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Abstract 15 

In the context of organic waste management, near infrared spectroscopy (NIRS) is 16 

being used to offer a fast, non-destructive, and cost-effective characterization system. 17 

However, cumbersome freeze-drying steps of the samples are required to avoid water’s 18 

interference on near infrared spectra. In order to better understand these effects, 19 

spectral variations induced by dry matter content variations were obtained for a wide 20 

variety of organic substrates. This was made possible by the development of a 21 

customized near infrared acquisition system with dynamic highly-resolved simultaneous 22 

scanning of near infrared spectra and estimation of dry matter content during a drying 23 

process at ambient temperature. Using principal components analysis, the complex 24 

water effects on near infrared spectra are detailed. Water effects are shown to be a 25 

combination of both physical and chemical effects, and depend on both the 26 

characteristics of the samples (biochemical type and physical structure) and the 27 

moisture content level. This results in a non-linear relationship between the measured 28 

signal and the analytical characteristic of interest. A typology of substrates with respect 29 

to these water effects is provided and could further be efficiently used as a basis for the 30 

development of local quantitative calibration models and correction methods accounting 31 

for these water effects. 32 

 33 
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1. Introduction 37 

 38 

A growing number of solid organic waste treatment processes such as anaerobic 39 

digestion, composting or pyrogaseification are currently being developed and 40 

industrialized. Usually, organic wastes cover a wide range of physical characteristics 41 

and bio-chemical compositions, making substrate characterization a key issue in 42 

optimizing any of these processes. Recently, near infrared spectroscopy (NIRS) has 43 

been used to offer a fast, non-destructive, and cost-effective waste characterization 44 

system in the anaerobic digestion context (Charnier et al., 2016; Fitamo et al., 2017; 45 

Godin et al., 2015; Lesteur et al., 2011; Mayer et al., 2013; Mortreuil et al., 2018) and 46 

composting context (Albrecht et al., 2008; Galvez-Sola et al., 2010; Vergnoux et al., 47 

2009). However, a freeze-drying step is always required, due to strong interferences in 48 

the near infrared region related to the presence of water in the substrates (Lobell and 49 

Asner, 2002; Williams, 2009). Not only is this drying step cumbersome and impedes any 50 

online application, but the volatilization process that takes place during drying makes 51 

some characteristics (volatile fatty acids) impossible to predict directly. Though some 52 

applications have been developed for the characterization of liquid samples with the 53 

presence of water, these are usually restricted to a limited moisture content range, as 54 
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well as one substrate type (Jacobi et al., 2009; Stockl and Lichti, 2018). In fact, near 55 

infrared spectroscopy is sensitive to numerous factors including the spectrometer lamp 56 

temperature (Sánchez et al., 2003), sample presentation (Sørensen et al., 2014), light 57 

penetration depth (Padalkar and Pleshko, 2015), sample particle size distribution (Igne 58 

et al., 2014), sample temperature (Sánchez et al., 2003), and moisture content (Lobell 59 

and Asner, 2002). All these interfering factors need to be accounted for in order to build 60 

robust quantitative calibrations (Acharya et al., 2014; Zeaiter et al., 2004). Furthermore, 61 

these factors may interact together, leading to more complexity for their correction. 62 

Indeed, for example, a close relationship between moisture effects and temperature has 63 

been outlined (Renati et al., 2019; Wenz, 2018), leading to account for both factors in 64 

conjunction (Hans et al., 2019). 65 

 66 

The effect of moisture content on near infrared spectra has been described for a wide 67 

variety of different matter types including soil (Bogrekci and Lee, 2006; Bowers and 68 

Hanks, 1965; Chang et al., 2005; Knadel et al., 2014; Lobell and Asner, 2002; Sudduth 69 

and Hummel, 1993; Wu et al., 2009), crops (Gaines and Windham, 1998; Gergely and 70 

Salgó, 2003; Peiris et al., 2016; Popineau et al., 2005; Williams, 2009), food (Büning-71 

Pfaue, 2003), plants (Carter, 1991), wood (Giordanengo et al., 2008), pharmaceuticals 72 

(Igne et al., 2014), object models (Reeves, 1995, 1994; Wenz, 2018), and water-73 

dominant systems (Muncan and Tsenkova, 2019). In addition, though not focused on 74 

the analysis of moisture content effects in NIRS, some studies use NIRS to monitor 75 

drying or hydration processes where moisture content varies (Caponigro et al., 2018; 76 

Raponi et al., 2017). However, no study has yet analyzed and compared moisture 77 
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content effects in one comprehensive experiment with a wide variety of biochemical and 78 

physical types. Better understanding water effects and how they relate to the substrate 79 

properties appears as key for the development of robust calibrations models on wet 80 

substrates. Indeed, groups could then be used for building local models, an approach 81 

which has been shown to be successful for BMP prediction on plant biomasses (Godin 82 

et al., 2015). 83 

 84 

The main effect of moisture content variations on NIR spectra usually put forward in 85 

studies relates to the apparition of three broad OH absorbance bands (detailed further 86 

on); but one major effect of water relates to physical effects (ie. changes in scattering). 87 

This is why, when speaking about water effects, an important aspect to have in mind 88 

concerns the measurement mode. For transparent liquid samples such as pure water or 89 

clear suspensions, transmission or transflexion mode is usually preferred (Pasquini, 90 

2003), while for solid samples like powders, diffuse reflection appears most suitable. 91 

When studying large moisture content variations, one substrate may cover various 92 

states from a clear suspension, to a sludge-type material, to a powder when fully dried. 93 

