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Abstract 
Wetlands conservation and resilience capacities are key issues in many places over the globe.
Understanding these issues will benefit from a precise knowledge of seagrass species
occupancy and coverage over time and over space. Such information can be obtained from
remote sensing images and their classification thanks to a vegetation index, to be used in a
complementary manner to field work inventories. Sentinel-2 data, which are available with a
frequent revisit time (<5 days) and a high spatial resolution (10m pixel size) can be used to
map grassbeds at the surface or slightly below the surface of permanent lagoons, hence
enabling the characterization of its seasonal dynamics, which was not possible with previous
remote-sensing tools. We have proved the feasibility of  such a method in the natural reserve
of the  Bagnas (Herault, France) where Stuckenia pectinata coverage can be tracked over a
full year thanks to Sentinel-2 images and field work. Inter-annual dynamics (seasonal growth
and senescence) can be mapped over time with 10m resolution and will be extended to
pluriannual studies thanks to the long-term objective of the Sentinel-2 mission. This opens the
way to a concerted management of natural reserves based on data analysis and field
knowledge, a better understanding of seagrass coverage with fluctuating environmental
conditions, and predictive mechanistic and/or stochastic models of future qualitative trends.

Keywords: Remote sensing – temporal survey – mesohaline lagoon – National Natural
Reserve of the Bagnas (France) – pondweed grass beds – Sentinel-2 satellites – Stuckenia
pectinata – ecosystem management – ecological indicator – wetlands conservation
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Introduction
Wetland conservation has become a cornerstone of conservation biology, as these

habitats represent high biodiversity areas, and critical human resources in terms of water
(Pereira et al., 2009), food supply, and eventually recreational areas (Newton et al., 2018).
Consequently, they are under global pressure due to the intensive use of water and change of
soil occupation, which both threaten wildlife and disrupts ecosystem services (Gaertner-
Mazouni and De Wit, 2012). Coastal lagoons are transition waters between continental and
marine domains, filled with brackish water in which salinity may vary over time. They
exemplify wetland conservation issues since they are highly diversified habitats of significant
conservation value (Pérez-Ruzafa et al., 2011). At the same time, they have to face ever-
increasing human impacts due to the development and urbanization of coastal areas (Pojana et
al., 2007) and land use throughout the catchment area (Cañedo-Argüelles et al., 2012; Shili et
al., 2007). Lagoons also represent essential habitats for a variety of taxa: they are a privileged
stopover for migrating birds (Holm and Clausen, 2006); they constitute nurseries for sea
fishes (Yamamuro, 2012); they host many plants (both angiosperms and algae) specific to
these habitats (Hartog, 1981). Variation in salt concentration is a significant determinant of
ecosystem functioning and profoundly impacts biodiversity. Thus, water input shapes the
biodiversity of such ecosystems and can trigger drastic changes over short periods (Obrador
and Pretus, 2010; Shili et al., 2007; Antunes et al., 2012).

International awareness of those conservation issues has led to the introduction of
protection treaties, such as the Ramsar treaty (Gardner and Davidson, 2011). At the European
level, two directives have been set up to protect those habitats. First, the Water Framework
Directive (WFD) aims at preserving European waters in a good quality state (Chave, 2001).
This convention covers all water bodies from rivers to lakes larger than 0,5 km2, including
coastal lagoons. In parallel, the Habitats Directive (HD) has defined a list of protected habitats
and aims at maintaining their good conservation status to preserve wildlife over long time
periods. Lagoons represent one particular habitat, named "habitat 1150 – Coastal lagoon".
Additionally, different national initiatives have added layers to the protection of such areas. In
France, the National Natural Reserve network includes several lagoons, which ensures land
protection and allows the implementation of management plans tackling biodiversity issues
(Therville et al., 2012).  

Within lagoons, grass beds represent a key compartment of the ecosystem. They are
primary producers that provide food and produce oxygen, which is essential to many
organisms (Camacho et al., 2012; Scheffer, 1997). They constitute shelters for a whole range
of animals, including fishes and invertebrates (Benedetti-Cecchi et al., 2001; Lloret and
Marín, 2009). The analysis of their composition and dynamics inform on the ecosystem
functioning, regarding both abiotic compartment of the ecosystem (e.g. water and soil
characteristics) and biotic interactions (Camacho et al., 2012). Water quality strongly
influences grass beds, as salt and trophic levels influence plant development and survival
(Obrador and Pretus, 2010). Eutrophication is a critical issue as it might lead to a dystrophic
crisis when oxygen decreases to the point where wildlife dies because of anoxic conditions
(Duarte et al., 2002). Such changes in abiotic conditions can lead to sharp temporal transitions
in plant community composition and structure (i.e. grassbed extent) that in return deeply
modify the functioning of the whole waterbed (Obrador and Pretus 2010, Antunes et al. 2012,
Perez-Ruzufa et al, 2011), including nutrient cycling (Duarte et al. 2002). Therefore,
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understanding grass bed dynamics is an efficient surrogate to ecosystem functioning and is a
prime indicator to manage such a system. 

