
Italy56 and in the Po River Basin70.

RESULTS AND DISCUSSION
Rainfall erosivity model calibration and validation
For the reconstruction of annually resolved storm erosivity (MJ
mm ha−1 h−1 yr−1) for the PRL, we developed and calibrated the
Rainfall Erosivity Historical Model (REHM, Eq. (1)), based on
summer and autumn precipitation data and Gaussian-filtered
values of the reconstructed annual severity storm index sum
(ASSIS(GF)) from Diodato et al.56. For the calibration period
1993–2015 CE, we obtained the coefficients A= 1.968 MJ ha−1

h−1 yr−1, α= 0.32 mm−1, k= 1mm−1, β= 2mm−1 and η= 2 in
Eqs. (1), (2) and (4). With these values, the ANOVA returned a
highly significant relationship (p ~ 0.00) between observed and
predicted erosivity values. The R2 statistic (goodness of fit)
indicates that the REHM explains 74% of the erosivity variability.
MAE (mean absolute error) was equal to 215 MJ mm ha−1 h−1

yr−1, with the KGE (modelling efficiency) equal to 0.71. The
calibrated regression (Fig. 3, Eq. (1)) shows only negligible
departures of the data points from the 1:1 identity line (red line).
The distribution of the residuals (Fig. 3B) is compatible with a

Gaussian pattern, indicating free-skewed errors distribution.
According to the Durbin–Watson (DW) statistics (DW= 2.07,
p= 0.56), there is no indication of serial autocorrelation in the
residuals. For the validation period 1981–1992, the ANOVA
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Fig. 3 Model calibration and validation. Scatter-plot of the regression model (black line, Eq. (1) and red line of identity) vs. actual rainfall
erosivity estimated upon the Po River landscape over the period 1993–2015, with the inner bounds showing 95% confidence limits (power
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p-value < 0.05 means that there is still a statistically significant
relationship between the estimated and actual data. Though the
R2 statistic indicates that the model only explains 50% of the
variability of actual erosivity, the time-variability as a whole is well
reproduced (Fig. 3C). The MAE and the KGE are equal to 290 MJ
mm ha−1 h−1 yr−1 and 0.66, respectively. Summary statistics
(Table 1) for the overall period of available data (1981–2015 CE)
show that the modelled data tend to underestimate the observed
values, with higher means than medians indicating that in both
modelled and actual time-series a few years had a much higher
erosivity than most of the rest. This underestimation indicates that
the model can only capture a part of the extreme values, thus
lowering both the average and the respective percentiles.
Whether the paired Student t-test (t= 2.09) for the difference

between means indicates a marginal significance (p= 0.044), the
Kolmogorov–Smirnov statistic (D= 0.23) for the difference between
distributions did not show any significant difference (p= 0.320)
between the modelled and observed time-series. The variability is
also not statistically different between the observed and modelled
time-series (variance ratio F-test= 1.27, p= 0.052).

Comparison to alternative models
In order to evaluate how much simpler equations are able to
estimate rainfall erosivity, we recalibrated three alternative models:

a 2nd-order polynomial regression67: Z= 1178 − 1.263 · Pann+
0.00159 · Pann

2 (Fig. 4A),
a logarithmic regression: Z= 1974 · LN(Psum+ Paut) − 10,877
(Fig. 4B), and
a multiple linear regression model: Z= 2.886 · (1.400 · Psum+
Paut) − 319 (Fig. 4C),

where Z represents the actual annual rainfall erosivity, Pann the
annual precipitation, Psum and Paut, the summer and autumn
precipitation, respectively.
The scatter-plots in Fig. 4 present a moderate fitting, with R2

around 0.5–0.6, below the value of 0.74 obtained with the RHEM.
Overall, we can conclude that simpler models are less adequate
than RHEM to estimate rainfall erosivity. In particular, the insertion
of ASSIS(GF) as predictor in Eq. (1) brings a significant

improvement in the estimate of annual erosivity, which is difficult
to estimate with simpler solutions.