 94 

Because near infrared spectra contain both physical information (such as granulometry) 95 

and chemical information (compound concentration of interest), a pre-processing step is 96 

commonly used to maximize the chemical information in the spectra. This is done by 97 

getting rid of baseline effects due to scattering (referred to additive and multiplicative 98 

effects), as well as using spectral derivation to deconvolve the peaks. A wide variety of 99 

pre-processing techniques are used (Rinnan et al., 2009; Zeaiter and Rutledge, 2009), 100 
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sometimes even in combination (Roger et al., 2020). However, these pre-processing 101 

steps may bring important artefacts (Rabatel et al., 2019) in the spectra when applied 102 

inappropriately. As well, some pre-processing steps such as derivation may deport the 103 

chemical information on shifted peak positions which can make the assignment of 104 

bands more complicated (Oliveri et al., 2019). Nevertheless, such pre-processing steps 105 

will most likely remain necessary when building quantitative models. 106 

 107 

In the context of highly diverse matter types, water effects are expected to vary at least 108 

according to the biochemical characteristics. Exploring such differences in effects is the 109 

aim of this article. A customized air-drying system was built, allowing the simultaneous 110 

monitoring of samples’ moisture content and acquisition of near infrared spectra during 111 

drying. Using this system, spectral variations related to moisture content variations were 112 

obtained for a large variety of substrates. A principal component analysis was used to 113 

explore the various effects. The aim of this global PCA was to identify major groups of 114 

substrates in regards to water effects. This was done by analyzing the scores’ kinetics 115 

of each substrate during drying in relation with the interpretation of each component 116 

loadings using band assignments (Williams and Antoniszyn, 2019; Workman and 117 

Weyer, 2012). Because the aim of the study was to explore the water effects, including 118 

baseline modifications related to scattering effects, data analysis was done on the raw 119 

spectra, without any prior pre-processing steps. 120 

 121 
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2. Materials and Methods 122 

2.1. Sample preparation 123 

The study was conducted on � = 89 substrates chosen to represent a wide range 124 

of organic wastes with different chemical compositions: fruits (banana, apple), 125 

vegetables (carrots, onions, salads, potato), farm wastes (manure, silage, soya meal, 126 

grass), dairy products (cream, yoghurt, butter), meat products (beef, grilled/fresh meat, 127 

fish), as well as food industry materials (sugar, sauces, fried potatoes, wheat flour). In 128 

order to provide control samples with simplified water effects due to limited water 129 

chemical interactions, a selection of packaging materials were also measured (wood, 130 

paper, aluminum, plastic). Because these packaging materials were found dry at their 131 

original state, samples were wetted artificially by adding water at the start of the 132 

experiment. 133 

For each substrate, 50 g of fresh matter (initial mass before drying, ��) were sampled 134 

and manually ground (to obtain a mixture with elements below 1 cm) for further drying 135 

and NIR analysis. To determine dry matter content before and after drying (respectively 136 

��� and ���), two replicate samples of 5-10 g were weighed before and after 48h of 137 

drying in a heat chamber at 105 °C. 138 

2.2. Drying system 139 

The drying system used (Figure 1) was a customized system consisting in a 140 

closed tube loop, with an internal circulation of air generated by a peristaltic pump 141 
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(Masterflex N°77521-47 6-600 RPM, with a head #7018-52) set at 500 RPM 142 

corresponding to a generation of a flow speed of 2000 ml min-1. A strong desiccant 143 

(sodium hydroxide) was used to enable drying of the gas phase and therefore the 144 

substrate: indeed, sodium hydroxide allows to bring the relative humidity at about 8% at 145 

25°C (Greenspan, 1976). The drying circuit was connected to a hermetic spectrometer 146 

sampling cup in which the waste sample was placed. The sampling cup was placed 147 

over the spectrophotometer for continuous automatic near infrared acquisitions; and the 148 

desiccant was weighed continuously using a precision balance (Ohaus Traveler 149 

TA502), to enable the measurement of loss of water during drying. In addition, two 150 

temperature probes were installed on the system to monitor both the temperature inside 151 

the sample cup chamber and the room temperature, for investigation of temperature-152 

induced spectral variations. Before closing the system and launching the acquisition, the 153 

circuit was flushed with nitrogen gas to limit oxidative reactions on the substrates. Using 154 

this drying system, substrates were dried during time periods varying from 12 hours to 155 

72 hours. 156 

2.3. Near infrared spectroscopic acquisition system 157 

During the drying process, a spectrum of the sample was acquired from below 158 

every 90 seconds in reflectance mode over 10000 - 4000 cm-1 (1000 - 2500 nm) range 159 

with a resolution of 8 cm-1 (0.8-5 nm) by a BUCHI NIR-Flex N-500 solids 160 

spectrophotometer with a rotating add-on petri dish and high-performance sample cup 161 

(Buchi, Flawil, Switzerland). Each measurement consisted of an average of 96 scans 162 

acquired while rotating the sample at 360° to enhance sampling representativeness. In 163 
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order to compute reflectance spectra from these measurements, an internal reference 164 

was scanned every 10 minutes. All spectra were transformed into pseudo-absorbance 165 

units using log transformation:  166 

 167 

 	
�����
������� =  −�����(�����������). (Eq. 1) 

2.4. Dry matter content estimation during the drying process 168 

At a given time � during drying, the sample’s water loss on drying ��� (�) in g 169 

was measured by monitoring the weight of the desiccant �!(�). Using the dry matter 170 

content measured before drying ���, the dry matter content of the measured sample 171 

during drying �� (�) was estimated from : 172 

 173 

 ��� (�)  =  �!(�)  −  �!(� = 0), (Eq. 2) 

 �� (�)  =  ��  ×  ��� / ( ��  −  ��� (� = ��%&'() ). (Eq. 3) 

