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Abstract14

The aim of this paper is to offer a fresh perspective on the classic con-15

cept of critical state (CS) in granular materials by suggesting that CS can be16
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defined through the use of a single proportional strain test. In classic con-17

ventional testing, CS manifests itself under constant lateral stress and con-18

trolled strain in one given direction whenever continuous shearing is applied19

without change being induced to material volume. However, a comparison20

between proportional strain tests and biaxial tests simulated with DEM21

has clearly shown that the CS line (CSL) characterized by stresses, void22

ratio and fabric indexes can act as an attractor. The mechanical responses23

and fabric metrics evolve along dilatant proportional strain loading paths24

according to similar values after the strain level has become large enough25

to wipe out the material memory in the homogeneous domains considered26

in this analysis, i.e., the shear band area in dense samples and the whole27

area in loose samples. This suggests that the micro-structure of a granular28

material subjected to any dilatant proportional strain loading paths evolves29

while preserving its ability to withstand shearing without volume change at30

any time. Therefore, the CS concept can be generalized to a wide class of31

loading paths which shows that CS acts as a general attractor irrespective32

of the loading path considered.33

34

Keywords: Critical state; Shear band localization; Homogeneous domain; Propor-35

tional strain loading path; Biaxial loading path; Granular materials; DEM simulation36

1 Introduction37

Although the structure of a granular material appears to be simple at the microscopic38

scale, its behavior shows itself to be complex at the macroscopic scale, mostly due to39
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the collective rearrangement of particles. Based on the gain or loss of contacts, granular40

materials will easily adjust to any change under loading conditions. Among the accessible41

micro-structures, some have the ability to withstand constant shearing with no change of42

volume. A state with such micro-structures is known as critical state (CS) and plays a43

leading role in the most popular constitutive relations for granular materials. The concept44

of critical state was first proposed by Casagrande [3] and developed by Roscoe et al. and45

Schofield et al. [34, 37] in the form of a stationary state where stress and volume tend to46

be constant under continuous shear strain. A steady stress ratio and a steady void ratio47

are two conditions for this classical definition of critical state [41].48

49

The CS concept is the basic principle behind critical state soil models [1, 2, 21] and50

its importance in constitutive model cannot be underestimated, which explains its persis-51

tence as a concept. Enormous efforts have been devoted to verifying the conjecture of the52

uniqueness of the Critical State Line (CSL) [12, 47, 35] and to constructing appropriate53

mathematical descriptions of CS to improve the capability of constitutive models [20, 23]54

to simulate the mechanical behavior of granular materials. The evolution of internal soil55

structures along physical tests have been analyzed for enriching constitutive models based56

on micro mechanical investigations [19, 47, 14]. With the development of numerical tools,57

such as the Discrete Element Method (DEM) [5], it has been possible to describe more58

precisely micro-structures at critical state based on microscopic and mesoscopic descrip-59

tions [11, 12, 17, 13, 18, 48, 16]. It has been observed that microscopic or mesoscopic60

quantities such as metrics about fabric tensor and loop population also remain constant61

at critical state [12, 48]. It can be shown that the difference between the actual porosity62

and the CS porosity does not in itself determine the evolution of the micro-structure.63

The coaxiality between the plastic strain rate direction and the fabric anisotropy proved64
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to be a relevant state variable in defining critical state [22, 41]. A third condition that65

quantifies the role of fabric anisotropy in terms of its intensity and its relative orientation66

with respect to loading direction should also be taken into account, in addition to the67

aforementioned two conditions of constant stress ratio and void ratio [22, 41].68

69

Research on CS is nearly exclusively based on conventional tests (triaxial tests in70

3D or biaxial tests in 2D) in which a constant lateral stress condition dσlateral = 0 is71

imposed together with a constant strain rate in one given direction dεaxial = constant72

[1, 2, 12, 13, 48]. This preferential selection is linked to the tendency of generating con-73

stitutive models to work with stress and to calculate the resulting strains, as well as the74

difficulty of imposing fully controlled strain paths in the laboratory [15, 8]. For con-75

ventional loading, the p − q path is preset; samples are loaded by increasing the axial76

incremental strain under constant lateral confining pressure; volumetric strain and de-77

viatoric stress responses are recorded according to the loading path. This test allows78

for the existence of stationary states in volume and stress (the so-called critical state).79

Proportional strain tests, on the other hand, have been much less studied whereby the80

loading is imposed by proportional strain rates in the axial and lateral directions with81

dεlateral = λdεaxial and dεaxial = constant. Under proportional strain loading condition,82

the volumetric strain is no longer a response but a loading variable and the stress path is83

not known beforehand, which makes the interpretation of such tests more complex than it84

is for triaxial or biaxial tests. Except for the particular case of the undrained triaxial test,85

whereby the volume is kept constant, the continuous change in volume prevents stationary86

states in volume and stress along proportional strain paths to be observed. Without the87

existence of a stationary state, investigating the evolution of the micro-structures along88

a proportional strain loading path becomes a major challenge. In other words, tracking89
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the relation between triaxial (or biaxial) and proportional strain loading paths in terms90

of mechanical responses and underlying micro-structures is an open and stimulating topic.91

92

In order to generalize the concept of CS, we focus on the relation between the material93

responses under dilatant proportional strain loading paths and biaxial loading paths in94

2D. These two types of loading paths, as well as mixed biaxial/proportional strain paths,95

have been simulated by DEM. The details of the DEM simulation are shown in Section 2.96

Mechanical responses along biaxial tests and proportional strain paths are presented in97

Section 3. The relation between proportional strain tests and biaxial tests in the p− q− e98

space is analysed in Section 4. In Section 5, the fabric-related CS locus is studied. The99

mechanical responses along the mixed loading paths are presented in Section 6, as is the100

relation between the imposed dilatancy in proportional strain tests and the dilatancy in101

biaxial tests.102

103

2 DEM simulation104

The Discrete Element Method (DEM) [5] is a powerful numerical method to simulate the105

global behavior of a set of grains interacting through contact laws. It has been widely106

used to simulate the mechanical response of granular assemblies under various loading107

conditions. The mechanical states are characterized locally by kinematic information in-108

cluding position, rotation and velocity of grains, as well as static information based on109

contact force between contacting particles. In this study, the open source software YADE110