Long-term reconstruction of rainfall erosivity in the PRL
Though consistent with the general trend of actual erosivity data,
which are representative of the fluctuations of rainfall erosivity in
the PRL, model estimates may not always be adjusted to peaks of
erosivity (e.g. high percentiles in Table 1). It can thus be assumed
that also in past times high erosivity values may have occurred,
which are not entirely captured in the long-term modelled time-
series. This may be related to non-linear dynamics implied by the
Hurst (H) phenomenon71, i.e. the rate of chaos, with H > 0.5
corresponding to persistent Brownian motions (0.5 corresponding
to a random process). The estimated H exponent (R/S method72)
equal to 0.84 (above the threshold of 0.65 used by Quian and
Rasheed73 to identify a series that can be predicted accurately)
reflects the existence of low- and high-intensity storm clusters in
the erosivity series, due to the non-linear climate dynamics
governing the occurrence of rainfall extremes74. However, the
similar distribution and variability to those of the actual data (as
identified during the observational period) support the use of
model estimates to study trends and fluctuations even though in
reality the erosivity peaks may be higher than the modelled ones.
Figure 5 shows the rainfall erosivity evolution over the period

1500–2019 CE. After this reconstruction by means of Eq. (1), the
time-series was analysed to find out possible patterns of rainfall
aggressiveness and to compare contemporary with historical
rainfall erosivity anomalies and their variability. The mean values
of rainfall erosivity over the entire series is 1844 CE MJ mm ha−1

h−1 yr−1. Anyhow, the temporal evolution of annual values
presents a decreasing trend (Fig. 5A, blue curve and related
polynomial), with change points detected in the years 1657 CE
(statistics of Buishand75, and Pettitt76) and 1709 CE (statistics of
Alexandersson77, and Worsley78), during the grand solar (Maun-
der) minimum of 1645–1715 CE79. We refer to 1709 CE hereafter,
as the starting point of a calmer but more changeable period
(Fig. 5A). However, stormy years (with greater erosivity values than
the 98th percentile) may occur during any time period.
In this way, the landscape was subject to considerable stress

either before or at the start of the Maunder minimum (e.g. 1529,
1579 and 1647 CE) and subsequently (1810, 1976 and 2019 CE;
this last with blue dot in Fig. 5A), suggesting that the pressure
exerted by aggressive rainfalls can return at periodical intervals.
The wavelet power spectrum mostly indicates a ~22-year
periodicity (Fig. 5B), which reflects the ~22-year magnetic polarity
cycle of sunspot activity80. Similarly, Zanchettin et al.81 found
solar-type periodicities, suggesting that the sun may be one of the
precursors of hydrological processes in northern Italy, involving
the magnetic activity of sunspots.

Table 1. Descriptive statistics (MJ mm ha−1 h−1 yr−1) of the observed
and modelled time-series of rainfall erosivity (1981–2015 CE).

Rainfall erosivity data Mean ± SD Median Percentiles

75th 90th 98th

Observed time-series 1732 ± 486 1696 2013 2515 2731

Modelled time-series 1597 ± 432 1517 1868 2174 2508
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The periods before and after 1709 CE reveals no similar
patterns. Average values indicate that the period 1500–1708 CE,
with 2098 MJ mm ha−1 h−1 yr−1, was characterised by more
erosive events. The second period, 1709–2019 CE, was instead
affected by a less marked regime of erosivity, with 1682 MJ mm
ha−1 h−1 yr−1 on average, but accompanied by a more change-
able variability pattern (orange curve in Fig. 5A). While a quasi-
parallel trend of erosivity (blue bold curve) and coefficient of
variation values is visible until 1708 CE, the two curves tend to
divergence after this date, the coefficient of variation indicating a
kind of exponential growth, passing from 0.20 to 0.35 between
1709 and 2019 CE (orange curve in Fig. 5A).
This means that the PRL has been exposed to progressively

increasing inter-annual variability of rainfall erosivity, which translates
into greater hazardous landscape stress. As a consequence, disaster-
affected areas have become more vulnerable to climate because
rainfall aggressiveness has become more changeable. This variability
may be caused by different, time-scale-dependent processes (e.g. von
Storch and Zwiers82), with erosivity records showing rapid step-like
shifts in variability occurring over decadal and multi-decadal time-
scales. In particular, extremes may persist and evolve in a more
unexpected way. In fact, during recent decades, the aggressiveness
seems to indicate a recovery in the erosive activity of rains. This trend
is in accordance with a marked increase of erosivity density (the ratio
of rainfall erosivity to precipitation, data not shown), which confirms
an increased inter-annual variability. Though the frequency of
occurrence of daily precipitation was found to decrease over in
Italy83, episodes with shorter duration (from 1 to 3 h) have instead
enhanced the torrential character of seasonal rains83,84. This accords
with what reported by Colarieti Tosti85, which provided sufficient data