 174 

As mentioned, after drying, dry matter content was measured classically (using 48h 175 

oven-drying at 105°C) to confirm the final obtained dry matter content given by the 176 

system. 177 

2.5. Biochemical characterization of substrates 178 

All the substrates were freeze-dried (using a Cosmos 20k freeze-dryer (Cryotec, 179 

Saint-Gély-du-Fesc, France)) and ground to 1 mm (using an MF 10 basic Microfine 180 

grinder drive (IKA Works, Staufen, Germany)), to be scanned in vials by the same near 181 
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infrared spectrometer. A previously calibrated model (Charnier et al., 2016) was applied 182 

to obtain carbohydrates content, lipid content, nitrogen content, chemical oxygen 183 

demand with respective obtained standard errors of prediction (RMSEP) of 53 184 

mgO2.gTS-1, 3.2*10-2 g.gTS-1, 8.6*10-3 g.gTS-1, 83 mgO2.gTS-1. 185 

2.6. Chemometrics 186 

2.6.1. Data preparation 187 

The dataset consists of 116 000 spectra of 89 substrates covering different dry 188 

matter content ranges. To facilitate interpretation, spectra were then linearly interpolated 189 

on a common dry matter content range from 1% to 95% with a 1% step; but of course 190 

left to NaN values outside the measured dry matter content ranges. Indeed, this allowed 191 

to compare spectra of different substrates at strictly identical dry matter contents. This 192 

resulted in a matrix ) (�, +) with � = 5011 the number of spectra, and + = 1501 the 193 

number of wavelengths. 194 

2.6.2. Data processing 195 

All the data analysis was performed using Python 3.6.5: data wrangling with 196 

Pandas 0.25.1, NumPy 1.17.3, SciPy 1.3.1, principal component analysis with Scikit-197 

learn 0.21.3, and plotting with Matplotlib 2.2.2 (Hunter, 2007; McKinney, 2010; Oliphant, 198 

2010; Pedregosa et al., 2015; van Rossum and Drake, 2009; Virtanen et al., 2019). 199 

 200 

A global principal component analysis (PCA using the singular value 201 

decomposition algorithm) was run with . = 8 components on the raw centered matrix  202 
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 203 

 )/ = ) − �
& 0&), (Eq. 4) 

 204 

with 0& the all-ones square matrix of size n. 205 

 206 

This provided 1 (�, .) matrix of scores and 	 (+, .) matrix of loadings so that  207 

 208 

 )/  =  1	2  + 4, (Eq. 5) 

 209 

with 4 matrix of residuals. 210 

 211 

In some cases, for a given principal component 5 to be analyzed, the raw spectra matrix 212 

deflated by the previous principal components was computed to further support the 213 

interpretation of loadings and scores. 214 

 215 

 )/_!7�('87![:]  =  )/ − 1:<�	:<�2. (Eq. 6) 

 216 

In addition, the first eigenvectors of the within-substrate and between-substrate 217 

variance-covariance matrices were computed (Roger et al., 2005). For this, a matrix = 218 

of size (�, �) was defined, containing the substrate’s membership disjunctive encoding 219 

of the individuals, i.e. >%? = 1 if the individual @ belongs to the substrate A and 0 if not. Let  220 

 221 
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 1 = �
&<�  )/2)/, (Eq. 7) 

 222 

be the full variance-covariance matrix, 223 

 224 

 B = �
&<�  )/2=(=2=)<�=2)/, (Eq. 8) 

 225 

be the between-substrates variance-covariance matrix, 226 

 227 

 C =  1 − B, (Eq. 9) 

 228 

be the within-substrate variance-covariance matrix. 229 

 230 

To evaluate autocorrelation (i.e. information content) in the signals (spectra or loadings), 231 

the Durbin-Watson statistic was used, defined as: 232 

 233 

 DW = ∑ (�% − �%<�)E&%FE / ∑ �% E&%F� , (Eq. 10) 

 234 

with �% and �%<� the successive values in a vector. 235 

 236 

Let � be a matrix of size (n,1) with all the estimated dry matter content (Eq. 3) of each 237 

spectra from ); and �/  its centered matrix version (Eq. 4). To evaluate the zones in the 238 

spectra that are most correlated to dry matter content %, a correlation spectra was 239 
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calculated, which corresponds to Pearson correlation coefficient calculated between 240 

each wavelength column of ) and the dry matter content levels in �. 241 

 242 

 CorrelationSpectra = STUV(WX,Y)
Z[XZ\

, TUV(W],Y)
Z[]Z\

, … , TUV_W`,Ya
Z[`Z\

 b =

 cdeWd
!%'f(WdeWd)X/]!%'f(cdecd)X/]g`

. 

(Eq. 11) 

 243 

 244 

3. Results & Discussion 245 

3.1. Data overview 246 

3.1.1. Biochemical characteristics 247 

Figure 2 presents the predicted characteristics obtained using the near infrared 248 

spectroscopy calibrated model for freeze-dried and ground samples. Samples (detailed 249 

in Section 2.1) cover a very wide variety of biochemical types which is representative of 250 

the variety of inputs possibly used in the anaerobic digestion process, in particular in co-251 

digestion plants. All biochemical characteristics show non-Gaussian distributions, which 252 

will impact the structure of the data. Some extreme samples will impact the variance in 253 

the spectra related to biochemical characteristics. Indeed, for example, the fat content 254 

histogram (Figure 2) clearly highlights two populations: one population with no or very 255 

low fat content levels (<0.2 g.gTS-1) and another population with very high fat content 256 
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levels (>0.7 g.gTS-1). Unfortunately, such structuring is difficult to avoid, as intermediate 257 

compositions with 0.5 g.gTS-1 of fat content level results in biphasic systems. 258 

3.1.2. Dry matter content ranges 259 

Figure 3 presents for each substrate the range of dry matter content over which 260 

spectra were obtained. Contrarily to many studies that focused on limited dry matter 261 

content ranges (70-95%), a very wide range of dry matter content was obtained here (5-262 