[40] has been used.111

112
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Under consideration here is a quasi-2D soil sample in the form of an assembly of a113

single layer of 20,000 spherical particles contained within a surface domain of 1 m × 1.5 m.114

The particle sizes have an average diameter d50 = 0.008 m and dmax/dmin = 2. The elasto-115

frictional law introduced by [5] has been adopted as the contact law. The cohesiveless116

contact parameters between two grains contain a normal and tangential linear spring of117

respective stiffness kn and kt, as well as a friction characterized by a friction angle φ = 35◦.118

kn/Ds is given as 300 MPa, where Ds = 2R1R2/(R1 + R2) and R1, R2 are the radii of119

particles in a given contact and kt/kn is 0.5. If the pressure of 100 kPa is considered, the120

average ratio of contact overlap and particle size < un > /d50 is around 0.16%, which is121

close to the value (10−3) in literature [18, 41]. For sample preparation, two schemes can122

be used to obtain an isotropic compression of the specimen: the boundary moving scheme123

and the internal compacting scheme [45]. In this study, particles are enlarged, at first,124

while keeping the boundary walls fixed to generate a preliminary sample up to 90 kPa.125

Then, to achieve a more precise consolidation pressure, the sample undergoes an isotropic126

consolidation by imposing an equivalent incremental strain on the boundaries in the ver-127

tical and lateral directions up to a specific consolidation state. During this preparation128

process, contact friction angles of 2◦ and 35◦ are used to obtain dense and loose samples,129

respectively. Consolidation pressures of 10 kPa, 20 kPa, 40 kPa, 60 kPa and 100 kPa are130

considered. Three dense samples and five loose samples are thus prepared and named as131

indicated in Table 1. The void ratio is accounted for, based on solid and void surfaces132

on the 2D plane as shown in Fig.1. During the shearing process, a contact friction angle133

φ = 35◦ is adopted in all the samples. Note that the soil mechanics convention is adopted134

throughout the paper with compression and contraction counted positive. As a result,135

dilatant/contracting volumetric strain are considered as negative/positive respectively.136

137
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For proportional strain tests, the 100kPa-dense sample is used with an initial void138

ratio of 0.191. In the 2D simulation, dε1 = λdε2 and dε2 = 10−2 s−1. As dεv = (λ+1)dε2,139

λ > −1 corresponds to a contracting test, λ = −1 to a constant volume test, and λ < −1140

to a dilatant test. We have adopted λ = −1.2,−1.3,−1.4 for the three dilatant propor-141

tional strain tests. Biaxial loading paths with corresponding pressures are applied to all142

the samples indicated in Table 1. The stress and strain states are then described in 2D143

as follows: deviatoric stress q = σ2 − σ1, mean stress p = (σ1 + σ2)/2, and volumetric144

strain εv = ε1 + ε2, where σ1 and σ2 are the principal stresses at horizontal and vertical145

directions and ε1 and ε2 are the principal strains. The direction 2 is always the vertical146

loading control direction (ε̇2 = 10−2 s−1), as shown in Fig.1. When the pressure ranges147

from 20 kPa to 200 kPa, the Inertial Number I of the granular system ranges among148

2.77e10−5 - 8.76e10−5, which corresponds to a quasi-static state [6].149

150

In reality a 2D model of a granular material is quantitatively different from sand151

assemblies; for example void ratio values and coordination numbers in 2D assemblies are152

smaller than those in 3D [12], and stresses express in kPa relies on the use of an arbitrary153

out of plane dimension i. However, given that the complexity of the constitutive behaviour154

of granular assemblies stems mainly from the local properties and the disordered packing,155

both effects can be captured in 2D simulations [30]. Qualitative investigations of granular156

materials based on DEM simulations in 2D can then be considered as both effective157

and efficient. Proof of such effectiveness and efficiency can be found in various studies158

of the microscopic mechanism behind the mechanical responses of granular materials159

under different loading paths have been investigated [12, 17, 13, 48, 25]. Thus, the 2D160

iIn the present study, the out of plane dimension is then taken equal to the thickness of the sample
box (0.04 m), which allows kPa rather than kN/m to be used for the stress unit on the boundary walls.
The thickness of the box has a proportional influence on the stress values, which should not impact the
following results, at least qualitatively.
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(a) (b)

Figure 1: Quasi-2D DEM specimens for (a) proportional strain tests where loading pa-
rameters are ε1 and ε2 and (b) biaxial tests where loading parameters are ε2 and σ2. The
direction 2 is always the vertical loading control direction at the REV scale.

assembly simulation is adequate enough for qualitative investigations of critical states161

under proportional strain and biaxial loadings performed in this study.

Table 1: Initial void ratios e0 of prepared samples. The sample ’100kPa-dense’ is used
in proportional strain tests)

Sample 40kPa-dense 60kPa-dense 100kPa-dense 10kPa-loose
e0 0.197 0.195 0.191 0.266

Sample 40kPa-loose 60kPa-loose 100kPa-loose 20kPa-loose
e0 0.267 0.265 0.261 0.267

162
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3 Mechanical response163

3.1 Mechanical response along dilatant proportional164

strain loading paths165

3.1.1 Stress-strain analysis166

Figure 2 shows the evolution of the deviatoric stress q along the axial strain ε2 under167

dilatant proportional strain loading path with λ = −1.2,−1.3,−1.4. In this figure, it can168

be observed that the deviatoric stress q grows quickly at first and then decreases after169

the peak. Gradually, q decreases to 0. When λ = −1.4, the sample undergoes the fastest170

dilatancy and the corresponding stress curve reaches the earliest peak at ε2 = 0.013 and171

the earliest zero deviatoric stress at ε2 = 0.061. When λ = −1.3 and λ = −1.2, it appears172

that the peaks are reached at ε2 = 0.017 and ε2 = 0.019 because of smoother and smoother173

dilatancy. Zero mean pressure p occurs at ε2 = 0.085 and ε2 = 0.142, respectively.174

