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Abstract44

In the light of unprecedented change in global biodiversity, real-45

time and accurate ecosystem and biodiversity assessment are becom-46

ing increasingly essential. Nevertheless, estimation of biodiversity us-47

ing ecological field data can be difficult for several reasons. In partic-48

ular, for larger extents, it is challenging to collect data to provide reli-49

able information. Some of these restrictions in Earth observation can50

be avoided through the use of remote sensing approaches. Different51

studies have estimated biodiversity on the basis of the Spectral Varia-52

tion Hypothesis (SVH). According to this hypothesis, spectral hetero-53

geneity over the different pixel units of a spatial grid reflects a higher54

niche heterogeneity, allowing more organisms to coexist. Recently, the55

spectral species concept has been derived, following the consideration56

that the spectral heterogeneity at a landscape scale corresponds to a57

combination of subspaces sharing a similar spectral signature. At a58

local scale, with the use of high resolution remote sensing data, the59

different subspaces can be identified as different spectral entities, the60

so called “spectral species”. Our approach extends this concept over61

wide spatial extents and to a higher level of biological organisation.62



We applied this method to MODIS imagery data over Europe. Ob-63

viously, in our case, a spectral species from MODIS is not related to64

a single plant species in the field but rather to a species assemblage,65

habitat, or ecosystem. Based on such spectral information, we pro-66

pose a straightforward method to derive α- (local relative abundance67

and richness of spectral species) and β-diversity (turnover of spectral68

species) maps at wide geographical extents.69

Keywords: biodiversity; ecological informatics; modelling; remote sens-70

ing; satellite imagery.71

1 Introduction72

1.1 A quest for robust and reproducible α- and β-73

diversity measurement74

The variability of life on Earth is heterogeneously distributed across the75

planet; ecologists and biogeographers have long been questioning about the76

potential causes of biodiversity distribution. Nowadays, the speed of changes77

and the uncertainty about consequences thereof is urging the whole scientific78

community worldwide. The perception of these processes translates into the79

need to use standardized methods for biodiversity assessment and monitoring80

in order to gain a better understanding and identify generalities.81

A diatribe is still open about what are the most reliable metrics to as-82

sess biodiversity (see Jurasinski et al. (2009); Tuomisto (2010). Until now,83

no consistent definition exists and also the definition of the CBD (1992,84

https://www.cbd.int/convention/text/) is more confusing than clear:85

“Biological Diversity means the variability among living organisms from all86

sources, including, inter alia, terrestrial, marine and other aquatic ecosystems87

and the ecological complexes of which they are part; this includes diversity88

within species, between species and of ecosystems.” Biodiversity obviously89

includes quantitative (number of species, alpha-diversity, gamma-diversity),90

qualitative (turnover, composition, beta-diversity) and functional (complex-91

ity, trophic levels, ecosystem services) aspects. To sum up our understanding92

on the term biodiversity (i.e. biological diversity) and to base our study on a93

more general and consistent concept, “biodiversity characterizes qualitative,94

quantitative and functional aspects of biotic units at various levels of orga-95

nization in a concrete or abstract context, and at a given temporal or/and96

spatial scale” (Beierkuhnlein, 2003). In consequence, species richness and97

metrics that are based on it are very important, but they represent just one98
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aspect of biodiversity. The total number of species co-occurring in a given99

community (α-diversity) is nested within the total number of a species pools100

occurring for instance at the landscape level (γ-diversity). But the reduc-101

tion of biodiversity to the perspective of inventory and proportion would not102

cover spatial gradients in composition and species turnover (differentiation,103

β-diversity) (Jurasinski et al., 2009; Baselga, 2012) and also ignores func-104

tional diversity (e.g. functional traits), which is the main driver of ecosystem105

functioning.106

In general, β-diversity is a crucial measure, since, given the same lo-107

cal richness of different sites (α-diversity), it directly considers the turnover108

among them. As an example, let A and B be two sampling sites with 10109

different species each. If all 10 species are fully shared, the total γ-diversity110

would equal 10 species, while if all 10 species are completely different from111

one site to the other (high turnover, high β-diversity) the total diversity of112