95%). However, substrates were not all measured along the same dry matter content 263 

range. Several reasons explain this including differences in the initial dry matter content 264 

(very low dry matter contents like salad_1 or digestate_1, and very high dry matter 265 

contents like butter_2, mayonnaise_1), drying inefficiency related to highly bound water 266 

or intra-cellular water (syrup_1, ketchup_1, banana_2, orangepulp_1) as well as simple 267 

experimental drying interruptions due mostly to electric failures (banana_1, 268 

crustbread_1, sunflowermeal_1, grass_1, weeds_3). Theses latter samples were still 269 

kept in the dataset because they still represented useful spectral variance related to 270 

moisture content variations. Two families of substrates can already be defined from 271 

these drying behaviors: hydrophobic substrates for which low dry matter content levels 272 

are difficult to obtain but are easily dried (like butter, sour cream, mayonnaise), and 273 

hydrophilic substrates in which water is more difficult to extract (like syrup, ketchup, 274 

banana, orange pulp). Within hydrophilic substrates, the final moisture content to which 275 

the substrate was dried relates to numerous factors and their complex interaction such 276 

as the presence of gelling agents like pectin, or water soluble molecules like 277 

saccharides, as well as the interaction of proteins and starch controlling viscosity and 278 

swelling characteristics (Dehnad et al., 2016). 279 
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3.1.3. Experimental conditions 280 

3.1.3.1. Dry matter content estimation validity 281 

Validity of the dry matter content monitoring system was evaluated as illustrated 282 

in Figure 4. Let  283 

 284 

 �%&'(ch  =  �� (� = �@���)  −  ���,  (Eq. 12) 

 285 

the final dry matter content error, corresponding to the difference between the final dry 286 

matter content obtained in the experiment, and the one measured classically (using 287 

oven-drying). Figure 4.1 and  Figure 4.3 both reveal four apparent outliers: dairy fat 288 

sludge, orange pulp, brewery yeast, and sunflower meal with respective dry matter 289 

estimation error values of -5.81 g.g-1, -6.82 g.g-1, -6.98 g.g-1 and -7.63 g.g-1. These 290 

substrates were consequently withdrawn from the dataset in the further analyses. Figure 291 

4.2 shows a good degree of agreement between the measured dry matter and the 292 

estimated dry matter using the system. Figure 4.3 shows no obvious relationship 293 

between the differences and the mean which confirms homoscedasticity of the 294 

residuals. From the boxplot, it seems that the system slightly underestimates the 295 

measured dry matter content (-0.21%) with a standard deviation of ± 2.30% (Figure 4.1). 296 

This appears marginal compared to the large range of dry matter content studied here. 297 

However, this does imply that drawing conclusions on spectral effects due to water 298 

below 2-3% of dry matter content differences should be done carefully. 299 
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3.1.3.2. Temperature variations during drying 300 

Similarly to how it was done on spectra (Eq. 7)(Eq. 8)(Eq. 9), temperature variations can 301 

be separated into two components: the temperature differences observed between each 302 

substrate drying experiment (between-substrates temperature differences), and the 303 

temperature variations occurring during drying for each substrate (within-substrates 304 

temperature differences). As shown in Figure 5.1, the mean temperature measured for 305 

all substrates is 28.3 °C, with a standard deviation of 1.8 °C. Such variations in 306 

temperature between each substrate drying experiment can be explained by the daily 307 

temperature differences from one experiment to another. Though the measurements 308 

were taken in a temperature controlled room, temperature differences were still 309 

observed. 310 

Moreover, as shown in Figure 5.2, the standard deviation of within-substrate temperature 311 

differences observed during drying is 1.15°C. Such sample temperature variations 312 

during drying can be explained by two factors: heating resulting from the spectrometer’s 313 

lamp, and heating resulting from the absorption of water by the desiccant. 314 

Unfortunately, variations of temperature may have a strong impact on the acquired 315 

spectra and may lead to the alteration of quantitative calibration models as many 316 

authors have shown (Campos et al., 2018; Cozzolino et al., 2007; Dvořák et al., 2017; 317 

Golic and Walsh, 2006; Roger et al., 2003; Sun et al., 2020; Wülfert et al., 1998). 318 

Indeed, as temperature rises, proportions of molecular vibrations within each molecular 319 

vibrational energy levels change, which has a direct impact on the absorption of 320 

photons (ie. the spectra). Visually, a horizontal shift of the broad absorbance bands can 321 

be observed in the spectra (Renati et al., 2019), but in fact this relates to vertical 322 
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absorption changes from the originating sub-bands. To have an idea of the magnitude 323 

of such changes, in the case of pure water at 22°C, it has been measured that at 1410 324 

nm (free OH water peak), a +1°C temperature change increased the intensity of the 325 

absorbing peak by +0.8% (i.e. temperature coefficient of 0.8% °C-1) (Cumming, 2013; 326 

Kou et al., 1993). However, as these authors highlighted, because scattering has little if 327 

no temperature dependence, the temperature coefficient applies exclusively on the 328 

absorption coefficient and not on the scattering coefficient. Though these changes could 329 

indeed alter the exact assignment of bands, these changes are very limited compared 330 

to the spectral variations induced by dry matter content changes. 331 

3.1.4. Raw spectra analysis 332 

Figure 6 shows some examples of near infrared spectral evolutions during drying, 333 

representative of the main types of evolution observed (spectral evolutions for all other 334 

substrates are provided in Appendix C). Different effects can be observed. 335 

Firstly, water variation modifies strongly the global pseudo-absorbance level of the 336 

spectra: these baseline shifts probably relate to scattering modifications, as reported in 337 