3.1.2 Kinematic pattern: from localization to diffuse175

The existence of a stress peak (Fig.2) corresponds to a generalized limit state [29] which176

has been shown to be a proper failure state [43]. Various failure modes, characterized177

by localized or diffuse patterns, can be encountered after the peak, along the descending178

branch. In biaxial tests, either diffuse or localized modes will appear [29]. In this study,179

however, these two modes appear successively along each proportional strain test. In180

this subsection, the incremental deviatoric strain distribution has been used to character-181

ize the kinematic pattern, as introduced in literature [33, 48]. For example, in the test182

with λ = −1.2, a typical diagonal shear band traversing the whole specimen appears at183

ε2 = 0.008, as shown in Fig.3 (I), corresponding to the point I in Fig.2. After a process184
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of dilatancy, the shear band begins to vanish in the strain state ε2 = 0.110 shown in185

Fig.3 (II). Fig.3 (III) demonstrates the kinematic pattern when ε2 = 0.142, where the186

mean pressure p is close to zero. An evolution from localization, when the strain largely187

concentrates in a partial domain of the material, to liquefaction, when the effective stress188

within the granular specimen is reduced to essentially zero, has been observed along the189

three dilatant proportional strain paths, as shown in Fig.3. With the increase in volume190

along the loading path (λ < −1), the density of the sample gradually decreases and the191

kinematic pattern changes from localized to diffuse until a zero mean pressure p is reached.192

193

Kinematic patterns characterize the nature of the failure mode, together with the194

spatial domain. It has been widely accepted that fabric-related measures should be taken195

either within the shear bands or within the full sample when the shear deformation is196

diffuse, since measures within nonhomogeneous domains have no constitutive meaning197

[10, 12, 13, 48, 35]. In this study, the index Med [24] has been adopted to define the shear198

band domain. Med refers to an absolute difference of incremental deviatoric strain inside199

and outside the shear band with a trial width divided by their sum. Regarded as an op-200

timization problem, the shear band width has been obtained according to the maximum201

Med within a reasonable range of the trial shear band width. More details are available202

in [24]. In the following section, labels with * refer to measures within a homogeneous203

domain (shear band for dense specimen and whole sample for loose specimen). Taking204

the kinematic evolution as its base, the next section will examine the evolution of the205

stress and void ratio.206

207
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3.2 Mechanical response along biaxial loading paths208

As recalled in the introduction, the critical state (CS) refers to a state where stresses,209

void ratios and fabrics tend to be steady at relatively large deformation when shear strain210

further increases [41]. Biaxial tests used as references have been simulated to define the211

critical state line which refers to a collection of critical states obtained at different con-212

fining pressures. Typical macroscopic responses in biaxial tests are illustrated in Fig.4,213

where deviatoric stress and volumetric strain evolve with respect to axial strain ε2. Fig-214

ures on the left hand show the results from the dense samples. In these three figures, the215

deviatoric stresses show an increase before a peak is reached, and a decrease followed by216

a steady regime with small fluctuations. The stress peaks rise gradually with the increase217

in confining pressure from 40 kPa to 100 kPa. The volumetric strain shows a small con-218

tractancy, at first, and transfers to dilatancy before a steady state is reached. On the219

other hand, for the loose specimens, q and εv continuously rise up to steady states, as220

shown on the right-hand panel of Fig.4. Localized and diffuse patterns have developed221

within the dense and loose samples, respectively.222

223

As highlighted in Subsection 3.1.2, it is important to focus on the domain within the224

shear band when considering void ratio and fabric indexes in order to characterize mate-225

rial scale properties by considering only homogeneous domains. The same point holds for226

stresses even if the stress heterogeneity is never reported in strain localization problems.227

Do stress patterns exhibit significant differences inside and outside the shear band? Is228

the stress path within the shear band the same as in the whole sample? Usually, stresses229

are obtained macroscopically from the external forces applied on the sample boundaries.230

To obtain the stresses within shear band, we have adopted a local definition based on231

Love-Weber stress at the grain scale. The mean stress tensor σ̄pij of each particle can be232
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computed based on the contact forces applied, thanks to the Gauss theorem [31, 26]. More233

details are available in aforementioned literature. The stress tensor for a given domain Ω234

can be computed based on all Np particles in the domain as σ∗
ij = 1

Ω

Np∑
p=1

σ̄pijV
p.235

236

In Figure 5, global stress components have been compared with local stresses com-237

puted within the shear band domain for the 100kPa-dense sample under a biaxial loading238

path. Stresses based on boundaries, including principal stresses σ1 and σ2 in the whole239

sample, are compared with σ∗
1 and σ∗

2 considering the domain of the shear band based240

on the grain scale stress definition. In addition, the relative orientation of the stress ten-241

sor characterized by (θσ∗
1
− θσ1) is presented. It is observed that the evolution of stresses242

within the shear band and the whole sample is far more similar than it is for the void ratio243

[48] in 2D. Thus, it is reasonable to adopt stresses based on sample boundaries instead of244

stresses within the shear band when investigating critical state. This approach has been245

adopted throughout the rest of this paper. A precise characterization of the loading path246

within the shear band and its difference from the whole specimen is an issue that remains247

to be examined. At the moment, it is beyond the scope of this paper. Some preliminary248

results on stress rotation within shear bands can be found in Liu et al. [25] and more249

investigations and discussions on this issue will be conducted in further studies.250

251

4 p− q − e space analysis252

The CSL is characterized by mean stress p, deviatoric stress q and void ratio e, usually253

plotted separately in planes (p, q) and (p, e). So, here, mechanical responses (p, q, e) from254

proportional strain tests and biaxial tests have been compared in p− q and p− e planes.255