the whole area based on the two focal sites would double.113

It would then be interesting to understand how β-diversity originates,114

investigating how species composition differs among sites. In fact, species115

composition could be related to environmental conditions, or it could ran-116

domly fluctuate. A generally accepted hypothesis suggests that β-diversity117

might change as a function of species types living in a certain community. For118

instance, β-diversity should be small when communities are dominated by a119

limited number of competitive species; this is recognized as the null hypoth-120

esis and it entails a uniform distribution in species composition (Legendre et121

al., 2005).122

The β-diversity concept is mainly reflecting the environmental hetero-123

geneity between sites and thus within a given larger area that contains sev-124

eral of the focal study sites. Heterogeneity is in fact highly associated with125

a high degree of biological diversity since heterogeneous sites offer a diver-126

sity of ecological niches (sensu Elton (1958)) that can be occupied if the127

species pool offers the respective ecological diversity to address these niches128

(Gaston, 2000; Rocchini et al., 2010). Furthermore, since β-diversity can129

be described as the spatial turnover among sites within a given region, it130

captures a fundamental feature of the spatial pattern of biodiversity.131

In some cases, spatial turnover can result from local extinction processes132

that hit certain species more than others and enhance the dissimilarity be-133

tween sites without dispersal (Steinitz et al., 2006). This is the case in134

highly fragmented landscapes where dispersal is limited (Hobbs et al., 2006).135

Even stochastic processes (sensu Moran (1950) and Clark (2008)) may en-136

hance β-diversity in previously homogeneous ecosystems. For instance, sud-137

den fragmentation (Alados et al., 2009) can lead to disfunctional source-sink138

metapopulations with intrinsic influences on the degree of spatial (and ge-139
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netic) connectivity of organisms (Waples and Gaggiotti, 2006), resulting in140

the local loss of sink populations. However, in most situations, the spatial141

turnover and therefore the dispersal of species between sites (metapopula-142

tion and metacommunity dynamics) is linked to the distance among sites.143

Strictly speaking, the similarity between two sites decays with increasing dis-144

tance between them (Rocchini, 2007), a process also known as the distance145

decay in similarity or the Tobler’s first law of geography (Tobler, 1970).146

Hence, modelling the distribution of β-diversity in space is based on soft-147

ening the role of individual species, which are not even completely described148

at wide geographical scales, for the benefit of having a more abstract proxy149

for ecosystem patterns and processes. Such process can lead to efficiently150

monitor and further preserve entire ecosystems, as it has been established by151

the Aichi Biodiversity Targets (https://www.cbd.int/sp/).152

In general, an enormous effort from ecologists is necessary in order to153

collect reliable data on biodiversity. A pioneering example is the public154

database of the Global Biodiversity Information Facility (GBIF, https:155

//www.gbif.org/). GBIF is a network funded by the world’s governments156

which contains almost 41.000 databases of species occurrences spread out157

across the world. The huge amount of data accessible and the different tech-158

niques now available to analyze them should facilitate biodiversity assessment159

and monitoring. Unfortunately, although it would be possible, in principle,160

to use these data to make reasonable assumptions on the biodiversity at wide161

spatial extents, there are several limitations due to their quality (Maldonado162

et al., 2015). The errors that usually rise are due to: (i) poor quality in get-163

ting exact geographic coordinates of the sampling sites; (ii) wrong taxonomic164

identification with poor quality control; and (iii) difficulties in proving a re-165

liable random sampling with large areas being poorly covered. Furthermore,166

these data appear as point data and usually grids are used in order to syn-167

thesize diversity metrics. These data mostly come from presence-only data168

without any link to relative abundance, dominance, biomass or cover, which169

would be reflected in remote sensing. Finally, GBIF data are inadequate for170

local estimates of biodiversity as they do not consider co-occurrence data.171

Indeed, and contrary to recent databases at the community level such as172

the European Vegetation Archive (EVA) (Chytry et al., 2016) or the sPlot173

initiative (Bruelheide et al., 2019), GBIF does not provide information on174

species co-occurrence which is very problematic for biodiversity assessment175

and monitoring. Despite the disadvantages that come from the use of public176

databases, there is some benefits in the use of such data. First of all, there177