(Ilari et al., 1988; Isaksson and Naes, 1988). Interestingly, for suspensions, the pseudo-338 

absorbance level increases with water content increase, while for the emulsions (cream, 339 

butter, oil) it decreases. As explained in section 3.2.1, this can be linked to different 340 

refraction modifications according to which component replaces water along drying.  341 

Secondly, for all substrates with intermediate and high moisture content levels (spectra 342 

in dark blue in Figure 6 below), well-known broad absorbance features due to OH 343 

vibrations are observed in the NIR spectra around 1210 nm, 1450 nm and 1940 nm. 344 

These are attributed respectively to the combination of the first overtone of the O-H 345 
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stretching and O-H bending band, the first overtone of the O-H stretching band and the 346 

combination of the O-H stretching band and O-H bending band of water (Luck, 1974; 347 

Muncan and Tsenkova, 2019). 348 

During the drying process (spectra colored from blue to red on Figure 6), new 349 

absorbance features in relation with chemical composition progressively appear (related 350 

to OH vibrations of sugars or fatty acids, NH vibrations of proteins, CH vibrations of 351 

alkanes, the C=C vibration of alkenes, and C=O vibrations of ketones/aldehydes) and 352 

they will be further discussed in section 3.2. Surprisingly, the plastic bag’s dry state 353 

spectra appear flattened, but this corresponds to a scale issue: when water is present, 354 

pseudo-absorbance levels are very high (1.6-2.2), making low moisture content spectra 355 

peaks more flat, but when plotting the plastic bag spectra alone, typical peaks related to 356 

the polymeric structure of heteroatomic bonds present in plastics are well present. 357 

3.2. Principal component analysis 358 

The cumulative total explained variance percentage (not shown here, see Appendix A) 359 

reaches a plateau at the eighth component. Therefore, the analysis of loadings and 360 

scores (Figure 7 and Figure 8) was focused on these first eight components. 361 

3.2.1. Analysis of the first component: 362 

The first component’s loadings of the PCA are fully positive, with a clear slope and no 363 

main absorbance peak can be identified (Figure 7). This suggests that the first 364 

component corresponds to global additive variations of pseudo-absorbance level 365 

unrelated to specific spectral regions (i.e. specific chemical compound). Such 366 

observation is very common in near infrared spectroscopic data. Indeed, the first 367 
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component’s loadings usually resemble the mean spectrum even when data is mean-368 

centered, and relate to light scattering differences between samples mostly due to 369 

physical differences such as granulometry (Ilari et al., 1988; Isaksson and Naes, 1988). 370 

However here, the first component’s loadings do not look like the mean spectrum (that 371 

shows broad peaks at 1450 and 1940 nm) but resemble the first eigenvector of the 372 

between-substrates variance-covariance matrix (plot as a black dotted line in Figure 7). 373 

This suggests that the first component relates to global light scattering differences 374 

observed between substrates.  375 

In the first component’s score plot (Figure 8), substrates with high scores include sugar, 376 

syrup or plastic bag; and substrates with low scores include aluminum, poultry manure 377 

or ramial chipped wood. Indeed, the former substrates exhibit high general pseudo-378 

absorbance levels (~2.3-2.5); while the latter substrates exhibit low general pseudo-379 

absorbance levels (~1.5-1.8). These differences in pseudo-absorbance levels can be 380 

explained by different physical properties of the substrates: sugar in solution is 381 

transparent and reflects less light, aluminum reflects most of light. But the different 382 

chemical compositions also play a role: substrates like sugar, syrup with high contents 383 

in simple carbohydrates absorb more light than manure or wood which contain mostly 384 

complex carbohydrates like cellulose or lignin. Indeed, chemical composition and 385 

physical properties are intrinsically linked, as for example simple carbohydrates are 386 

more soluble and susceptible to form liquid transparent systems; while cellulose and 387 

lignin allow better formation of porous materials with multiple refractive interfaces. 388 

Therefore, the first component relates to global differences in pseudo-absorbance levels 389 

between substrates, both due to physical and chemical differences between substrates. 390 
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In addition, substrates show different scores’ kinetics (Figure 8). Most of the substrates 391 

(like sugar, fish, manure or aluminum) show decreasing scores along drying which 392 

means that the general pseudo-absorbance level decreases along drying. However, 393 

some substrates such as sour cream (but also butter, mayonnaise or greek yoghurt not 394 

shown here) show opposite scores’ kinetics, with increasing scores along drying. These 395 

variations in the global pseudo-absorbance level along drying are due to changes in the 396 

refractive index differences between particles along drying (�i'87j ≃ 1.33, �'%j ≃ 1.0, 397 

�Ujf'&%T TUnoUp&! ≥ 1.4) (Polyanskiy, 2008). For most substrates, as drying occurs, 398 

water is replaced by air, which leads to increased refractive index differences. As index 399 

differences increase in number or intensity, scattering increases, leading to higher 400 

reflectance levels (ie. lower pseudo-absorbance levels). On the contrary, for substrates 401 

containing high levels of fat, water is replaced by fat and not air; leading to lower 402 

refractive index differences (�V7f78's(7 U%( ≃ 1.47) (Polyanskiy, 2008), and therefore, an 403 

increasing global pseudo-absorbance level. In datasets which include these two groups 404 

of substrates, with opposite baseline evolutions in relation with moisture content, scatter 405 

correction pretreatments appear necessary. 406 

Finally, the first component accounts for up to 93% of the total spectral variance. As 407 

determined above, the first component relates to global variations of pseudo-408 

absorbance due to light scattering differences between substrates, both related to their 409 

physical properties and chemical compositions. Moreover, these light scattering 410 

differences are shown to vary along drying. One of the outcomes from this result is that 411 

the main effect of moisture content variations on near infrared spectra is a physical one 412 