12



0 2 4 6 8 10 12 14 16
2 (%)

0

20

40

60

80

100

120

q 
(k

Pa
)

I

II
III

100kPa-dense ( = 1.2)
100kPa-dense ( = 1.3)
100kPa-dense ( = 1.4)

Figure 2: Evolution of the deviatoric stress q along dilatant proportional strain tests with
different magnitudes of dilatancy characterized by λ = −1.2,−1.3,−1.4. Point I, point II
and point III refer to onset of a well marked shear band at ε2 = 0.010, slightly blurred
shear band at ε2 = 0.109, and the pressure p close to zero at ε2 = 0.142, respectively. The
corresponding kinematic patterns of these three points are shown in Fig.3
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Figure 3: Incremental deviatoric strain maps (dεd) estimated for axial strain increments
of 0.11%. Three axial strains are considered along the proportional strain path λ = −1.2:
(I) onset of a well marked shear band at ε2 = 0.010, (II) slightly blurred shear band at
ε2 = 0.109, (III) just before liquefaction (p is close to 0) at ε2 = 0.142. The corresponding
points in q − ε2 plane are shown in Fig.2
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4.1 p− q plane256

Figure 6 illustrates the stress paths of the biaxial tests and the proportional strain tests.257

The three straight lines result from biaxial tests with dense samples. The initial states258

are marked with triangles and ultimate points are highlighted by squares labelled as A, B259

and C. The critical stress ratio line (CSRL) is given as a dashed line based on the three260

ultimate points, and the three highest points define the maximum stress ratio line (MSRL).261

262

As for the dilatant proportional strain tests, Fig.6 shows that the path of the devia-263

toric stress and the mean stress (p, q) for each case, starts from the initial state of around264

(100 kPa, 0), evolves to the MSRL and, at the end, changes direction to turn back toward265

the zero-stress level along an asymptotic line after having formed a ’loop’. Result of a266

mixed biaxial test/proportional strain test is also presented in Fig.6. The sample was led267

to CS by a biaxial loading under 100kPa lateral stress upon which the loading mode was268

switched to a dilatant proportional strain loading. It can be seen that the stress path269

evolves from the very beginning along the CSRL with decreasing p and q.270

271

Figure 5 illustrates that the stresses in the sample are relatively homogeneous at least272

in a 2D condition. The vanishing of the principal stresses along the dilatant proportional273

tests occurs simultaneously with the evolution from localized to diffuse failure (Figure 3).274

The vanishing of the principal stresses offers two possibilities: (1) liquefaction occurs only275

within the shear band and the behavior outside the shear band is regarded to be close to276

an elastic solid under unloading; (2) the kinematic pattern evolves gradually to become277

diffuse throughout the whole sample. In addition, it is worth noting that all computed278

results display an asymptotic behavior in the p − q plane, approaching the CSRL inde-279

pendently of the imposed dilatancy ratio, as shown in Fig.6. This kind of stress track,280
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especially the loop, has scarcely been reported in the literature for dilatant proportional281

strain tests in either laboratory [15, 39, 7] or DEM simulations [32], with exception of the282

work reported by [4, 44, 8].283

284

To further refine the classification of the stress response along proportional strain285

paths, a variety of proportional strain paths have been additionally simulated using spec-286

imens with different densities. The results are shown in Fig.7. Based on these results,287

the stress response path along proportional strain tests can be categorized into four types288

under different densities and volumetric strain rates, as illustrated in Fig.8. Group 1 re-289

sults from one typical contracting strain path along which p and q increase continuously,290

and Group 2 comes from a typical dilatant proportional strain path leading to zero mean291

pressure p [7, 27]. Group 3 represents stress paths from a dense sample under proportional292

strain tests with a relatively small dilatant rate, whereas Group 4 demonstrates a stress293

path under a proportional strain test with a contracting rate in a dense sample, similar294

in trend to the stress path under an undrained loading.295

296

It is worth paying attention to Group 3 because of the infrequently-reported ’stress297

loop’. A dense sample with imposed dilatancy was experimentally investigated by Ibraim298

et al. [15], Chu et al. [4] and Daouadji et al. [8], and numerically by Wan and Guo [44]299

and Nicot et al. [32]. The p − q relation from [15] along such a loading path has been300

drawn in Fig.8. The stress path was stopped early with an axial strain of around 5%. If301

the test had been conducted further, with the growth of volume and a constant number of302

particles, an increasing number of contacts would probably have opened that would have303

resulted in a stress drop at some point. Indeed, the complete increase and decrease in q304

along such a loading path reported in [8] produced a stress path that was more like a back-305
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and-forth line than a loop. This may have been the case because it was a middle dense306

sample with a not very pronounced softening. Both the limited shearing strain and the307

use of the middle dense samples could explain why no such loops were observed, even for308

similar loading conditions [32]. Such loops were, however, reported in [44, 38]. The Group309

3 type has also been obtained in 3D simulations not included in this paper which focuses310

on 2D simulations. It would be worth to conduct a detailed 3D investigation in the future.311

312

As for the type of Group 4, stress softening was observed both along isochoric and313

contracting proportional strain loading paths. The slight decrease in the deviatoric stress q314

is linked to strain localization within the sample, since shear bands were generated in these315

two simulations. As underlined in [44], the slope of the stress path under a contractant316

proportional strain loading depends on the volumetric strain rate. But, according to the317

results in Fig.6, the critical stress ratio in proportional strain tests is independent of λ318

when the axial strain is large enough, as shown in Fig.6.319

4.2 p− e plane320

Void ratios e∗ within the shear band are tracked for dense samples, and global void ratios321

e∗ for loose samples. The void ratio is given in 2D by e∗ = (Asb −As)/As, where Asb and322

As denote, respectively, the total and solid areas of the shear band. The evolution of e∗323

is represented in Fig.9, with respect to mean stress p.324

325

As for proportional strain tests shown in Fig.9 (a), the results converge to a master326

curve in the p− e∗ plane independent of the dilatant rate characterized by λ. When the327

starting point of the proportional strain loading is at critical state under a biaxial loading,328

the (p, e∗) curve will follow the master curve from the very beginning of the proportional329