Legal protection usually assigns biodiversity management as the primary mission of
protected areas, intending to ensure the long-term persistence of biodiversity on the territory.
Implementing efficient conservation strategies requires accurate tools to detect the effect of
changes in the system, and grass beds represent key indicators to understand ecosystem
dynamics. However, quantifying grass beds dynamics is a complex task, due to the inherent
difficulty to access such vegetation (Silva et al. 2008), and assess such highly varying intra-
annual dynamics through the required frequent temporal revisits (Shili et al., 2007; Antunes et
al., 2012). Additionally, the protection status of some lagoons prohibits the use of intrusive
and destructive sampling methods, and restrain access to such areas to limit disturbance of
animals. Collecting and maintaining up-to-date and regular information on grassbed
distribution is a major challenge (Antunes et al. 2012).

In this context, the use of remote sensing is a powerful way to characterize the
dynamics of such vegetation without impacting this environment. Lagoons were among the
first to be studied when remote sensing methods emerged 20 years ago (see the review on
pioneering works by Lehmann and Lachavanne, 1997). At that time, those new methods had
to face sharp criticisms because they were expensive (Silva et al., 2008) and produced
inaccurate results (Cazals et al., 2016; Vis et al., 2003). These approaches have seen their
performances rapidly improving over the last ten years and are now increasingly used in
ecological researches (Veetil et al, 2020). Yet, such methods have failed so far to enter the
current monitoring scheme of most natural reserves due to their high cost and complexity of
treatment. Moreover, studies either focused on high resolution/low frequency (i.e. once a
year) data (e.g. Khanna 2011, which uses a hyperspectral detector able to distinguish between
different species of seagrass), or low resolution/high frequency data, typically based on
Landsat images (Lyons et al, 2013)

Today, the emergence of new satellites that produce repeated images free of cost
boosts the development of such technology, and allow ecologists to get insights into seasonnal
dynamics of grass beds, a dimension that was hardly accessible before (Traganos et al 2018,
Kohlus et al, 2020). In particular, as part of the European Union Copernicus program, the two
Sentinel-2 satellites produce images every 5 days, at a high spatial resolution of 10 m. Each
satellite carries a single multispectral instrument with 13 spectral channels within visible,
near-infrared, and shortwave infrared spectra, which are particularly adapted to detect
vegetation. This massive flow of earth observation data provides a rich and detailed
description of ecosystems, allowing their condition and evolution to be monitored. It is thus
possible to analyze intra- and inter-annual changes in ecosystems at a fine-scale or monitor
the evolution of the phenology of various ecosystems. The seasonal dynamics of intertidal
grassbeds was investigated in Zoffoli et al, 2020, at low tide.

Through this article, we model the growth and persistence dynamics of lagoon grass
beds using remote sensing approaches based on images from the Sentinel-2 satellite, and we
choose the Bagnas Natural Reserve located in the south of France as a model ecosystem. We
model the intra-annual (i.e. seasonnal) dynamics of such a system during the year 2017 thanks
to high quality repeated images produced every two weeks. Firstly, we differentiate aquatic
vegetation (which can be either submerged or lying at the water surface) from peripheric
reedbeds belts to precisely delimit the open-water lagoon extent. Secondly, we develop two
approaches to delineate grass beds based on simple spectral indices thresholds and Spectral
4
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Linear Unmixing approaches. Finally, we compare these two approaches and validate them
with a field map realized in summer 2017 to assess the accuracy of our methods. We discuss
how such a methodology can be extended to other lagoon ecosystems worldwide. 

Materials & methods
1. Study site

Coastal lagoons are well represented in the south of France, especially west of the
Rhône delta (i.e. the Camargue region) where the coast (i.e. Gulf of Lion) is formed by
sedimentary deposits. Located in the city of Agde (Hérault, France), the Bagnas (Figure 1) is
a National Natural Reserve since 1983 and Natura 2000 site since 2004. It is composed of
several lagoons of various sizes whose functioning includes temporary and permanent water
bodies. The central lagoon (named "Grand Etang du Bagnas") is a coastal lagoon of
approximately 190 ha. The catchment area measures 805 ha, and is mostly occupied by
agricultural activities (including vineyard) and urbanization. 