to show that in the coming decades the polar vortex will undergo a
phase of expansion towards the south with consequent exacerbation
of the hydrological cycle in the central-western Mediterranean area.
Already in 2019, torrential downpours and extreme flooding have
battered many parts of Northern Italy, e.g. Venice (northeast) saw
record-breaking water levels and the worst flooding in 50 years, and a
viaduct near Savona (northwest) was washed away by a mudslide
(https://tinyurl.com/tt7apoq).
In northern Italy, short-duration extreme hydrological events

have risen over the last 70 years86,87. During 2004–2016, the
highest number of such extreme events was mostly recorded in
the central Piedmont region88. This trend is in agreement with
regional climate simulations predicting increasing precipitation
over the high Alpine elevations in the coming decades, associated
with increased convective rainfall due to enhanced potential
instability by high-elevation surface heating and moistening89. An
increase in the frequency of damaging convective weather events
over hazard-exposed landscapes is also expected over much of
Europe towards the end of the twenty-first century90.
Climate model simulations with the new generation of

Coordinated Downscaling Experiment over Europe (EURO-COR-
DEX91) reveal an increasing trend towards a higher frequency of
river floods extremes across most of Europe with future global
warming. Towards the end of the twenty-first century, the results
from the EURO-CORDEX simulations show no significant change in
annual precipitation over northern Italy, but at the same time an
approximately 20% increase in maximum daily precipitation92. In
order to assess whether there was a change in the frequency
distribution, before and after the change-point of 1709 CE, we
calculated the frequency histograms pattern for both these periods.
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It results in that before the change-point (Fig. 6A), the distribution
of the erosivity was approximately normal, while later (Fig. 6B), the
pattern appears to have a quasi-Poisson distribution.
The mesoscale atmospheric circulation can evolve into landscape-

impact weather systems such as rainfall aggressiveness and related
damaging hydrological events. We improved the understanding of
hydrological extremes, and in turn rainfall erosivity variability, thanks
to the long continuous time-series (1500–2019 CE) developed for the
PRL from climate records. This was performed with an integrated
approach to reconstruct and assess rainfall erosivity for individual
years. It included the collection and evaluation of climate documen-
tary sources and a rainfall erosivity model for the reconstruction of
past climate erosive variability and detection of climate signals. For
the multi-centennial period assessed in this work, the main
conclusions can be summarised as follows:

1. Annual rainfall erosivity across the PRL from 1500 CE
onwards shows alternate stormy and quiet periods, which
may be partially explained by a long-range dependence and
non-linear climate dynamics of the pulsed occurrence of
rainfall extremes. In this time-scale, a change-point is
manifested during the Maunder minimum of solar activity
(1645–1715 CE), with remarkable differences before
(1500–1708 CE stormy period) and after (1709–2019 CE
with a calmer but more changeable period).

2. The generally cold period 1500–1708 CE appears charac-
terised by very stormy years (1529, 1560, 1579, 1610, 1679
and 1703 CE). The following period, until 1809 CE, is a very
quiet phase, in the transition to increased storminess activity
while inter-annual variability is growing.

3. Since ~1810 rainfall erosivity shows substantially dissimilar
dynamics than in the previous periods: precipitation aggres-
siveness remains quasi-stationary, but some sparse storm
erosivity events occur, such as those around the years 1953,
1960, 2001 and, 2014 CE. The way how in the past decades
Mediterranean cyclones have been producing trends of rainfall
extremes remains elusive93, with significant negative trends of
cyclone frequency in spring often compensated by positive
trends in summer94. Raible et al.95 supports an increase of
extreme cyclone-related precipitation, purely thermodynami-
cally driven by the temperature increase and the
Clausius–Clapeyron relation96. An intensification of geo-
hydrological hazard owing to an increased occurrence of
severe rain events during the past three to five decades is
acknowledged for north-western Italy97 and inner hilly areas of
central Italy98. However, no sustained long-term trend was
observed from 1760 CE over northern Italy (including the
Northern Adriatic Sea) in spite of pronounced inter-annual and
inter-decadal variability of storminess99.