18



0 25 50 75 100 125 150 175 200
p (kPa)

0

25

50

75

100

125

150

175

200

q 
(k

Pa
)

100kPa-dense ( = 1.2)
100kPa-dense ( = 1.3)
100kPa-dense ( = 1.4)
CS ( = 1.2)
40kpa-dense ( 0 = 40kPa)
60kpa-dense ( 0 = 60kPa)
Maximum stress ratio line
Critical stress ratio line
100kpa-dense ( 0 = 100kPa)

Figure 6: Stress paths of biaxial tests and proportional strain tests in p − q plane. The
start and end points are marked by triangles and squares, respectively. The critical stress
ratio curve and the maximum stress ratio curve are drawn according to the critical states
and the maximum value from biaxial tests, respectively.
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Figure 7: Stress paths in p − q plane along six proportional strain tests and one biaxial
test. Dilatant (λ = −1.2), undrained (λ = −1) and contracting (λ = −0.5) proportional
strain paths are conducted with the samples labelled 100kPa-dense and 100kPa-loose. A
biaxial loading path is performed in the sample 100kPa-dense. The square domain is
zoomed up on the right hand side.
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Figure 8: Four categories of stress path along proportional strain tests according to DEM
simulation results shown in Fig.7.

strain loading.330

331

As for biaxial tests with confining pressures of 40 kPa, 60 kPa and 100 kPa, the results332

illustrated in Fig.9 (b) are consistent with experimental observations in [10] and DEM333

simulations in [48]. Namely, e∗ from dense samples, after dilatancy, evolves to meet e∗ of334

loose samples at the critical state. For a more precise representation of the CSL in the335

(p, e∗) plane, two biaxial test results with confining pressures at 10 kPa and 20 kPa have336

been included.337

338

These critical states with proportional strain tests in p− e∗ plane are compared. An339

interesting feature stands out: the fitting curve of p − e∗ from proportional strain tests340

crawls just along the critical state curve obtained from the biaxial tests. Even though the341

CS from nine biaxial tests can lead to the critical state line, the master curve obtained342

from fitting a curve to a cluster of p− e∗ data in dilatant proportional strain tests, com-343
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Figure 9: p− e∗ evolution in proportional strain (a) and biaxial (b) tests. The start and
end points are marked by triangles and squares, respectively. A fit based on a power
function is shown for proportional strain tests and repeated to compare with the results
from biaxial tests, as all dilatant proportional strain tests converge towards a master
curve. The equation of the fitted curve is e∗ = 0.2571− 0.02275( p

100
)0.6274.
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pared to the nine CS obtained from biaxial tests, induces less uncertainty.344

345

It is worth noting that the fitting curve is based on a power function rather than346

a logarithmic function. It has been proved experimentally [42, 23] that, unlike in clay,347

the critical state line for granular materials cannot be estimated by a straight line in the348

e − logp plane. Thus, the commonly used CSL expression ec = A + B lnpc is generally349

not representative for granular materials, where the ec and pc are the critical void ratio350

and the critical pressure; A and B are two constants characterizing a given material. The351

relation of ec and pc for granular materials can be expressed as ec = D−E (pc
F

)G, where F352

is a reference pressure, usually the atmospheric pressure (101 kPa) for convenience, and353

D, E, and G are dimensionless constants that can be identified from experiments on a354

given material [20, 46].355

356

In summary, from Fig.6 and Fig.9, it can be observed that the master curves (p, q)357

and (p, e∗) from dilatant proportional strain tests agree well with the critical state lines358

from biaxial tests after a sufficiently large strain level has been imposed (or immediately359

if the initial state is already a critical state). Hence it is shown that the classical critical360

state surface defined in p− q− e space for a given granular materials can be obtained by361

performing one single dilatant proportional strain test. To the best of our knowledge, no362

such results have been reported in the literature. For a further analysis of this relation,363

the following sections will investigate the micro/meso-structures of the samples under pro-364

portional strain and biaxial tests, as well as under mixed biaxial/proportional strain tests.365

366
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5 Fabric-related critical state locus367

Even though the critical state is most often characterized by the relation between the368

mean stress p, the deviatoric stress q and the void ratio e when stress and strain rate369

directions are fixed [41], the evolution of the fabric is also an important feature to be370

added to the p− q− e space in order to stay within the framework of Anisotropic Critical371

State Theory (ACST) that requires the values of the fabric to be steady.372

373

5.1 Fabric tensor analysis374

A fabric tensor quantifies micro-structural orientation-related characteristics of the mate-375

rial in a tensorial form [13]. In this subsection, the inter-particle contact normal directions376

are characterized by the second-order fabric tensor of Fc = 1
Nc

Nc∑
k=1

nk⊗nk, where Nc is the377

total number of inter-particle contacts in the assembly; nk is the unit vector representing378

the normal direction of the kth contact. Only contacts in the shear band are considered.379

The norm of the normal at contact has to be normalized by the Lode angle in order to380

be unique in 3D. In the present 2D case there is no Lode angle; thus, no need for nor-381

malization. To make sure that the CS investigated within shear bands satisfies the third382

condition required by ACST as mentioned in Section 1, the orientation of the fabric ten-383

sor has been compared with the direction of the plastic flow which can be related to the384

stress tensor for monotonic radial loading [22]. The deviatoric orientation is less than 2.5385

degrees throughout the whole biaxial test on the 100kPa-dense sample. The variable α∗
c ,386

referring to the difference between the two principal components of F ∗
c within the shear387

bands, is measured to characterize fabric anisotropy. α∗
c = 0 refers to an isotropic fabric,388

whereas α∗
c = 1 corresponds to the situation that the normal direction of all inter-particle389
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Figure 10: p−α∗
c evolution for proportional strain (a) and biaxial (b) tests. The start and