Most of the water supply (66%) corresponds to freshwater coming from the Hérault
stream through the Canal du Midi (Agbanrin, 2018). The rest is brought by rainwater (34%).
The lagoon is hydraulically managed to preserve qualitatively  biodiversity issues, especially
for water birds. This management consists mainly of controlling inflows and outflows to
maintain water levels compatible with the ecological requirements of species. As a result,
water levels are maintained at about 85 cm between December and March to support
wintering stationing of waterbirds species. From the beginning of spring, the water levels are
lowered until reaching 40 cm in August to allow the nesting of specific target species and also
to make the lagoon attractive for migratory birds next fall (however, there are fluctuations and
discrepancies between target water levels and measured water levels, see Appendix 1). Thus,
its salinity is comprised between 5 and 20g/L, and fluctuates throughout the year depending
on water inputs, making it a mesohaline lagoon (Grillas et al., 2018). 

The lagoon is surrounded by reed beds and is extensively covered by a grass bed
almost exclusively composed of pondweed (Stuckenia pectinata (L.) Börner 1912). The grass
bed stretches to its maximum extent during the summer (August-September) and disappears
during winter. When plants reach their maximum development, their leaves attain the surface
and entirely cover parts of the water body. It constitutes an essential resource for migratory
birds, especially ducks that feed on leaves and/or seeds (Arzel et al., 2006). Two other species
can be occasionally found: Ruppia cirrhosa (Petagna) Grande, 1918 is an angiosperm sparsely
distributed throughout the lagoon, most of the time represented by few individuals;
Lamprothamnium papulosum (K.Wallroth) J.Groves, 1916 is a Characeae that occasionally
appears below grass beds, and never reaches the surface. 
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Figure 1: Map of the Bagnas Reserve region of interest. The full reserve limit is in
red, while the Grand Bagnas where our study focuses is limited by the blue line.

 2.  Satellite images
To detect grass beds, we used Sentinel-2 multispectral images with 10m resolution

bands: blue (B2), green (B3), red(B4), and near-infrared NIR (B8). These images are
produced by two satellites (Sentinel 2A and 2B) launched by the European Spatial Agency
(ESA) thanks to the Copernicus program of the European Union. They allow accessing
images of the same area every 5 days. ESA produces and distributes Level 1C ortho-rectified
data expressed in reflectance at the top of the atmosphere. Theia platform (theia.cnes.fr)
produces and distributes level 2A data, corrected for atmospheric effects thanks to the MAJA
software (Hagolle et al., 2017). This processor uses multi-temporal information to detect
clouds and clouds' shadows to estimate the optical properties of the atmosphere. Thanks to the
high temporal frequency of the Sentinel-2 instrument, we could work with a temporal series
of 32 high-quality cloud-free images taken between January 13th 2017, and April 13th 2018.
Early 2018 images were conserved to assess the date of minimal expansion of the grassbed, as
mediterranean winter does not coincide strictly with calendar year.

3.Field data
During summer 2017, we launched a field campaign to map the distribution of the

grass bed. We set up 103 sampling points following a systematic grid of 200m, doubled
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within the first 100m from the pond border to improve the detection of vegetation variability
(personal communication P. Grillas, 2016). Each point was sampled by boat at the end of July
2017; first, we recorded the frequency of each species of the community based on 5 samples
collected with a rake all around the boat. Second, we evaluated the grass bed cover by giving
6 estimations of its total cover within 6 sectors around the boat (Appendix 2). All estimation
was made by the same person, based on a simple scale to classify the grass bed as absent (no
plants), rare (0-25%), abundant (25-50 %), or very abundant (>50%). The median of those
classes was averaged to obtain one cover estimate per sampling station (following van der
Maarel 1979). At the same time, we measured the depth at each sampling point with a rigid
meter (precision ~ 1cm) and used linear interpolation to create a bathymetric map. 

4.   Remote sensing mapping of grass bed 
4a. Preliminary treatment

Thirty-two Sentinel-2 images were downloaded from the Theia platform and clipped
with the gdalwarp tool from the library gdal (GDAL/OGR contributors, 2020) according to
the region of interest. The four 10 m bands (B2, B3, B4, B8) of each image were then
concatenated to i) create a series of color composite and ii) to calculate spectral indices over
the lagoon area. The color composite consists of a combination of bands to better visualize
and photo-interpret the satellite image. Two-color composites were derived. The first one, a
true-color imagery, was displayed in a combination of red, green, and blue band, and the
resulting image was reasonably close to reality. The second, a false-color image, was built
with band 2 displayed in blue, band 3 in green, and band 4 in red. Vegetation appears in bright
red as green vegetation readily reflects infrared light energy. 

Then, we computed several different radiometric indexes to select the one that allowed
to better-distinguished water from vegetation (see Appendix 3 for details). We retained the
Modified Soil Adjusted Vegetation Index 2 (MSAVI2) (Qi et al., 1994) according to our
observations and in agreement with the literature (Calleja et al., 2019; Colditz et al., 2018;
Bradley et al., 2004). It was calculated with the formula: 

MSAVI2=
2∗NIR+1−√(2∗NIR+1)2−8∗(NIR−R)

2
where NIR and R are respectively the near-infrared and red band reflectances.
Additionally, we generated a map of the MSAVI2 variance to distinguish vegetation types
based on their variability over the studied period and studied area. 