is a huge amount of data collected and provided by citizens and research178

institutions available in the GBIF database when compared to the data that179

could be collected locally, resulting in a huge saving of time and costs. More-180
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over, GBIF data are standardized to the same format and therefore ready to181

use.182

To overcome the issues due to the collection and availability of in situ183

ecological data, remote sensing imagery has become more and more impor-184

tant and is now considered a reliable tool to assess and monitor biodiversity185

(Tuanmu and Jetz, 2015).186

1.2 The spectral species concept187

Remote sensing based approaches have proven to be useful modelling tech-188

niques to detect the variability of biodiversity in space and time across scales189

of biological organisation, at different grains (spatial resolutions) and extents190

(Rocchini et al., 2013). Airborne sensors have even been used to detect and191

map single species distributions (Skorownek et al., 2017a), even the most192

tiny and inconspicuous ones such as Campylopus introflexus, a moss species193

which is highly invasive in Europe (Skorownek et al., 2017b).194

Remote sensing techniques have been used to study the impact of land-195

scape and environment on biodiversity, and to explore and visualize spatial196

data and biodiversity change. Therefore, remote sensing data have become197

among the most time and cost effective tools, allowing to make relevant con-198

servation actions in a relatively short period of time. Furthermore, also the199

contrary holds true: remote sensing demonstrated the impact of biodiversity200

(including non-native invasive species) on ecosystem functioning (Ewald et201

al., 2018).202

In general, vegetation absorbs the blue and the red light, for photosyn-203

thesis, while it reflects NIR radiation due to the physical structure of the204

cells composing the leaf mesophyllum (Wegmann et al., 2016). The bands205

relative to RED and NIR are used as proxies for photosynthetic activity of206

the vegetation. These bands are usually incorporated in a widely used in-207

dex, the normalized difference vegetation index (NDVI), which is calculated208

as NDVI=(NIR-RED)/(NIR+RED). The higher the relative abundance of209

photosynthetic vegetation, the higher would be the reflectance in the NIR210

band and the absorption in the RED band. NDVI ranges from -1 to 1, with211

0 values usually associated with non vegetated areas and negative values212

associated with water surfaces or snow.213

This index has widely been used to discriminate different vegetation types214

over an area. In fact, in several studies, NDVI is positively correlated to the215

net primary productivity (NPP, e.g. Gillespie et al. (2008)). Therefore, it216

can be used as a proxy to quantify species richness and diversity, based on the217

species-energy theory, proposed by Currie (1991), namely a relation between218

species richness and energy, that would depend mainly on annual potenti-219
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afl evapotranspiration and actual evapotranspiration. Another hypothesis220

related to the variability in space of the spectral signal has been proposed221

by Palmer at al. (2002). The so called spectral variation hypothesis (SVH)222

states that the higher the environmental heterogeneity the higher would be223

the species diversity of an area, due to a higher amount of ecological niches224

available.225

Hence, based on the SVH, spectral variability can effectively be related to226

environmental heterogeneity and therefore it could be used to assess species227

biodiversity of an area. In this sense, since the spectral variability is derived228

from the information present in the pixels of an acquired image, it is im-229

portant that such pixels, describing the area of study, would have a spatial230

resolution coherent with the ecological assumptions taken into account and231

such that it would allow to make some predictions on biodiversity.232

Among the most novel methods to estimate diversity by remote sensing,233

described in Rocchini et al. (2018), the spectral species concept (Féret and234

Asner, 2014) is one of the most powerful, since it allows to couple k-means235

approaches to the gridded data obtained from remote sensing technologies236

as a mean to derive α- and β-diversity 2D-matrices. The spectral species al-237

gorithm allows the separation of the spectral space in subunits identified as238

spectral species. Its root theory is built upon two major founding principles.239