It can be remarked that the present analysis at an annual scale
may mask important variations manifesting at finer time-scales.
The methodology applied in this study is, therefore, most
appropriate to address inter-annual and inter-decadal time-scales,
but does not capture daily to seasonal changes which may impact
on hydrology and land conditions and different spatial scales.
However, the presented continuous (provisional) rainfall erosivity
reconstructions over the PRL are of great importance for all kind of

climatic analyses dealing with natural variabilities at decadal and
centennial time-scales. They can be used to study the low and
high-frequency variability, and the characteristics and extremes of
climate at sub-regional scale, and can be compared with model-
produced simulations of natural and forced (external and internal)
variability for the past centuries. The results also imply that
environmental management can use data from long historical
time-series as a reference for decision making.

METHODS
(R)USLE-based actual rainfall erosivity data
Annual (R)USLE-based rainfall erosivity data (1981–2015) were extracted
from a high-resolution database with precipitation measurements taken at
23 locations across the PRL (over 7°–11° E and 44°–46° N), of which 11 are
from the upper west side of the Po River Basin (Susa, Luserna, Boves,
Mondovì, Bra, Turin, Lanzo, Oropa, Varallo Sesia, Vercelli, and Casale
Monferrato, in the Piedmont Region)100, and 12 from the central and lower
east-side (Carpeneto, Milano, Zanzarina, Montanaso Lombardo, Colico,
Parma, Bedonia, Levanto, Albareto, Piacenza, Brescia and Padua). For the
period 1993–2015, (R)USLE-based data were available for the 23
meteorological stations (with updating until 2015)101,102 because the digital
National Agrometeorological Network (https://tinyurl.com/h4juzuv) came
into operation in 1993. For this period, an annual series of erosivity data for
the PRL was obtained by averaging the annual erosivity values determined
in each station located in the basin, and this dataset was used to determine
model parameters (calibration dataset). Prior to 1993, only data from the
western part of the PRL were provided by Piedmont Region stations since
1981100. Such (R)USLE data from the period 1981–1992 were used for an
independent evaluation of model estimates (validation dataset). The
following adjusted erosivity data—AdjRðUSLEÞi—were obtained from the
original R(USLE) data of the set of stations located to the west side of the Po
River Basin, which is basically an extrapolation to the whole of the PRL:
AdjRðUSLEÞi ¼ 1646:7 � LN Pn

l¼1 ðRÞUSLEi þ PAutl þ PSutl
� �� 10; 996, where

the actual erosivity data were summed over the n locations (l) and linearly
combined with average autumn (PAutl ) and summer (PSuml ) precipitation in
each year (i). The coefficients of the regression Y= AdjRðUSLEÞi versus X=
LN

Pn
l¼1ðRÞUSLEi þ PAutl þ PSuml

� �
were obtained for the period 1993–2015,

for which basin-wide (R)USLE data were available (R2 = 0.87).
(R)USLE model103,104 appears in the following form:

1
n

Xn
i¼1

Xmj

k¼1

I30 �
Xm
r¼1

0:20 � 1� 0:72e�0:05iÞ
� �� �

� vr
" #

� k; (1)

where n is the number of recorded years; mj is the number of erosive
events during a given month j; k is the index of a kth single event; vr is the
rainfall volume (mm) during the rth period of a storm, which splits into m
parts; I30 is the maximum 30-min rainfall intensity (mm h−1); ir is the rainfall
intensity during the time interval (mm h−1); Pj is the rainfall amount (mm)
during a given month j.

Numerical and categorical dependent variables
The reconstruction of annually resolved storm erosivity for the PRL was
based on the seasonal precipitation data for a grid covering most of
Europe (30W–40°E/30°N–71°N) from 1500 to 2000 on 0.5° by 0.5°
resolution105. The CRU Global Climate Dataset106 provides an extension
of the seasonal precipitation dataset until 2019. A categorical variable, the
annual severity storm index sum (ASSIS), was derived from Diodato et al.56

to overcome the lack of historical information about rain intensity. ASSIS
was derived from several sources by transforming documentary informa-
tion into a record set to 0 (normal event), 1 (stormy event), 2 (very stormy
event), 3 (great stormy event) and 4 (extraordinary stormy event).