4b. Pixel interpretation and sampling method
Our approach is based on the interpretation of pixels based on true and false-color

images composites, MSAVI2 index, and variance of the MSAVI2 throughout the year.
Though the definition of classes can be difficult, we propose a simple scheme that describes 3
classes to classify pixels that belong to three compartments of the lagoon, namely reedbeds
(R), grassbeds (G), and water (W). Reedbeds form a belt around the lagoon; they appear
clearly in true color maps and present the lowest variability over the time, as they are
helophytes that maintain a minimal photo-activity all year long. 

Based on our field study and local knowledge from reserve managers, we assumed that
grass beds are dominated by one single aquatic species (Stuckenia pectinata). According to
the season, pond grass can be either absent, submerged (early stages of growth), or emerged
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on the surface of the lagoon (later stages of growth). Thus we identified pondweed grass bed
pixels as being variable through the year and exhibiting high MSAVI2 values during summer.
True color images taken during summertime allowed us to identify large continuous patches
of grass bed in which we selected our pixels. 

Finally, we characterized water pixels as being the least variable, with low MSAVI2
values and being blue in true color. They remain water pixels on the whole series of images. 
We sampled a number of photointerpreted polygons from each category. Appendix 4 shows
the photo-interpreted pixels. 

4c. Temporal profile of MSAVI2 and threshold classification method
The objective was to delimit ecosystem compartments. To do so, we extracted the

MSAVI2 value of all reference pixels throughout the temporal series of images and plotted it
to create compartment profiles for R, W, and G. Then, we visually investigated the curves to
consider whether or not we could separate the signatures from each class.  

First, we had to delimit the open water part of the lagoon and exclude surrounding
reedbed belt to create a water body mask, as pixels identified as reedbed would be used as a
mask to explore only G inside the water body. Reedbeds are vegetation whose occupancy
remains globally stable during one vegetative season. Thus, we chose one image that presents
the biggest difference between reedbed MSAVI2 values and all other compartments of the
ecosystem, to fix a threshold we later applied to the whole series of images across the lagoon. 
In the second part, we aimed at mapping the occupancy of grass bed by discriminating W
from G. G fluctuate along the year, as aquatic vegetation grows during the spring and decline
in winter, stopping all photosynthesis. Yet, W pixels were chosen because they stayed stable
and presented nearly no photosynthetic activities during the year. Therefore, we fixed the
lower threshold below which a pixel is considered as water as the highest value of the mean
W series (see Cazals et al., 2016). Preliminary results showed us that the maximum
development of the grass bed was around August-September, so we similarly fixed the
threshold above which a pixel is considered G as the lowest mean value of the series. 

While W and G classes could be clearly identified using photo interpretation, the
values between the two thresholds corresponded to different types of aquatic vegetation:
sparse grass bed, growing grass bed, or mixed-pixels that contained both developed grass bed
and water in various proportion. We have chosen not to assign those pixels to one or the other
category, so we assigned a mixed (M) class is to every pixel in which index value lies in
between these 2 thresholds. 

4d. Spectral Linear Unmixing (SLU) classification method
The Spectral Linear Unmixing (SLU) method provides a continuous description of

each pixel in terms of a percentage of 2 pure endmembers and is commonly used in (Keshava
and Mustard, 2002; Wikantika et al., 2002). We used the R hmisc library for spectral linear
unmixing between 2 endmembers (Harrell Jr, 2018). The chosen endmembers were
respectively W and G, which spectral signatures were sampled using the 4 bands on photo-
interpreted pixels chosen in 17 different images of the time series (42 pixels for W, and 52
pixels for G). After the unmixing analysis, each pixel in each image is assigned a percentage
of W content and G content, resulting in a continuous gradient of aquatic vegetation content
between the 2 pure endmembers. The analysis workflow was written and run using the free
software R and QGIS. Figure 2 illustrates the general implementation scheme of the method. 
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Figure 2: General  data workflow scheme.
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5.Statistical analysis
5a. Conformity of the two modeling approaches

We compared the conformity of the two approaches by plotting for each pixel the
value extracted from the SLU method against the corresponding category (W-M-G) defined
through the threshold approach .

5b. Comparison of field data and modelized grass bed maps 
To compare the accuracy of field and modeling approaches, we modeled the fit of our

results based on remote-sensing with field maps established during summer 2017. To account
for localization mismatch, we extracted for each sampling point the modeling output of each
of the nine 10*10m pixels centered around the GPS points, for both threshold and unmixing
approaches. Field sampling took place on July 29th 2017, so we extracted corresponding
values from the closest image captured on August 08th 2017. 