The first is the aforementioned Spectral Variation Hypothesis, relating spec-240

tral to environmental heterogeneity. The second is based on the plant optical241

types proposed by Ustin and Gamon (2010). This concept is mainly related242

to the use of particular sensors providing high spatial resolution images and243

able to measure different signals about the phenology, the biochemistry and244

the structure of vegetation. Such sensors can obtain information at the in-245

dividual plant scale level.246

The method is based on an unsupervised clustering algorithm, first rely-247

ing on dimensionality reduction obtained after running a principal component248

analysis (PCA) and then on the actual clustering of the pixels, with the sub-249

sequent assignment to spectral species, based on a k-means approach. PCA250

and similar clustering methods have already been shown to reliably reduce251

the multidimensional spectral sets for models on species and biodiversity252

distribution (Rocchini et al., 2010). Furthermore, the method provides an253

interesting visual inspection of diversity building α- and β-diversity maps.254

As far as we know, the spectral species concept has been applied so far255

only at the local scale (Féret and Asner, 2014). Hence, the aim of this256

manuscript is to extend this concept over wider spatial extents passing to a257

spectral community concept, by generating a heterogeneity map at a wide258

geographical scale to estimate α- and β-diversity across Europe.259
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2 The algorithm260

The spectral species algorithm has been originally developed to map tropical261

forest canopy diversity using imaging spectroscopy with a spatial resolution262

up to 2 meters (Féret and Asner (2014), Figure 1). Following the hypothesis263

that species are spectrally separable (Asner and Martin, 2009), the approach264

is based on the segmentation of the spectral space defined by the remote265

sensing data. In fact the spectral space is assumed to be a combination of266

several subspaces, reflecting the “signature” of one or several species. There-267

fore these subspaces would be the expression of a more general “spectral268

species”. From the resultant “spectral community”, it would be possible to269

derive the diversity of an area. The output of this algorithm will not be a list270

of the species of the area, but rather a map of the distribution of the spectral271

communities available within the area from which it might be possible to272

calculate several diversity indices. In particular we focused our attention on273

α- and β-diversity metrics. Both introduced by Whittaker (1972), the first274

reflects the mean species diversity in sites at a local scale whereas the second275

is an indicator of the spatial (or temporal) heterogeneity at a relatively larger276

scale. In the algorithm, α-diversity is calculated in a neighbourhood (plot)277

of n × n pixels by the Shannon diversity index (Shannon, 1948) calculated278

as follow:279

H ′ = −
N∑
s=1

ps ln ps (1)

where ps is the proportion of each spectral species s in each plot.280

The β-diversity indicator is instead computed by the Bray-Curtis (here-281

after BC) dissimilarity metric (Bray and Curtis, 1957):282

BC ij =

∑N
s=1|xis − xjs|∑N
s=1(xis + xjs)

(2)

where BC ij is the dissimilarity between plots i and j and xis and xjs are the283

abundances of spectral species s in plots i and j.284

In the spectral species algorithm, once the BC dissimilarity matrix be-285

tween all pairs of plots is computed, a multidimensional scaling is performed286

in order to translate information about the pairwise dissimilarity among P287

plots into a configuration of P points mapped in a 3-dimensional Cartesian288

space such as NMDS or PCoA (Mead, 1992). This simplified translation of289

the BC dissimilarity matrix can then be displayed as a colored map. More290

details can be found in Féret and de Boissieu (in press).291
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While the Shannon index has a theoretical maximum limit corresponding292

to the ln(richness), the Bray-Curtis index ranges from 0 to 1, where 0 is293

indicating that the two sites are identical whereas 1 indicates that the two294

sites do not share species. Hence, BC can be considered as an estimate of295

the heterogeneity of a certain area. The final aim of the method was to gen-296

erate an heterogeneity map across the study region. Strictly speaking, the297

method is a clustering approach which (i) divides the subspaces in spectral298

units and (ii) assigns it to spectral species from which (iii) different diver-299

sity maps can be obtained. Box 1 focuses in detail on the main steps of300

the algorithm, while the dedicated R package biodivMapR is now available301

(https://github.com/jbferet/biodivMapR) and fully described in Féret and302

de Boissieu (in press).303

2.1 Application of the algorithm304

Remote sensing data are usually provided as raster objects with a geographic305

coordinate system information, namely regular grids (matrices) or stacks of306

raster layers (e.g. one raster layer per band for multispectral or hyperspectral307

data), in which each cell represents a pixel with the corresponding reflectance308