: global variations of pseudo-absorbance. More generally, this illustrates how much very 413 
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little specific chemical-related information is present in raw near infrared spectra 414 

compared to physical-related information (Martens et al., 2003). Some authors have 415 

leveraged this observation by focusing on the baseline variations for online prediction of 416 

dry matter content instead of attempting scatter correction pretreatments as commonly 417 

done (Bogomolov et al., 2018). Though this achieved promising results, it was shown 418 

here that these global levels of pseudo-absorbance are highly dependent of chemical 419 

properties; and that applying such a methodology on samples with different biochemical 420 

compositions would not be sufficient. 421 

3.2.2. Analysis of second component: 422 

The second component’s loadings (Figure 7) match well with the first eigenvector of the 423 

within-substrate variance-covariance matrix (plotted as a red dotted line in Figure 7) 424 

which suggests it relates to the main spectral variations that occur during each 425 

substrate’s drying. Three broad peaks can be found at 1209 nm, 1456 nm and 1933 nm 426 

(Figure 7) which are attributed to pure water OH bonds’ broad absorption bands. This 427 

means that the second component relates to the varying expression of pure water 428 

spectrum during drying. In accordance, most scores (Figure 8) show a decrease along 429 

drying, with an overall linear relationship with dry matter content. Unlike in the first 430 

component, high fat content substrates like sourcream also show decreasing scores 431 

along drying.  432 

However, some samples such as sugar (but other samples not shown here like 433 

lactulose, soya sauce or eggwhite) show bell-curve-like-shape (increasing then 434 

decreasing) scores along drying. This can be explained by an excessive level of forward 435 

scattering for these substrates over certain levels of moisture content. Indeed, forward 436 
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scattering is at such a high level, that the measured reflectance is similarly low for all 437 

wavelengths, and therefore, water’s OH absorbance peaks appear low. One outcome of 438 

this observation is that though a linear relationship of the pure water spectrum 439 

component with dry matter content seems valid for many substrates, this remains true 440 

only within a certain range of dry matter content and depends on the substrate’s 441 

scattering properties (ie. how ‘transparent’ the sample is in the near infrared region). 442 

Another important characteristic of these loadings is the positive slope. During drying, 443 

not only the water’s OH absorbance bands height vary according to the moisture 444 

content, but also the general slope of the spectra is modified. As explained, most scores 445 

show a decrease along drying, which means that at high moisture content ranges, the 446 

spectra have higher absorbance levels at high wavelengths (1700 nm and above) than 447 

at low wavelengths (below 1700 nm); and as moisture content decreases these 448 

differences are diminished. These slope modifications are again, due to changes in the 449 

physical structure of the substrates as moisture content varies. 450 

3.2.3. Analysis of third component: 451 

The third component’s loadings show no slope and contain the same two broad peaks 452 

(as in the second component’s loadings) situated at 1454 nm and 1935 nm that can be 453 

attributed to water OH absorbance bands (Figure 7). However, their relative importance 454 

is very different: the peak at 1935 nm is much higher than the peak at 1454 nm 455 

(absolute value of 0.06 compared to 0.01). In Figure 8, two groups of substrates can be 456 

distinguished based on the third component scores: substrates showing positive 457 

decreasing scores along drying (aluminum, ramial chipped wood, or poultry manure); 458 

and substrates showing negative increasing scores along drying (syrup, sugar, steak, 459 



23 
 

fish). Referring to the upper interpretation of the loadings, this means that for the former 460 

group, as drying occurs, the peak at 1935 nm decreases relatively more than the peak 461 

at 1454 nm; while for the latter group of substrates, the peak at 1935 nm decreases 462 

relatively less than the peak at 1454 nm. Such differences in the relative expression of 463 

the two OH broad absorbance bands is related to chemical water interactions as some 464 

authors have suggested (Gorretta et al., 2019). Indeed, the latter group gathers 465 

substrates with high content levels in carbohydrates or proteins which are known to 466 

interact with water through non-covalent H-bonding (Laage et al., 2017). 467 

3.2.4. Analysis of fourth component: 468 

The fourth component’s loadings exhibit two sharp negative peaks at 1407 and 1897 469 

nm related to water OH absorbance bands; as well as several sharp positive peaks at 470 

1211, 1359, 1725, 2166 and 2281 nm (Figure 7), all of them being related to bands 471 

present in organic matter (CH/CH2/NH). For this component, all the substrates exhibit 472 

increasing scores along drying (in particular sugar, steak or sour cream) (Figure 8), with 473 

a clear linear relationship with moisture content (ie. dry matter content). To confirm this, 474 

the Pearson correlation spectra with dry matter content (Eq. 11) was plot (see Appendix 475 

B), and the exact same shape is obtained. This implies that the bands associated to 476 

free water molecules may be formally identified here as the negative peaks in these 477 

loadings at 1407 nm and 1897 nm. 478 

Though the majority of the fourth component’s scores show an increase throughout the 479 

drying process (Figure 8), some samples such as plasticbag, aluminum (or digested 480 

sludge not shown here) show almost flat score evolutions along drying. In these 481 

substrates, organic matter levels are very low, if not inexistent (for aluminum). As near 482 
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infrared photons are absorbed for the most part by organic molecular bonds, it is 483 

expected that the dry matter fingerprint (near infrared spectrum related to dry matter) for 484 

these substrates is nearly inexistent. Though some information may still indeed be 485 

present due to interactions between minerals and OH as some authors in mineral 486 

chemistry have outlined (Meer, 2018), the fingerprint should be very limited. As a 487 

consequence, the fourth component is related to the organic matter content (per fresh 488 

mass) rather than the dry matter content. 489 

Furthermore, though all the rest of the substrates show an increase along drying, the 490 

rates of increase vary along the substrate types. Some substrates such as sugar, syrup, 491 

or sour cream show much larger and steeper variations than others. What gathers these 492 

substrates is their liquid structure. In these substrates, light penetrates more in the 493 

matter, which means that the measured volume is higher, and therefore the absorbance 494 

differences due to the moisture content differences are more marked. 495 

3.2.5. Analysis of fifth component: 496 

The fifth component’s loadings exhibit positive very sharp peaks situated at 1211, 1391, 497 