For the threshold method, values extracted from pixels were categorical. For each field
sampling point, we calculated the proportion of each category (W, M, G) out of the 9
corresponding pixels. Then we fitted a generalized linear model for each category, with the
proportion of pixels as the response variable and the field estimate as the explanatory variable.
We used a quasi-binomial probability density function as preliminary analysis showed high
overdispersion in the data. 

For W, we expected a decrease of W-pixels proportion with denser vegetation cover;
for G, we expected the reverse trend. Then, the proportion of mixed-class pixels was supposed
to peak for intermediate field values, representing sparse grass beds. Thus, we added to the
model a polynomial term with the square of the field value as an explanatory variable. 

For the SLU method, values extracted from pixels were continuous. We averaged the
nine values and ran a generalized linear model with the field-estimated cover of the grass bed
as the response variable, and the averaged modeled value as the explanatory variable. We also
used a quasi-binomial probability density functions for similar reasons.

For each model, the significance of each explanatory variable was investigated thanks
to a t-test implemented in the "summary" function in R (R Core Team 2019). 

Results
1.  Time variation of the MSAVI2 index

The MSAVI2 profile for water is distinct from the profiles of aquatic vegetation
(Figure 3). Reed, however, can have an index value comparable to aquatic vegetation and has
to be considered separately. Aquatic vegetation has an annual index profile showing a
minimum in winter, a growth phase, and a maximum saturation state during the summer and
fall. Because patches of aquatic vegetation do not grow synchronously over space, some
aquatic vegetation grows early and emerges in the summer, while others stay submerged
during more prolonged periods. Thanks to this index profile over time, we built a
classification scheme that allows consistently classifying the complete image time-series,
based on the distinction between water, submerged aquatic vegetation, and emerged aquatic
vegetation. The reed beds spatial extent was characterized using (MSAVI2 variance) and the
threshold value of its MSAVI2 index (> 0.15) on the June 2nd 2017 image as it shows to be
distinct from aquatic vegetation at this date. We used the spatial extent of the reed as a mask
on all the images so that the subsequent analysis was only done on W, M, and G. 
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Figure 3: MSAVI2 Index temporal profile from January 2017 to March 2018.

2. Results from the Threshold Method
We used the MSAVI2 profiles to define thresholds to distinguish between the W, M,

and G classes discretely. While W and G classes can be identified using photointerpretation
(their MSAVI2 thresholds values being respectively less than 0.025 for W and more than 0.15
for G), the M class is assigned to every pixel whose MSAVI2 value lies in between these 2
thresholds. From our field knowledge, we can infer that most of these pixels refer to actual
submerged aquatic vegetation, with occasional pixels of a mixed boundary phase between
aquatic vegetation and water, or even pixels of very turbid, nutrient-rich water. 

The threshold method is efficient in classifying in a discrete way (W, M, G) the
aquatic vegetation over time. We choose to represent the results at 6 distinct dates
representative of the seasonal variations of aquatic vegetation development (Figure 4). The
results of the method are consistent in the sense that each pixel changes class over time in the
way it should do following the vegetation annual cycle : from W to M (first stage of growth in
the water) to G (maximum growth), then to M again (start of senescence phase) to W finally.
The classified maps allow computing the relative areas of the different classes on a single
graph. Adding the M and G class areas allows computing the global growth starting early
spring 2017 and leading to the maximal extent at the end of August 2017, which is persistent
over the whole lagoon until early January 2018. Senescence then starts and continues until the
end of February 2018, where the lagoon is void of vegetation again. The mixed-phase
corresponds indeed to submerged aquatic vegetation, and its dynamics allows detecting the
very early stage of growth of aquatic vegetation. M area shows a peak in early July,
corresponding to aquatic grass reaching the surface after the subaquatic development phase.
Since floating aquatic vegetation reflects a radiometric signal different from submerged
aquatic vegetation, it is then classified as G. At this transition time, the M area starts to grow,
whereas the G area starts to decrease. 
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Figure 4: Classified maps obtained from the threshold method: W (blue), M (orange),
G (dark green), reedbeds (light green). The blue line represents the water coverage
over time, whereas the dark green line is the G coverage and the dashed dark green
line is the (G+M) coverage.
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3. Results using the Spectral Linear Unmixing (SLU) method
This method provides a continuous measure of the aquatic vegetation development

over time, which is presumably proportional to an abundance measure. The dynamics of each
pixel of the studied area is also consistent with the annual vegetation cycle. Figure 5
illustrates how pixels are analyzed using the SLU method and provide maps of a measure of
vegetation abundance over time. The mean LSU index over variable pixels sums up the
seasonal growth and senesence of the grassbeds. Photo-interpreted pixels of W, early G, and
late G (see Appendix 4) are distinct from each other regarding aquatic vegetation content
during the growth phase, and their maximum vegetation content during the summer and fall
are also significantly different (not shown). However, they follow the same mortality curve
during the senescence phase starting in December 2017. Water pixels are somehow analyzed
in an unexpected way, with 40% of aquatic vegetation at the end of the fall, which may
correspond (as it is most likely an artefact of the LSU method) to nutrient-rich content – either
algal bloom or dying aquatic vegetation-(not shown).  
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Figure 5: Classified maps obtained from the LSU method: W (blue), M (orange), G
(dark green), reedbeds (light green). The black curve is the mean LSU index
temporal profile.