value associated to a specific band. Such data have been manipulated with309

the Software R Development Core Team (2019). R can be used for remote310

sensing data analysis since it includes spatial functionalities throughout a311

suite of R packages like the rgdal and raster packages (see Box 2 for more312

information).313

Our main purpose was to apply the spectral species algorithm to a continental-314

scale geographical region such as Europe. Hence, Moderate Resolution Imag-315

ing Spectroradiometer (MODIS) data, with a spatial resolution of 500m316

covering Europe, were downloaded at the United States Geological Sur-317

vey (USGS) site (https://lpdaac.usgs.gov/dataset_discovery/modis/318

modis_products_table/mod09a1_v006). After a visual check of the images,319

in order to guarantee i) the coverage of a complete phenological period and320

to ii) avoid noise related to clouds, we referred to the RED and NIR bands321

from 2018 from January to December, to calculate NDVI, by generating a322

sample set of 12 NDVI images (Figure 2).323

In this case, due to the input spatial resolution of MODIS (500m), mixed324

pixels would occur, by smoothing the reflectance related to single plant325

species. In other words, the direct relationship between the spectral species326

detected in the spectral space versus plant species does not hold true. This327

said, from the diversity measurement perspective this is just a matter of328

terms being used, with spectral species being more related to field plant329

communities, habitats or other ecological entities.330
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For the derivation of spectral species, in order to define the number of331

clusters, we relied on the highest number of clusters with stable results after332

a trial and error procedure, reaching 200 clusters, i.e. spectral species. Once333

pixels with similar NDVI values in 12 dimensions were clumped together,334

Shannon’s H ′ was calculated with a window size of 10x10 pixels and an out-335

put resolution of 5km. The attained α-diversity map quantitatively showed336

the local spectral diversity distribution over Europe (Figure 3), with a higher337

heterogeneity found in i) more topographically complex regions, mainly due338

to strong local differences induced by elevation gradients (passing from forests339

to grasslands, to rocks and snow), and/or differences in terms of seasonal-340

ity in relation with elevation, as in Rocchini et al. (2019), and in ii) more341

contrasted agricultural areas in both the spatial and temporal dimensions342

(Hobbs et al., 2006; Vihervaara et al., 2017).343

β-diversity (Figure 3) showed a clear differentiation among different areas344

over Europe. The attained map was in line with the European Environmen-345

tal Agency map of ecoregions (Figure 4, see Mucher et al. (2009)). The346

correspondence of the achieved patterns in the two maps was apparent, with347

a similar contour of the major ecoregions like the Mediterranean, the At-348

lantic, the Continental, the Boreal and the Alpin regions. This demonstrates349

an intrinsic ability of the spectral species approach to catch differences in350

the physiological and functional properties of vegetation even at wide spatial351

scales, starting from spectral reflectance or spectral indices. Minor differences352

were mainly related to the biogegraphical (i.e., purely spatial) differentiation353

of ecoregions in the EEA map. As an example, Alpine ecoregions could354

not be distinguished between North and South Alpine regions by the spec-355

tral species approach, since, having very similar conifer species composition,356

they show the same physiological, phenological and thus spectral pattern.357

3 Discussion358

In this paper, for the first time, the spectral species concept has been ex-359

tended from the consideration of a single species to an entire community.360

We demonstrated that the combined use of the novel unsupervised cluster-361

ing method proposed by Féret and Asner (2014) with NDVI time series at362

European scale, allows the derivation of local (α) diversity and turnover (β)363

relying on free to use and operationally available satellite data.364

With regards to a potential validation with in-situ data, the uncertainty365

of wide-scale datasets hampers a spatial overlap. In this case, in-situ datasets366

meet all five major concerns recently raised by Hobohm et al. (2019), i.e.: i)367

there is insufficient data coverage across Europe to make an unbiased com-368
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parison between predicted and actual distributions, ii) taxonomic standards369

differ across sampled regions, iii) there are generally different shapes of areas370

being sampled, iv) political borders often define sampling areas and aggre-371

gated sampling areas, and v) data are not aggregated in the same way in372

all areas. Furthermore, spatial information has an intrinsic varying degree373

of relevance mainly due to the fact that, rather than species lists, it is made374