1727, 1761, 1891, 2306, and 2347 nm (Figure 7) which relate to CH, CH2 and CH3 498 

combination bands. Moreover, the fifth component’s scores separate very clearly the 499 

substrates rich in lipids from the ones rich in simple carbohydrates (Figure 8). Indeed, a 500 

first group constituted by sour cream (and butter, pesto, mayonnaise, or egg yolk not 501 

shown here) exhibits highly increasing scores, while a second group constituted by 502 

sugar, syrup (and ketchup, fermented apple not shown here) exhibits highly decreasing 503 

scores. Between these two groups, a third intermediate group exhibits close-to-zero 504 

fluctuations in the scores: fish, rcw (salad, grass or soya meal not shown here). This 505 
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suggests that the fifth component relates to high fat content substrates, and in 506 

particular, to the CH/CH2/CH3 bonds that are highly concentrated in fatty acids and 507 

triglycerides, and where combination bands are therefore expected to be active. 508 

Furthermore, these two groups of substrates can be easily distinguished even at very 509 

high levels of moisture content (at least for moisture contents up to 60%). This is a 510 

promising outcome in regards to the feasibility of building fat content predictive models 511 

on fresh wastes, as there is still information allowing to distinguish substrates based on 512 

their fat content. 513 

3.2.6. Analysis of sixth component: 514 

The sixth component’s loadings consist of various peaks related to combination bands 515 

such as OH combinations (1594, 1935 or 2092 nm), and CH combinations (2283 and 516 

2317) (Figure 7). Scores exhibit two groups (Figure 8): increasing scores for samples 517 

such as sugar, syrup, (and chocolate powder, or apricot yoghurt not shown here), and 518 

decreasing scores for samples such as fish (chicken not shown here). 519 

What distinguishes these groups chemically is the presence or absence of 520 

carbohydrates, may it be simple carbohydrates (glucose, sucrose) or complex 521 

carbohydrates (starch, cellulose). This suggests that the sixth component is specific to 522 

the expression of carbohydrates. Indeed, the band at 2092 has been specifically 523 

assigned to combinations of OH vibrations in substrates with high content in starch and 524 

cellulose. However, it seems here that such OH combination bands are also expressed 525 

in simpler sugars such as glucose and sucrose (sugar, syrup). One of the outcomes 526 

from this is that the sixth component is a good indicator of the total level of 527 

carbohydrates in a substrate. 528 
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3.2.7. Analysis of seventh component: 529 

The seventh component’s loadings show the same sharp peaks related to CH2 at 1725, 530 

1762 and 2304, and 2347 nm (Figure 7) that were already found in the fifth component 531 

loadings. Therefore, as expected, substrates with high fat content levels like sour cream 532 

(and butter, mayonnaise not shown here) all exhibit high scores (Figure 8). However, the 533 

sugar substrate also exhibits very high scores compared to the rest which implies that 534 

the bands at 1725, 1762, 2304 and 2347 nm are also expressed in sugar spectra for 535 

low moisture content levels (<10%). This suggests that the bands that allowed a clear 536 

separation in the fifth component between sugar and the substrates rich in fat, are the 537 

other bands at 1391 nm and 1891 nm. 538 

Compared with the fifth component’s loadings (Figure 7), two new peaks are identified: a 539 

very sharp peak at 1438 nm, as well as the same OH combination band (2101 nm) that 540 

was assigned to the presence of carbohydrates in the sixth component. As pointed out 541 

by some authors (Williams, 2009), peaks in the 1430 nm region may not always relate 542 

to water’s OH bonds. Indeed, OH is present in many different molecules such as within 543 

hydroxyl groups in alcohols and carbohydrates or carboxylic groups in fatty acids. 544 

However, other authors have assigned the 1438 nm band to be specifically related to 545 

water molecules forming one hydrogen bond (Muncan and Tsenkova, 2019), which is 546 

the case of water molecules surrounding sucrose for example. Further investigations 547 

would be required to be able to conclude on the specific assignment. 548 

3.2.8. Analysis of eighth component: 549 

In the eighth component’s loadings (Figure 7), negative and positive peaks are 550 

positioned on each side of the two main water OH absorbance bands’ maximums: a 551 
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negative peak at 1397 nm and a positive peak at 1467 nm; together with a negative 552 

peak at 1874 nm and a positive peak at 1939 nm. In addition, all substrates show 553 

increasing scores along drying (Figure 8), particularly in the high moisture content range 554 