4. Comparison of the two methods
The two approaches are globally coherent, as we observed the expected trend of higher

SLU values in the grass bed category compared to mixed and water. We observed a clear shift
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between grass bed (G) and mixed (M) compartment for a SLU value of approximately 0.45.
However, this limit is not perfectly clear between mixed (M) and water (W), as an overlap
appeared for SLU values of 0.15 to 0.3. (Figure 6).

Figure 6: Comparison of the concordance of two modelling approaches (Linear
Spectral Unmixing and Classification) to classify Sentinel 2 images into ecosystem
compartments in a coastal lagoon. Violin plots represent the distribution of pixels
value based on the LSU model (y-axis) classified in their related category (x-axis).
Categories represent the three ecosystem compartments: 1 is for water, 2 is for
mixed vegetation, and 3 is for grass bed.

5. Comparison with field data
To analyze the relationship between the proportion of categorized pixels through our

remote sensing approach and the field estimate of grass bed abundance, we ran one test per
category (Figure 7). For W, the proportion of pixels decreased significantly with the increase
of grass bed abundance (coefficient estimate ~ -5.5 (±1.98), t-value ~ -2.781, p-value ~0.006)
as expected. For G, the proportion of pixels increased significantly with the increase of grass
bed abundance (coefficient estimate ~ 2.84 (±0.47), t-value ~ 6.041, p-value ~1.7e-08) as
expected. For M, we detected a weak decrease in the proportion of pixels against grass bed
abundance (coefficient estimate ~ -0.96 (±0.42), t-value ~ -2.284, p-value ~0.02) but no peak
as previously expected. Such results have to be considered with care because both models
performed poorly, as reflected in high overdispersion rate found for each one (residual
deviance of 225, 684 and 695 for 112 degrees of freedom, for W, M, and G, respectively),
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despite the use of quasi-binomial probability density functions. This failure is explained by
the very high skewness toward high values of field data, as presented in Appendix 5.  

We faced similar issues when running the comparison with LSU. We detected a
significant positive relationship between field estimates of grass bed abundance and LSU
(coefficient estimate ~ 7.02 (±1.04), t-value ~ 6.77, p-value ~5.02e-10). However, the model
performed poorly as the residual deviance was 5405 on 121 degrees of freedom, which
reflects very important overdispersion in data. 

Figure 7: Comparison plot of field values with results from two modelling approaches
(Linear Spectral Unmixing and Classification). Field samples were geolocalized, and
the nine 10*10m pixels were attributed to the sampling station in order to account for
GPS precision. The top three plots represent the proportion of pixels attributed to
each class (plot a: water, b: mixed vegetation, c: grass bed) as a function of the cover
of grass bed estimated through a field approach. The bottom plot (d) represent the
proportion of grass
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Discussion
Creating reliable ecological indicators is a prerequisite to assess the efficiency of

ecosystem management. Lagoons are dynamic ecosystems of high conservation value, and
monitoring grass bed is paramount to understanding their ecological status. Here we present
an easy-to-handle method that allows managers to survey grass bed development every week
based on the open, free and public satellites image archive of Sentinel-2. This tool allows
reserve managers to survey vegetation at a high spatio-temporal resolution without any
intrusion in the habitat (a crucial aspect in reserves), which limits disturbances of the
ecosystem. The annual dynamics derived by this method and is a prerequisite knowledge to
understand the grassbeds ecosystems over many years, given that it continues to be derived
each year.

Spatial and temporal dynamic of pondweed grass beds of the Bagnas lagoon 
Analyzing the spatial and temporal dynamics of vegetation every week has shed light

on ecosystem dynamics that were hardly approached before (Antunes et al., 2012). In our
case, satellite images were spread during one vegetative year; we detected a late growth by
May and June. This could be due to the management drought generated the previous year (i.e.,
assec in French) to mineralize the substrate and limit eutrophication. Such perturbation could
have delayed the growth of pondweed and might have extirpated a fraction of the population.
However, previous experiences had shown that most rhizomes remained alive, and individuals
resprouted when water filled up the lagoon (but see also Casagranda and Boudouresque,
2007). This growth was followed by a maximum coverage reached in early August when the
grass bed covered nearly the whole of the water body. Due to summer evaporation and high
density of plants, leaves outcropped at the surface. The grass bed remained in a similar
development state until winter when it slightly decreased. Finally, we did not detect any living
vegetation during the two coldest months of 2018 winter (January-February). However, not
detecting the vegetation is not equivalent to the death of individuals; it's probable that
rhizomes have persisted in the substrate, while leaves died out and decomposed (Casagranda
and Boudouresque, 2007; Van Wijk, 1988). 