end points are marked by triangles and squares, respectively. A linear fit is shown for the
dilatant proportional strain tests and repeated on the biaxial tests, as all the proportional
strain tests converge towards a master curve.
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Figure 11: Meso-loop definition in granular materials

contacts investigated are exactly the same.390

391

The evolution of α∗
c has been plotted in Fig.10 with respect to mean stress p. Except392

for the proportional strain loading starting from the CS, all the specimens have similar393

fabric characteristics in terms of variable α∗
c close to 0 at the initial states, due to the394

isotropic initial states where the inter-particle contact normal direction distribution is395

uniform in all the possible directions. As shown in Fig.10 (a), all α∗
c − p graphs from396

the proportional strain tests converge towards a master curve. A linear fit is given for397

the proportional strain tests and repeated in Fig.10 (b) to compare with the results398

from the biaxial tests. The relation between proportional strain tests and biaxial tests399

characterized by (p, q, e∗) has also been observed in the p-α∗ plane, namely, the master400

curve obtained in proportional strain tests has gathered the critical states from biaxial401

tests. More importantly, all specimens under biaxial and proportional strain loading402

paths end up with the same anisotropy in the ultimate regime. The convergent feature403

at ultimate states along different loading paths is in line with the findings reported in the404

literature [12, 13].405
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Figure 12: p − r∗3 for proportional strain (a) and biaxial (b) test. The start and end
points are marked by triangles and squares, respectively. An exponential fit is shown
for the dilatant proportional strain tests and repeated on the biaxial tests, as all the
proportional strain tests converge towards a master curve.
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Figure 13: p − r∗6p for proportional strain (a) and biaxial (b) tests. The start and end
points are marked by triangles and squares, respectively. An exponential fit is shown
for the dilatant proportional strain tests and repeated on the biaxial tests, as all the
proportional strain tests converge towards a master curve.
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Figure 14: p − r∗4 for proportional strain (a) and biaxial (b) test. The start and end
points are marked by triangles and squares, respectively. An exponential fit is shown
for the dilatant proportional strain tests and repeated on the biaxial tests, as the all
proportional strain tests converge towards a master curve.
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Figure 15: p − r∗5 for proportional strain (a) and biaxial (b) test. The start and end
points are marked by triangles and squares, respectively. An exponential fit is shown
for the dilatant proportional strain tests and repeated on the biaxial tests, as all the
proportional strain tests converge towards a master curve.
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5.2 Meso-loop evolution406

To obtain richer information on the critical state, we have analysed meso-loop related407

indexes in this subsection. As illustrated in Fig.11, meso-loops, enclosed by contact408

branches, are formed by tessellating the material area [36]. The side number of the loop409

influences considerably its deformability. In this section, loops will be categorized into410

four groups according to the side number, referred to as li (i ∈ [3, 4, 5, 6p]), where ’6p’411

refers to a side number equal to or greater than 6. The percentages of categories are given412

by ri = ni/nt, where ni is the population of the meso-loop with a side number equal to413

i, and nt refers to the total population of loops. It is worth noting that the reason for414

categorizing r6p is that r7p (percentage of categories with a side number equal or greater415

than 7) evolves in a similar way as r6 [48].The evolution of r∗i (i ∈ [3, 4, 5, 6p]) within the416

shear band for dense specimens and the whole area for loose specimens is tracked along417

both the dilatant proportional strain loading path and the biaxial loading path.418

419

The results as function of the mean stress p are presented in Fig.12 - 15. Small trian-420

gles and squares highlight the start and the end points of the curves and a fitting curve421

is given based on proportional strain tests in each figure. Two significant characteristics422

manifest themselves again: (1) the measures of r∗i (i ∈ [3, 4, 5, 6p]) from proportional423

strain tests converge to form a master curve independent of the value of λ; (2) the mas-424

ter curve agrees very well with the critical states characterized by the meso-loop indexes425

obtained in biaxial tests. These results are in agreement with the premise of ACST.426

427

For the shortest loop l3, r∗3 continuously decreases from the initial to the ultimate428

point along all different loading paths. As for the most deformable type of loop l6p, it is429

in a quite different situation as shown in Fig.13. The value of r∗6p for the dense samples430
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Figure 16: p− q evolution along combining proportional strain and biaxial loading paths.
The proportional strain loading with λ = −1.2 are conducted at first until a certain axial
strain level labeled as A, B, C, D, E and F, after that a biaxial loading is performed
by keeping the corresponding lateral stress unchanged. The transition states and the
average critical states are marked by dots and squares, respectively. The corresponding
stress-strain responses are shown in Fig.17

increases during loading, but it decreases for the loose samples.431

432

Different to the fabric tensor based on the statistics of inter-particle contact normals,433

investigated in Subsection 5.1, that has been widely accepted as a quantitative measure434

of fabric anisotropy in granular materials [21], the scalar r∗i is rather a measure charac-435

terizing the deformability of granular materials, namely the void ratio. Unlike the fabric436

anisotropy normalized by the specific volume [21], the evolution of r∗i depends on p as437

illustrated in Fig.12 - 15.438

439
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Figure 17: Stress-strain responses along combining proportional strain and biaxial loading
paths. The switch states and ultimate states are marked by dots and squares, respectively.
The corresponding stress paths are shown in Fig.16
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Figure 18: The relation between imposed dilatancy from proportional strain test and
unconstrained dilatancy if switched to a biaxial condition according to results in Fig.16
and Fig.17. Note that soil mechanics convention is adopted with positive compression.