up of geometrical precision, attributes robustness and temporal consistency375

(Hobona et al., 2006). Finally, different models and approaches to measuring376

diversity inevitably provide different outputs, as pointed out in the gener-377

alised entropy theory put forward by Rényi (1961). Given the above valida-378

tion difficulties, we decided to qualitatively compare our generated output,379

in particular the β-diversity map, with existing ecoregion maps, which are380

expected to discriminate different spatial areas based on natural borders de-381

fined by biological diversity (https://ecoregions2017.appspot.com/) and thus382

are intrinsically related to differences in the species and spectral turnover of383

communities.384

Since the output of the algorithm represents the variation of the pixel385

values in space and time, the most diverse pixels were those with the highest386

turnover among the neighborhood areas and most affected by seasonality.387

The importance of accounting for turnover instead of simple richness has388

been widely discussed in the ecological literature (Tuomisto, 2010), since389

environmental variability over spatial gradients is one of the major drivers390

of the structure and composition of diversity (Legendre et al., 2005). In this391

view, the use of the “spectral species concept”, defined as the variation of392

clustered pixel values, represents a powerful approach for the investigation393

of gradient variation of diversity in space and, potentially, in time.394

In general, the measure of variability in space has been demonstrated395

to follow scale-based differentiation. In other words, results are expected396

to change with spatial scale in terms of both grain (spatial resolution) and397

extent (extent of geographical area of interest, Palmer at al. (2002)). Re-398

garding extent, one of the major weaknesses of the proposed algorithm in399

β-diversity quantification (although this applies in general to all measure-400

ments of turnover) is that by increasing the extent of an observation area,401

the estimated values for an individual comparison between sites are modified402

by the increasing spectral species pool.403

Additional drawbacks at the current stage of the algorithm include: i)404

the use of remotely sensed data which are not necessarily related to the main405

drivers of species distributions and of diversity, ii) the general multicollinear-406

ity found in most of the remotely sensed sets, iii) the unsupervised clustering407

process being adopted.408

Concerning climate, a solution might be found in the use of remotely409
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sensed derived climate data adding climate change as an additional layer of410

complexity as in Rocchini et al. (2015a) and in (Zellweger et al., 2019). Also411

in this case multicollinearity of climate variables should be seriously taken412

into account, as we did for the original remote sensing data, by applying a413

PCA to reduce the noise in the data and detect potential artifacts; then, PCA414

components might also be visualised to find potential congruence between415

spectral species and real species patterns. Finally, the process for grouping416

pixels in spectral species is based on an unsupervised clustering, where the417

definition of the number of clusters should be done a-priori. In this case,418

we hypothesized that the diversity of types of landscapes and gradient of419

climates across Europe may require a large number of clusters to correctly420

differentiate among them, relying on a fuzzy view of ecosystems (Rocchini421

and Ricotta, 2007). Hence, we decided to adopt a trial and error procedure422

until reaching a sort of threshold in which no significant changes were further423

found. Such threshold was 200 clusters, namely the final used number. In424

the near future, it might be interesting to make a sensitivity analysis to show425

the impact of the number of clusters on the final analysis.426

Considering the use of remote sensing for species diversity estimates, cor-427

relation and determination coefficients are generally statistically significant428

but low, hampering the direct use of remotely sensed diversity in simple uni-429

variate models (Rocchini et al., 2018). In fact, the relationship between α-430

or β-diversity and habitat heterogeneity, which is the founding principle of431

the use of remote sensing data for these analyses, is rarely linear (Ferrier et432

al., 2007), mainly because of variation in the rate of species turnover along433

an environmental gradient. However, remote sensing variables are generally434

well suited in more complex multivariate models accounting for part of the435

diversity explained for species communities (Rocchini et al., 2018). This is es-436

pecially true considering that environmental turnover generally explains more437

variation in species diversity rather than mere spatial structure (Hernandez-438

Stefanoni et al., 2012). Moreover, based on their high temporal resolution,439

remote sensing data might be useful to detect drastic changes of diversity440

in space and time, e.g. related to catastrophic events, overall considering441

the intrinsic difficulties in relying on in-situ data for wide geographical scales442