The extent of the grass bed cover is to be compared with past information, although no
formal survey has produced analyzable data. In the early 1990s, the lagoon already contained
a pondweed grass bed, but it was fragmented and patchy. After 10 years, the grass bed
covered most of the water body during summer, and despite some inter-annual variability, it
remained like this until now. S. pectinata is a halotolerant species whose growth increases
under eutrophic conditions. Thus, its dominance reveals a high trophic state of the lagoon
(Casagranda and Boudouresque, 2007; Menéndez López and Comín, 1989; Shili et al., 2007),
which could have accumulated nutrients (i.e. nutrient sink, Rodrigo et al., 2013) due to small
water inputs and a “saline effect” (i.e. nutrient accumulation after summer evaporation),
though some purges are done in the winter and spring in the context of water level
management (Agbarin et al., 2018). The management drought organized every 5 to 10 years
aims at limiting eutrophication by mineralizing the substrate, but it is difficult to assess its
efficiency because of a lack of precise surveys. Furthermore, a reflection is currently
underway by the natural reserve scientific board to move towards a more passive management
of the Bagnas lagoon, which should lead to an increase in water salinity (Agbanrin, 2018).
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This change in ecological conditions may affect grass bed composition and spatial extent.
Such changes will have to be monitored; therefore, the use of satellite images will constitute a
fundamental tool to understand grass bed response to lagoon management and its overall
impact on vegetation ecosystems.

A step toward a long-term automated survey of vegetations for conservation 
The setting of long-term surveys within protected and managed natural areas is an

essential step toward efficient conservation of ecosystems over time. Such surveys need to
match several criteria, among which reproducibility (independence of observer), producing
analyzable data (good statistical power), and low cost are crucial (David, 2005). Such
constraints are even more stringent when quantifying dynamic processes require frequent
resampling over the year. Thus, our approach is free of observer bias and produces two
complementary perspectives of lagoon grass beds over time. These two classification methods
are complementary, and both have their strengths and limits. The threshold method produces
very stable results through time; however, thresholds are applied subjectively, and their
strength should be assessed. On the other hand, the SLU method produced results that can be
temporally a bit less coherent: subtle variation in plant growth, or changes in water level, can
affect the reflectance of pixels and modify the calculated vegetation index. The value of
endmembers used to calibrate the algorithm can in principle influence the estimate per pixel.
The 42 pixels of water and 52 pixels of vegetation sampled as end members were selected in a
homogeneous way across the lagoon (hence for different depths and different distances from
the reedbeds borders) and spanning 17 satellite images over time. By analyzing reflectance
values of the pixels for the 4 main bands (RGB and NIR) we noted that their distribution
across pixels could be considered as narrow gaussians. For example, the mean NIR band
reflectance for vegetation endmembers has 0.2176 mean value and 0.0419 standard deviation.
This is somehow consistent with what is expected for « pure » endmembers. However, this
has to be kept in mind and might not be always the case for further uses of « pure »
endmembers across the years or for other lagoons More complex algorithms (such as Spectral
nonlinear unmixing) might also provide better results. However, the complementarity of the
two methods allows users to select the most adapted metric to their context. Additionally, it is
worth mentioning that this methods could be tested using other spectral information, such as
the red-edge region, where the vegetation reflectance generally increases (Shuster et al.,
2012). The use of the red-edge NDVI index could lead to more refined classification
depending on the context, as shown by Khanna et al. (2011) to distinguish macrophytes in
turbid water; however this study based on plane-embarked hyperspectral tools cannot be
reproduced with a frequency comparable to Sentinel-2 data. Note also that in the study of
intertidal grassbeds of (Zoffoli et al, 2020), the NDVI index was proved to be sufficient for
classification, which is probably due to the very low amount of water present at low tide and
to the fact that no other vegetation seemed to be present. It could be interesting to test the
validity of the MSAVI2 index that we used here in the context of intertidal grassbeds.