Figure 19: The relation between imposed dilatancy/contractancy in proportional strain
tests and unconstrained dilatancy/contractancy expected in biaxial tests in the plane
of axial strain vs. volumetric strain (left) and the possible stress paths in the plane of
deviatoric stress vs. mean stress (right). The major solid lines represent the imposed
dilatancy/contractancy, namely the proportional strain loading paths; the fins denote the
incremental unconstrained dilatancy/contractancy if the loading is switched to biaxial
conditions.
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6 Mixed proportional strain and biaxial load-440

ing paths441

A complex loading path combining proportional strain and biaxial paths has been simu-442

lated to confirm that proportional strain tests can indeed determine the position of critical443

state in the e − p − q space as shown in Fig.6 and Fig.9. It was conducted as follows:444

first, the proportional strain path with λ = −1.2 was imposed; six groups of state data at445

ε2 = 0.0022, 0.0065, 0.0109, 0.0250 and 0.0294 were selected; then, a biaxial loading path446

was performed at each state while the lateral stress was maintained as it was. Such mixed447

loading paths allow us to assess the existence of critical states according to the definition448

given in the introduction (continuous shearing with no change in volume or mean pressure,449

while keeping aligned stress anisotropy with fabric anisotropy). The stress paths along450

the mixed paths are shown in Fig.16, while the stress and strain responses are presented451

in Fig.17.452

453

In Fig.16, the six transition states are labelled A, B, C, D, E and F and are marked454

by zoomed dots. The average critical (p, q) state is marked by squares. It can be observed455

that all six squares from continued biaxial tests lie along the stress track of proportional456

strain tests. As seen in Fig.17 , when the loading path was adjusted to a biaxial test at457

ε2 = 0.0022, a small compaction, followed by a large dilatancy, appears before a steady458

regime was reached; when the biaxial test was imposed at ε2 = 0.0065 or 0.0109, the459

volume increased at first before it reacheed a steady state; when ε2 = 0.0250 or 0.0294,460

the following biaxial loading path fluctuated around constant values for both deviatoric461

stress and volumetric strain, which means that the switching points correspond to a criti-462

cal state. The stress-strain evolution of biaxial tests further proves that at relatively large463
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deformation, the proportional strain loading path will evolve along the critical state line464

defined in biaxial tests.465

466

Based on the results in Figures 16 and 17, the definition of critical state can be ex-467

pressed as follows: for a sample with fixed stress and strain rate directions, a p − q − e468

state is considered as a critical state if the application of a biaxial loading under the same469

lateral pressure, starting from this p − q − e state, leads to zero volume strain and zero470

deviatoric stress evolution. Note that for such a state, a rotation of the principal stress471

direction with p and q constant will nevertheless result in a change of e. This result472

observed for instance in [41] shows that the critical state cannot be described only by the473

three internal state variables p−q−e; additional variables related to the micro-structural474

anisotropy due to loading direction are necessary to define a state equation for the critical475

state line [22].476

477

Figures 16 and 17 also provide information for comparing the unconstrained dilatancy478

obtained in biaxial tests with the imposed dilatancy in proportional strain tests ii. As479

illustrated in Fig.18, the solid line represents the imposed dilatancy with respect to axial480

strain. The fixed dilatant rate is characterized by the slope of the line. The fins give the481

unconstrained dilatancy rate (namely a direction of incremental volumetric strain), that482

would be observed if the loading were switched to a biaxial one. At the beginning, the483

imposed dilatancy is larger than the unconstrained dilatancy (from point O to X), the484

mean stress p decreases slightly from p0 to X. When the imposed dilatancy is smaller than485

the unconstrained dilatancy expressed as ε̇unconstrained
v < ε̇imposed

v < 0 (from point X to Y),486

the stress response p increases from X to Y. The unconstrained dilatancy decreases contin-487

iiNote that the terms unconstrained and imposed are used to recall that the volumetric strain is a
response variable in a biaxial loading while it is a control variable in proportional strain tests.
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uously thanks to the imposed dilatancy. The states at ε2 = 0.0065 and 0.0109 in Fig.17488

belong to this domain. At points X and Y, where the unconstrained dilatancy equals489

the imposed dilatancy, the mean stress p reaches the peak. The state at ε2 = 0.0207 in490

the proportional strain test is close to point Y. After point Y, the unconstrained dila-491

tancy decreases continuously to become smaller than the imposed dilatancy, described as492

0 > ε̇unconstrained
v > ε̇imposed

v till zero unconstrained dilatancy at point Z (ε̇unconstrained
v = 0).493

At point Z, the stress path reaches the CSL defined by biaxial tests. If a biaxial path is494

followed after point Z, ε̇unconstrained
v = 0 occurs as shown in the results from mixed tests495

switched at ε2 = 0.0250 and 0.0294. The further imposed dilatancy after point Y leads496

the stress path to turn back to approach point O along the CSL. In conclusion, when the497

imposed dilatancy is smaller (larger) than the unconstrained dilatancy, the mean stress p498

increases (decreases).499

500

The results in Fig.7 suggest that the relation between imposed dilatancy/contractancy501

in proportional strain tests and dilatancy/contractancy expected in biaxial tests can be502

categorized as shown in Fig.19. The strain path 1 represents a situation for which the im-503

posed dilatancy is larger than the unconstrained dilatancy (contractancy can be regarded504

as the negative dilatancy) from the beginning. This strain path leads to a liquefaction505

presented as stress path 1. Dilatant proportional strain loading path 2 leads to a more506

complex response, as discussed before.507

508

The proportional strain test with zero volume change (often referred to as undrained509

test) can be categorized as one of two types, depending on whether ε̇unconstrained
v < 0 at510

the beginning (path 3) or ε̇unconstrained
v > 0 (path 4). The unconstrained dilatancy along511

loading path 3 tends toward zero (horizontal direction), when approaching the critical512
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state. Conversely, loading path 4, representing an isochoric test on a loose sample, results513

in liquefaction.514

515

As for the contracting proportional strain path, two groups can be identified according516

to whether the stress path crosses the CSL as paths 5 and 6 do. At the beginning of curve517