(60 to 100%). These negative and positive peaks represent shifts of the OH-bond 555 

absorbance bands that occur from lower wavelengths to higher wavelengths along 556 

drying. This shift of the OH-bond absorbance bands has been explained by some 557 

authors by the change of the water population types: from free to bound water (from 558 

free water molecules to water molecules forming dimers, trimers, quadrimers as well as 559 

hydration shells) (Kuroki et al., 2019; Maeda et al., 1995). Of course, at low moisture 560 

content ranges (<20%), most substrates show decreasing scores, which suggests that 561 

such bound water absorbance bands are disappearing as drying occurs. 562 

 563 

3.2.9. Summary of principal components’ meanings in regards to water effects 564 

 565 

It was shown that one of the main effects of water on near infrared spectra concerns 566 

global changes in scattering due to water’s crucial role in biomolecules’ structure and 567 

the resulting physical properties of the substrates. Indeed, the first two components 568 

accounting for almost 99% of the total variance relate to the appearance of global 569 

additive baselines, as well as a multiplicative effect shown by the modification of spectra 570 

slope. As seen, these scattering modifications due to modifications of physical 571 

properties vary according to the chemical composition of substrates. For example, the 572 

presence of fat may form emulsions leading to decreased scattering levels during 573 

drying, while suspensions or porous media formed by solid ligno-cellulosic component 574 
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show increased scattering levels during drying. As well, the presence of soluble 575 

components such as sucrose may lead to transparent solutions with important forward 576 

scattering levels. A complex interaction between chemical composition and physical 577 

scattering properties has therefore been outlined. 578 

Secondly, a strong overlap of water OH absorbance bands has been highlighted and 579 

shown in the second and third components, masking other more minor OH absorbance 580 

bands present in carbohydrates, fatty acids, or alcohols. 581 

Thirdly, two different spectral patterns related to water’s chemical interaction (ie. water 582 

state) were identified in the third and eighth components. Indeed, it was shown in the 583 

third component that small differences between the first overtone absorbance band at 584 

1430 nm and the second combination absorbance band at 1940 nm is associated with 585 

the presence of simple carbohydrates or proteins, both of these molecules forming 586 

important interactions with water. In addition, in the eighth component, as drying occurs, 587 

a shift of the OH absorbance bands from high energy vibrations to lower energy 588 

vibrations was highlighted for most substrates. 589 

Fourthly, the fourth component was found linearly dependent of dry matter content in 590 

most substrates. However, it was shown that the rate of this dependence differed over 591 

substrates depending on its physical properties. 592 

Finally, different components related to the substrates’ chemical composition were 593 

found. Indeed, the fifth, sixth and seventh components differentiated substrates based 594 

on carbohydrates levels, as well as fat content levels. This is promising in regards to the 595 

possibility of developing calibrations on high moisture content substrates as there is still 596 
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information related to the chemical composition: wet substrates spectra are not “just 597 

water spectra”. 598 

4. Conclusion 599 

The present study investigated the complexity of water effects in near infrared 600 

spectroscopy and highlighted the close dependency with the biochemical and physical 601 

characteristics of samples. 602 

A customized acquisition system allowed to obtain a unique dataset comprising NIR 603 

spectral variations related to water content modifications in standard conditions 604 

(ambient temperature/humidity) with no heating nor chemical altering (oxidation, 605 

Maillard reactions). Such water spectral variations were obtained on a very wide variety 606 

of biochemical types (including carbohydrate substrates, protein substrates, fat 607 

substrates as well as packaging materials), allowing a comprehensive analysis of the 608 

water effects in near infrared spectroscopy. 609 

A detailed analysis of the dataset using principal component analysis revealed water’s 610 

complex effects, combining both physical and chemical effects. The fact that water 611 

effects depend both on the dry matter content range and the nature of the substrates 612 

(both biochemical composition, and physical structure) leads to important challenges for 613 

its correction in the context of organic waste characterization. These results encourage 614 

future research on the correction of water effects to focus on the development of local 615 

and clustered approaches, to correct water effects within groups of substrates with 616 

common physical properties and dry matter content range. 617 
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Figures 857 

 858 

Figure 1 - Experimental set-up with: a NIRS acquisition under a quartz rotating sampling cup; a tube circuit with gas 859 

circulation, a desiccant weighed by a precision balance; the whole system is automatized and controlled by RS232 860 

serial connection. 861 

 862 

Figure 2 - Sample characteristics - Histograms of predicted characteristics: carbohydrate content (mgO2.gTS-1), fat 863 

content (g.gTS-1), nitrogen content (g.gTS-1), chemical oxygen demand (mgO2.gTS-1)  864 
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 865 

Figure 3 - Drying data: list of all samples with initial and final dry matter contents obtained in the experiment. Spectra 866 

were obtained within each of these ranges. 867 
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 868 

Figure 4 - Experimental conditions: (1) boxplot of final dry matter content errors; (2) measured vs. estimated final dry 869 

matter content, and (3) difference against mean 870 

 871 

Figure 5 - Experimental conditions: boxplot of between-substrates temperature differences (1) and within-substrates 872 

temperature differences (2) during drying 873 
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 874 

Figure 6 - Raw pseudo-absorbance spectra colored by moisture content (%) for nine substrates representative of the 875 

diversity of biochemical compositions and physical properties (poultry manure, ramial chipped wood / rcw, fish, 876 

cooked steak, sugar, syrup, sour cream, aluminum and plastic bag). 877 
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 878 

Figure 7 - Loadings from PCA of )� (Eq. 4)(Eq. 5) with peak detection and chemical attributions (positive peaks 879 

annotated in black, and negative peaks in grey). Abscissa axis correspond to wavelengths (in nm). Explained 880 

variance percentage of each principal component is given in the title. For each component, the corresponding 881 

eigenvector of the between-substrate variance-covariance matrix (Eq. 8) is plot (in dashed black line), as well as the 882 

corresponding eigenvector of the within-substrate variance-covariance matrix (Eq. 9) (in dashed red line). 883 
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 884 

Figure 8 - Scores from PCA of Xc - All abscissa axes correspond to moisture content (%). Representative substrates 885 

were selected and plotted. See all other substrates scores in Appendix D. 886 

 887 



Graphical abstract 1 

 2 
Graphical Abstract - Summary of methodology: near infrared spectral variations related to moisture content variations are 3 
obtained for a variety of substrates, and application of principal components analysis is used to analyze the effects of 4 
water. The biochemical characteristics of substrates are obtained to investigate water effects’ dependency to chemical 5 
types. 6 