The integration of remote sensing-based surveys into conservation practices strongly
relies on the use of simple methods, as overwhelming statistical complexity is one of the main
breaks of knowledge transfer from research to applied conservation (Sutherland et al., 2019,
2009). Both methods presented here rely on very simple photointerpretation and basic
knowledge of the lagoon to produce reliable results. The weak correlation observed with field
data points out the weakness of field campaigns to survey such vegetative ecosystems; in
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particular, the inaccuracy of field estimates to precisely quantify abundance within patches of
high plant density. Non-intrusive estimates realized by sighting alone had a marked tendency
to group all patches of high plant density, which led to an extreme skewness in our field data,
and ultimately did not allow us to fit a representative model. Such skewness also prevented us
from using supervised classification methods. Additionally, localization (due to the boat
moving or drifting while sampling, for example) could have implied critical bias when further
mapping results.  

Yet, it is essential to mention that remote sensing-based maps represent the
interpretation of a vegetation index based on the chlorophyllous activity of plants, which is
not directly related to the abundance or the density of the plant. For example, pixels classified
as mixed by the threshold method can represent sparse grass bed, dense grass bed but small
plants with more water to the surface, or transition areas between grass bed and bare soil.
Additionally, there is no consensus to link such vegetation index to a particular feature of
vegetation, be it stem density or biomass (Vis et al., 2003). 

Transferability assessment of the method
The Bagnas lagoon has constituted an appropriate training site to develop the method,

as it allowed a precise detection of the grass bed through satellite images. However, the use of
this method in different ecological contexts might require precautions before interpreting
grass bed dynamics. First, the pondweed grass bed of the Bagnas lagoon was highly abundant
and well developed, which allowed satellites to detect a clear photosynthetic signal. Sparse
aquatic vegetation might be more complex to model (Ahmed et al., 2009). Then, the grass bed
was dominated by one single species, which discarded any bias regarding different reflectance
associated with different species. Regarding the structure of the water body, the lagoon is
homogenously shallow (about 50cm in summer), which limits the impact of water to weaken
the signal. Water was relatively clear, probably as a result of shallow water, high plant density
that limits current and water column that contained little to no suspended sediment  (Grillas et
al., 2018; Shili et al., 2007). Finally, no micro-algae bloom  occurred during the study period,
an event than can blur the detection of grass bed by increasing the chlorophytic signal.
Therefore, it is likely that the transferability of our approach might require some technical
adaptations to be efficient in different contexts; for example, temporal series of images could
be used to model a pixel-based vegetation index trajectory that could smooth measurement
artifacts.  

Perspectives to understand intra-annual and inter-annual plant growth or persistence
The rise of new ecological data opens new paths to model dynamics at a fine scale.

Maps produced by the SLU method can be used to infer growth parameters (not measurable
by field surveys) that are likely to be heterogeneous in space and likely to depend on the
topographic and environmental parameters of the study site. Population dynamics simulations
can be implemented using these parameters for prediction and management purposes in
different environmental scenarios. This will provide temporal scenarios of plant coverage
based on real data, to be compared to known theoretical cases where the effect of
heterogeneity of growth rates (Hiebeler 2004) and connectivity heterogeneity (Gillaranz et al
2012, Huth et al 2015) have been previously studied. The Sentinel-2 image acquisition is
expected to last to last until 2029 (with the potential launch of a complementary twin-satellite
system in 2022) and will allow sustaining the intra-annual data analysis over several seasons
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(work in progress). Hence the evolution of the vegetation year after year at its maximum
development will be inferred. Hopefully, one will be able to learn from these data and their
correlations with environmental parameters to build predictive models. Other detectors will be
complementary for interannual monitoring such as Rapid Eye, in which archive data were
used in Traganos and Reinartz (2018) in the study of Posidonia grass beds. 

Conclusion
In this article, we have presented an off-the-shelf method combining ecological

knowledge and open access remote-sensing technology to monitor the spatial extent of grass
beds in shallow water lagoons over time, with a spatial resolution of 10m and a temporal
frequency of 5 days. The multispectral data are available through the Copernicus Sentinel-2
program, but other detectors could also be used for local peculiarities. Hyperspectral detectors
have been used for wetlands previously, and the linear spectral unmixing analysis method
proposed here is also used in the hyperspectral context (Khanna et al., 2011, Bioucas-Dias et
al., 2013) when different vegetation species may need to be distinguished. Missions using
hyperspectral detectors will be more frequent in the future thanks to recent research and
development efforts. We can cite missions in progress such as PRISMA (ASI), DESIS
(DLR) , in preparation such as EnMAP (DLR) and finally in longer term preparation such as
BG (NASA) and CHIME (ESA).Field survey analysis remains compulsory and is all the more
useful as field campaign dates correspond to image acquisition dates, and the resolution scales
are comparable. In the long term, the continuous survey of the grass beds at a particular
location will allow understanding correlations between water quality, abiotic parameters,
human activity, topography, and biodiversity. Online applications that allow anyone, from
reserve managers to the general public, to follow the system, can be developed easily as is
being done for the Bagnas lagoon training site (vegmap.irstea.fr). 
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