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Abstract

Pairwise likelihood methods are commonly used for inference in para-
metric statistical models in cases where the full likelihood is too complex
to be used, such as multivariate count data. Although pairwise likelihood
methods represent a useful solution to perform inference for intractable
likelihoods, several computational challenges remain. The pairwise like-
lihood function still requires the computation of a sum over all pairs of
variables and all observations, which may be prohibitive in high dimen-
sions. Moreover, it may be difficult to calculate confidence intervals of
the resulting estimators, as they involve summing all pairs of pairs and
all of the four-dimensional marginals. To alleviate these issues, we con-
sider a randomized pairwise likelihood approach, where only summands
randomly sampled across observations and pairs are used for the estima-
tion. In addition to the usual tradeoff between statistical and compu-
tational efficiency, it is shown that, under a condition on the sampling
parameter, this two-way random sampling mechanism breaks the correla-
tion structure between the individual bivariate likelihoods, allowing much
more computationally inexpensive confidence intervals to be constructed.
The proposed approach is illustrated in tandem with copula-based mod-
els for multivariate continuous and count data in simulations, and in real
data from microbiome and transcriptome applications.

Keywords: pairwise likelihood; composite likelihood; randomization; confi-
dence intervals; mutivariate count data; computational challenges

1 Introduction

Multivariate models represent a valuable framework to explore and estimate
interrelationships among variables in large and complex datasets, such as the
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high-throughput count data collected in molecular biology [28] and microbial
ecology [17] applications. However, regardless of the multivariate model used for
such data, the corresponding likelihood is often complex, costly to evaluate, or
even intractable. To overcome this issue, a solution consists of maximizing a sum
of lower-dimensional likelihoods, called a composite likelihood, instead of the full
likelihood [25]. Often, the sum over all pairs of bivariate marginals is used, in
which case the composite likelihood thus formed is called the pairwise likelihood.
The advantage is computational, since it obviates the need to compute the
full likelihood. In a large enough class of models, the information retained
is sufficient to estimate the parameters of interest. The corresponding price
to pay is a loss of efficiency of the resulting estimator, which is nonetheless
guaranteed to be asymptotically normal under mild conditions [43]; we note
that variational methods do not have this guarantee in general [2]. In addition,
we remark that composite likelihood methods are agnostic to data type and
not limited to multivariate count data, although such models may particularly
benefit from their use.

Pairwise likelihood methods have been successfully used in many applica-
tions, including correlated binary data [24], time series models [9], spatial mod-
els [42], mixed models for longitudinal profiles [12], extreme-value models [33]
and image models [32]. Many variants of the composite likelihood method have
been proposed in the literature to accommodate specific models, data or tasks.
As one example, variable selection was performed in [15] in the context of mul-
tivariate mixed models. Also, several authors have proposed ways to improve
the efficiency of composite likelihood methods, primarily by adding weights to
the component likelihoods [20, 23, 45]. It appears, however, that finding and
estimating the optimal weights in general is a very difficult problem which may
not have a solution [26]. The composite likelihood approach was originally de-
scribed in [25] and further developed during the last decade, see e.g. the review
in [43]. In the following, we shall focus on the pairwise likelihood, the most
popular version of composite likelihoods.

In the high dimensional context, the loss of efficiency may be less of a concern
than the increase in computational complexity. If d is the number of variables,
then the number of pairs is of order d2, which is large enough to make the
application of the pairwise likelihood method cumbersome. The computation
of confidence intervals is even more challenging: one needs to compute a double
sum over pairs of pairs of order d4 and all of the four-dimensional marginals.
This is not only time-consuming, but also makes numerical instabilities more
likely.

Although there is little literature on how to address these computational
issues, several research directions have been proposed. For instance, instead of
taking all of the pairs, one can consider a small subset [14, 35], although selecting
a good subset is a difficult problem. Some heuristics were proposed in [35], but
no theoretical justification was provided and the asymptotic properties of the
estimators are unknown. In [14], pair selection was performed by regularization,
but as this approach depends on the existence of a consistent estimator with
rate

√
n, the computational issue is unresolved. In the context of conditional
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random fields, a stochastic combination of marginal likelihoods was proposed
in [10]. This allows a reduction in the number of times the conditional log-
densities of the model are evaluated, but it does not solve the problem for the
construction of confidence intervals.

To alleviate the computational issues of the pairwise likelihood method, we
consider a randomized pairwise likelihood approach. Only summands randomly
sampled across observations and pairs are used for the estimation of the pa-
rameters. To implement this strategy, one draws, for each sample size n, i.i.d.
Bernoulli weights Wnia, i = 1, . . . , n, a ∈ {{1, 2}, . . . , {d−1, d}}, with parameter
πn; all summands for which Wnia = 0 are discarded. A fundamental point here
is that we allow the Bernoulli parameter πn to decrease with n—we shall come
back to this later. The Bernoulli parameter controls the tradeoff between the
computational complexity and the statistical efficiency. An intuitive way to see
this is to notice that the average number of summands needed to compute the
randomized pairwise likelihood is equal to nπnd(d− 1)/2. However, there is an
additional reason why πn permits a drastic reduction of the computational cost.
By letting πn → 0, we asymptotically break the correlation structure between
the individual bivariate likelihoods thanks to the two-way random sampling
mechanism. This has the important consequence that the term of computa-
tional complexity d4 is removed in the asymptotic variance-covariance matrix
of the resulting estimator. In practice, this means that we are able to compute
approximate confidence intervals at a computational complexity cost of only d2,
involving only bivariate marginals.