(Cord and Rödder, 2011; Hobohm et al., 2019).443

From an ecological perspective, remote sensing imagery bands (dimen-444

sions) show a high affinity with the hypervolume axes proposed by Hutchin-445

son (1957) for modelling species niches. In the Hutchinson’s theory, an hy-446

pervolume is represented by a space defined by a set of n independent axes447

which could be related to the final variables driving the realised niche of a448

species (see also Blonder (2017) and Ricotta et al. (2010) on the niche dif-449

ferentiation concept). In our case, such axes would be the original satellite450

12



sensor bands being strictly related to the identification of a spectral species451

and the resulting spectral community in a site, instead of a niche. From this452

point of view, spectral species and communities are in line with joint species453

distribution models (JSDMs), which explicitly take into account biotic inter-454

actions among species in a community, while in our model the “interaction”455

among pixel values is ruled out in general by their proximity both from a456

spatial and from a spectral point of view. In this paper, the final aim was457

not to model single spectral species or spectral communities but rather to458

estimate diversity and its change over space and time, following the mathe-459

matical principles described in Liu et al. (2014) and Rocchini et al. (2015b),460

for which the distribution of diversity over space is actually a particular case461

of the so-called switched systems, i.e. hybrid systems resulting from both462

continuous and discrete dynamics with a high number of different potential463

variables acting as main drivers of diversity response. In practice, in our464

view we succeeded to fill a previous gap in spatio-ecological analysis, i.e. the465

translation of what in remote sensing science is known as “spectral mixture466

modeling” (Jensen, 2015) into an ecological diversity theory perspective. In467

fact, in spectral mixture modeling the measured spectral reflectance is de-468

composed as a mixture of endmembers. In our case, such mixture was used469

to directly compute alpha- and overall beta-diversity over wide spatial areas470

in few time.471

4 Conclusion472

Predicting and mapping α- and β-diversity using remotely sensed images473

acquired over large areas is currently a key topic in ecology, and could pro-474

vide landscape managers with effective tools to confront global change. In475

this paper, we proposed a novel method based on preliminary unsupervised476

clustering of spectral data (NDVI time series derived from MODIS data),477

assigning each pixel to a “spectral species” and then calculating diversity478

based on a dissimilarity metric. At the scale of this study, the one-to-one re-479

lationship between spectral species and in-situ plant species is not achieved,480

but the spectral species concept still holds true once considering that the de-481

tected spectral species in the spectral space are related to higher-order plant482

hierarchies (assemblages, entire habitats, etc.). That is, from an algorithmic483

point of view, the bulk of the calculations are unaltered.484

Based on the results presented here, the use of the spectral species and485

communities concept would appear to promote more effective planning and486

policies related to the conservation of wild species, by improving our under-487

standing of the dynamics of local and global biodiversity at different spatial488
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and temporal scales.489
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Figures766



Figure 1: Diagrammatic representation of the steps of the algorithm used to
achieve α- and β-diversities, redrawn from (Féret and Asner, 2014). Pixels
are clumped in a spectral species and spectral community diversity is calcu-
lated. We refer to the main text and to Box 1 for additional information.
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Figure 2: An input set of n images can be handled to create a time series
and use the stack to further calculate the spectral community diversity. In
our paper, a stack of 12 NDVI images of 2018 from the MODIS sensor was
processed by the spectral species algorithm, by producing α- and β-diversity
maps.
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(a)

(b)

Figure 3: α- (a) and β-diversity (b) maps obtained by the spectral species
algorithm. (a) The α-diversity map, based on Shannon’s H ′ index (ranging
from blue [low values] to light green [high values]) calculated in a 10x10
pixels local neighbourhood, corresponds to the local entropy of clusters, so
that each location is independent from the others; (b) The β-diversity map
- Bray-Curtis dissimilarity reduced to 3 dimensions with NMDS - provides
information about the dissimilarity among any location in the image. Here,
the distance between pairs of spatial units is expressed as a 3 colour code.
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Figure 4: European Environmental Agency ecoregions map redrawn by
Mucher et al. (2009). Similar maps at a coarser grain are provided by
Mouchet et al. (2015) and Dinerstein et al. (2017).
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Box 1 - Steps composing the spectral species767