5, the unconstrained contractancy being larger than the imposed contractancy, the mean518

stress p decreases slightly. Shortly afterwards, the unconstrained contractancy becomes519

smaller than the imposed contractancy, which leads to the increase in p. The direction of520

the fins tending to become horizontal is synchronized with the p − q curve approaching521

the CSL when strain localization takes place within the sample. The representation of522

curve 5 is based on results from simulations of mixed biaxial/contracting proportional523

strain loading paths (these results are not presented in this paper whose focus is upon524

dilatant proportional strain loading paths). Curve 6 represents the situation where the525

unconstrained contractancy is always smaller than the imposed contractancy, which leads526

to a continuous increase in p.527

528

To summarize, the mean stress will increase in the dilatancy domain, when the im-529

posed dilatancy rate is smaller than the unconstrained dilatancy rate. When the imposed530

dilatancy is larger than the unconstrained dilatancy, the mean stress decreases and tends531

to 0 for large volumetric strain. When the imposed dilatancy is first smaller and then532

larger than the unconstrained dilatancy, the stress path is likely to undergo a stress loop.533

In the contractancy domain, when the imposed contractancy is larger than the uncon-534

strained contractancy, the mean stress increases. On the other hand, an imposed con-535

tractancy being smaller than the unconstrained contractancy will result in a decrease in p.536

537
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These numerical findings can also be interpreted in terms of dilatancy angles if we538

recall that the dilatancy angle is defined in 2D by sinψ = ε̇v/ε̇d = ε̇v/(2ε̇axial − ε̇v).539

As long as it can be assumed that granular materials follow a standard non-associated540

elasto-plastic behavior (which is true in 2D or axisymmetric conditions for instance[28]),541

the dilatancy angle characterize the flow rule, and the unconstrained dilatancy can be542

viewed as a material property. This broadens the scope of the analysis summarized in543

Figure 19 insofar, as making it independent of the loading paths considered (at least for544

2D or axisymmetric conditions). The present results are also consistent with previous545

experimental and theoretical studies [8, 9]. In [8], the dilatancy rate defined by ε̇v/ε̇axial546

can be related to the effective mean pressure. In the criterion of liquefaction given in [9],547

the dilatancy angle obtained from the flow rule and the mean pressure at a given initial548

void ratio have a non-linear negative correlation.549

550

7 Conclusion and outlook551

By simulating proportional strain tests, biaxial tests and complex loading paths combin-552

ing biaxial and proportional strain paths using DEM, we have explored through a series of553

mechanical and fabric indexes the relation between proportional strain tests and critical554

states from biaxial tests.555

556

In considering the results obtained from biaxial tests, we have observed that all struc-557

tural variables (e∗, α∗
c , r

∗
i ) within shear bands for specimens experiencing a localized kine-558

matic pattern will converge to the same values as for specimens experiencing a diffuse559

kinematic pattern at critical state along the same biaxial loading path. These results560
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are consistent with the conclusion drawn by Zhu et al. [48] that localization and diffuse561

patterns share the same fabric properties.562

563

As for proportional strain tests, when the dilatant rate is relatively small and the564

axial strain is large enough, a stress path in the p− q plane will finally reach the critical565

state line defined by biaxial tests after experiencing a stress loop. The curves on the p−e∗566

(void ratio), p−α∗
c (fabric anisotropy intensity defined from contact normal direction) and567

p− r∗i (population of meso-loops) planes also converge towards a master curve regardless568

of the magnitude of dilatancy characterized by λ = −1.2,−1.3,−1.4. In combining these569

results, it can be inferred that any dilatant volume change will always result in similar570

(p, q, e∗, α∗
c , r

∗
i ) states after the material memory has been erased.571

572

More interestingly is the relation observed between the mechanical states reached573

along a proportional strain test and the critical states obtained from biaxial tests within574

the framework of ACST. Macroscopic responses (p, q, e∗) and fabric-related measures575

(α∗
c , r

∗
i ) in homogeneous domains along biaxial tests evolve towards the evolution curve576

of those variables from proportional strain tests at critical state. Given these results,577

only one single test is therefore necessary to construct the classical critical state line in578

(p - q - e∗ - α∗
c - r∗i ) space for any granular material. Therefore, the CS concept can be579

generalized to a wide class of loading paths which shows that CS acts as a general at-580

tractor irrespective of the loading path considered. This idea of proportional strain paths581

enriched considerably the data base for confirmation of CST and ACST.582

583

The mixed proportional strain and biaxial loading paths also confirm this relation. A584

more general definition of CS can be given as follows: a p− q− e state, for a sample with585
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constant stress and strain rate directions, after a given loading history, is considered at586

critical state if the application of a biaxial loading under the same lateral pressure start-587

ing from this p−q−e state leads to zero volume strain and zero deviatoric stress evolution.588

589

In addition, the comparison between the imposed dilatancy/contractancy along pro-590

portional strain paths and unconstrained dilatancy/contractancy expected along biaxial591

paths provides valuable information to the interpretation of the various loading paths592

obtained in p − q plane for proportional strain loading paths. Along proportional strain593

tests, the volumetric strain, which tends to be steady, produces the stress path approach-594

ing the CSL.595

596

Proportional strain loading paths are attracted by the critical state line. For sam-597

ples initially at critical state (after a biaxial loading for instance), a proportional strain598

loading imposes the evolution of the sample state along the critical state line. Even for599

samples not initially at critical state, when subjected to proportional strain loading, the600

micro-structure rearranges itself and reaches geometrical arrangements corresponding to601

critical state. This memory fading is probably a key ingredient affecting complex systems602

and may also be at the origin of emerging properties. It will be of great interest to further603

investigate the underpinning mechanisms of memory fading according to the kinematic604

pattern (localization vs. diffuse mode). In addition, from a microscopic point of view,605

critical state is a dynamic equilibrium, where only statistics are constant. Most consti-606

tutive models for granular materials describe the critical state from a phenomenological607

point of view ignoring the micro-mechanical dynamics. Allowing critical state to emerge608

in micro-mechanical constitutive models from a physical viewpoint will provide a chal-609

lenging topic for the future. One limitation of this study is that all conclusions above are610
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drawn based on 2D simulations. The extension to 3D, numerically and experimentally,611

will be attempted in the future.612
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