Historical modelling of rainfall erosivity
For the historical reconstruction of annual rainfall erosivity (MJ mm ha−1

h−1 yr−1), we developed the Rainfall Erosivity Historical Model (REHM),
which uses as inputs summer and autumn precipitation data (mm) and
Gaussian-filtered values of the reconstructed ASSIS:

RHEM ¼ A � φ � PAut þ ψ � PSumð Þ; (2)

where the terms φ and ψ are expressed in mm−1 while the scale parameter
A converts the result between brackets in MJ mm ha−1 h−1 yr−1. The

Erosivity Classes Erosivity Classes

A B

4000

Fig. 6 Comparison of frequency pattern. Frequency distribution of
rainfall erosivity for 1500–1708 (A) and 1709–2019 (B).

N. Diodato et al.

6

npj Climate and Atmospheric Science (2020)    46 Published in partnership with CECCR at King Abdulaziz University

https://tinyurl.com/h4juzuv


process term φ is:

φ ¼ αþ k � ASSIS GFð Þ; (3)

where α (mm−1) and k (mm−1) are empirical parameters. The term
φ modulates the autumn erosive precipitation. It equals α when ASSIS(GF)=
0. Since floods occur generally during the autumn season, the Gaussian-filtered
annual storm-severity index sum, ASSIS(GF), was selected as an input co-
variable to capture storm-energy during this season. The interaction between
autumn precipitation and ASSIS(GF) interprets the fact that wet autumn driven
by severe storms increases the risk of erosivity. The multiplicative component
φ ∙ PAut supports the non-linear dependence of rainfall erosivity on
precipitation intensity (e.g. D’Odorico et al.)107. The ASSIS(GF) values from the
original ASSIS time-series were smoothed by applying the low-pass Gaussian
filtering technique described by Gjelten et al.108. Weighting coefficients (wij)
were applied to derive the Gaussian function, ASSIS(GF), for each year j:

ASSISðGFÞ ¼
Pn

i¼1 wij � xiPn
i¼1 wij

with wij ¼ e
� i�jð Þ2
2�σ2 ; (4)

where xi is the data point at year i, σ is the standard deviation, and n is the
number of years in the series. The series of filtered values is established by
letting j run through all data points. To remove variations at shorter time-scales
than approximately 10 data points in the time-series, 11-year window (i – j) and
σ= 3 years were chosen (e.g. Harris et al.109 and Manara et al.110), which is a
way to modulate the impact on rainfall erosivity of the decadal variability and
long-term trend of storm-severity. Summer precipitation is characterised by an
intrinsic high variability. The intensity of summer rainfall is modulated by Eq.
(4), a modified version of the variation coefficient developed by Aronica and
Ferro111:

andψ ¼ βþ SD
MaxðPsÞ

� �η

; (5)

where SD is the inter-seasonal standard deviation and Max(Ps) is the maximum
seasonal precipitation per year (mm). Winter and spring rainfalls have not been
taken into account by the model because rainfall intensity is generally low in
those seasons in northern Italy, with limited erosive force. The concept of the
model is summarised in Fig. 7 following Diodato and Bellocchi112. It shows that
in Northern Italy brief and intense convective storms are more common in
summer while autumn rains (of long duration and low intensity) usually
originate from broad mid-latitude frontal activity. They carry high volumes of
rainwater thanks to orographically enhanced stratiform precipitation
(expressed by high percentiles), which also cause large-scale hydrological
processes like flooding113. These processes are captured in the Rainfall Erosivity

Historical Model by the storm-severity index of Eq. (2). Highly intensive
convective rainfall results instead in the splash-erosivity process interpreted by
the variation coefficient of Eq. (4). In this case, raindrops with high kinetic
energy may cause the local detachment of soil particles114.
To assess the model, statistical analyses were performed with

STATGRAPHICS115, with the graphical support of WESSA116 and
CurveExpert routines117. The mean absolute error (MAE, MJ mm ha−1

h−1 yr−1) was used to quantify the differences between actual and
predicted erosivity values, while determination coefficient (0 ≤ R2 ≤ 1,
optimum) and slope (b= 1, optimum) assessed the linear relationship
between the two series. The Kling–Gupta index (−∞ < KGE ≤ 1118) was
used as an efficiency measure, with KGE >−0.41 indicating that a
model improves upon the means of observations as a benchmark
predictor119. The Durbin–Watson statistic120,121 was performed to test
for auto-correlated residuals because large temporal dependence may
induce spurious correlations122. ANOVA p-values were used to present
the statistical significance of the regression between estimates and the
actual data. Student t-test and Kolmogorov–Smirnov test were applied
to determine whether the two groups (estimates and actual data)
originate from the same population. The variance ratio F-test was used
to test the difference between variances.
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