algorithm768

1. A Principal Component Analysis (PCA) is applied to the spectral data.769

PCA is not performed on the whole image, but only on a large subset770

of pixels randomly selected from the image. Due to the high dimen-771

sionality of the data, the reduction of the dataset is not altering the772

result. Those principal components explaining most of the variance of773

the original set are then retained for further steps.774

2. A subset of pixels is then randomly selected across the entire map and775

the spectral space containing such a subset is partitioned into spectral776

species using k-means clustering with the number of k clusters being777

decided a priori. Then the centroids defining the spectral species are778

located.779

3. The spectral dataset is divided into final mapping units. Each pixel780

is assigned to a given spectral species based on the minimal Euclidean781

distance between pixels (Peuquet, 1992) and the previously defined782

centroids.783

4. A spectral species distribution is obtained for each mapping unit from784

which the α- and β-diversity indices are computed as previously stated.785

5. Since the spectral species distribution is obtained by a subset of pixels,786

in order to avoid under-representation of some small-scaled ecological787

classes (e.g. small scale vegetation patterns), steps 4 and 5 are repeated788

100 times, and the indicators obtained for each repetition are averaged.789

In particular the Bray-Curtis dissimilarity matrix is computed for each790

pair of spatial units, based on their spectral species distribution at each791

iteration; then the final matrix corresponds to the BC dissimilarity792

averaged over all the iterations.793

6. Non metric Multidimensional Scaling (NMDS) (e.g. Borg and Groenen794

(2005)) is applied to the matrices in order to obtain a visual representa-795

tion of the results. NMDS is an ordination technique usually applied in796

ecology that differs from other ordination techniques as PCA, since in797

NMDS a small number of axes are chosen prior to the analysis and then798

the data are fitted into the chosen dimensions. Furthermore, NMDS799
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is not an analytical but numerical technique, seeking for the right so-800

lution (convergence) iteratively. Finally, NMDS is not an eigenvector-801

eigenvalue technique, hence a NMDS ordination can be rotated among802

the axes. NMDS is mostly used in ecology for its versatility since it803

accepts any distance measure of the samples. In this case the Bray-804

Curtis matrix was used. In the applied NMDS approach, the first step805

is generally to decide the number of reduced dimensions; in this case806

3 dimensions were chosen. The algorithm starts with the construction807

of initial random arrangements of the pixels. Then the Euclidean dis-808

tances among the samples is calculated in this first configuration; those809

distances are regressed against the original distance matrix, and the810

predicted ordination distances are calculated. Finally, the regression is811

fitted by the least-squares method. The goodness of fit is measured by812

the sum of squared differences between ordination-based distances and813

the predicted distances. The goodness of fit is calculated through the814

Kruskal’s Stress index:815

Stress =

√√√√ [r]
∑

h,i(dhi − d̂hi)2

[r]
∑

h,id
2
hi

(3)

where dhi is the ordinated distance between pixels h and i, and d̂hi is the816

distance predicted from the regression. Then, a new configuration is817

computed moving in the direction in which stress changes most rapidly.818

The entire procedure is repeated until convergence. A Stress value819

that provides an excellent representation in the reduced dimensions is820

considered to be lower than 0.05; nevertheless a value of Stress < 0.2821

is still considered a good representation Borg and Groenen (2005).822

Basically, the algorithm provides both single spectral species maps and823

the α- and β-diversity maps. The algorithm input file needs to be in ENVI824

binary format with the corresponding header file. The file should be in Band825

Interleave by Line (BIL) format and 2-byte signed integer, and should not826

have extension. A further masking file in the same format is necessary in827

order to mask clouds and water surfaces.828
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Box 2 - Packages used in this manuscript to829

handle and analyse spatial data in R830

• raster: It provides classes and functions to manipulate geographic831

data in raster format. Raster data divides space into cells (as pixels) of832

equal size (in units of the coordinate reference system). Along with the833

raster package, the sp package is also loaded, which provides spatial834

object classes and methods to retrieve coordinates.835

• rgdal: It provides functions to import ad export spatial data in differ-836

ent formats.837

• RStoolbox: A toolbox for remote sensing image processing and analy-838

sis.839
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