The remainder of the paper proceeds as follows: Section 2 reviews the pair-
wise likelihood method. The theory is presented in a rigorous way not yet
achieved in the literature. In particular, the conditions for consistency, that is,
the ability to estimate the full distribution from its bivariate marginals alone, are
made explicit. Computational problems are discussed in more detail. Then, Sec-
tion 3 investigates the randomized pairwise likelihood method, provides asymp-
totic results, both in the case where πn is fixed and πn → 0, and explains why
the latter allows for a “cheap” approximation of confidence intervals. Section 4
analyses the specific case of Gaussian models, where explicit calculations are
feasible, thus allowing a better understanding of the behavior of the proposed
method. Section 5 reviews the state of the art for multivariate count data with
a focus on copula-based models and shows how the randomized pairwise like-
lihood can contribute to it. Identifiability results are given for two correlation
structures of the Gaussian copula. Section 6 reports simulation experiments to
assess the behavior of the approach for multivariate continuous and count data,
and Section 7 illustrates how the approach can be applied to a set of microbiome
and transcriptome data with multivariate count data models based on Poisson
marginals and Gaussian copulas. Concluding remarks may be found in Section
8.
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2 Maximum pairwise likelihood inference

Pairwise likelihood methods permit the estimation of unknown parameters of
a statistical model without the need to specify the complete joint density (or
probability mass) function of the model. The idea is to replace the full likelihood
by a sum of marginal likelihoods, which is useful when the full likelihood is
complex, such as the case of discrete data. Pairwise likelihood is a particular case
of the so-called composite likelihood, which is based on likelihoods conditioned
on certain events [25, 43, 44]. For simplicity and because it is most widely used,
we shall focus on the pairwise likelihood, but the theoretical results extend
straightforwardly to composite likelihoods.

2.1 Definition, assumptions and asymptotic properties

Let Xi := (Xi1, . . . , Xid), i = 1, . . . , n, be independent random vectors with a
common density f0 with respect to some “base measure”—typically the Lebesgue
measure or the counting measure—on the Euclidean space Rd. The density f0

is assumed to be square integrable and lie in an identifiable parametric family
{f(•; θ), θ = (θ1, . . . , θq) ∈ Θ} for some open subset Θ of Rq. Let θ0 denote the
element of Θ such that f0(•) = f(•; θ0). Let A be a subset of the set of all pairs
of variables. Its cardinal is at most d(d−1)/2. The pairs in A are ordered in the
lexicographical order. Denote by fa(·, ·; θ) the marginal density corresponding
to the pair a and write `a(·, ·; θ) for log fa(·, ·; θ). Whenever it exists, denote
by ˙̀

a(·, ·; θ) the gradient of `a(·, ·; θ) with respect to θ. Whenever a function
is encountered with a bullet symbol, it means that the argument it replaces is
a vector with three components or more. Otherwise, there are as many dot
symbols as they are components. If a = {j, j′} is a pair then (Xij , Xij′) is also

denoted by X
(a)
i .

The pairwise log-likelihood function is given by

LPL
n (θ) =

1

n

∑
a∈A

n∑
i=1

`a(X
(a)
i ; θ), θ ∈ Θ. (1)

The population version of the pairwise log-likelihood function is
∑
a La(θ),

where La(θ) stands for E `a(X
(a)
1 ; θ). As usual, the goal is to estimate the

maximizer of the population pairwise log-likelihood by maximizing the pairwise
likelihood function. From the viewpoint of M-estimation theory, the population
pairwise likelihood is the objective criterion function, the maximizer of which
being the parameter of interest. In this case the objective criterion is the sum of
“bivariate” Kullback-Leibler information criteria. This is the viewpoint we shall
adopt throughout the paper. The authors in [46] provide a different view. Ac-
cording to them, maximizing the pairwise likelihood function can also be seen
as maximizing the full Kullback-Leibler information under some information
constraints.

We call the maximum pairwise likelihood estimator (MPLE) every element

θ̂MPL
n of Θ that satisfies LPL

n (θ̂MPL
n ) ≥ LPL

n (θ) for all θ in some compact subset
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of Θ. Maximization over compact subsets ensures the existence of MPLEs under
minimal smoothness assumptions. Whenever we refer to MPLEs, it is implicitly
understood that the compact subset over which θ is estimated contains θ0.

Assumption 1. The first, second and third derivatives of `a(X
(a)
1 ; θ) with re-

spect to the components of θ exist and are square integrable. Moreover, there
exist square integrable functions Ψa, a ∈ A, such that

sup
θ∈Θ

∣∣∣∣∣∂3`a(X
(a)
1 ; θ)

∂θi1∂θi2∂θi3

∣∣∣∣∣ ≤ Ψa(X
(a)
1 ),

for all 1 ≤ i1 ≤ i2 ≤ i3 ≤ q. Finally, if ma stands for the base measure of
which fa(·, ·; θ) is the density then

∫
fa(·, ·; θ) dm and

∫
(∂/∂θi1)fa(·, ·; θ) dm can

be differentiated under the integral sign.

Assumption 1 is standard. It is mild enough to encompass many models
and yet enable simple proofs. Under Assumption 1, the pairwise log-likelihood
function is differentiable and hence MPLEs always exist. Assumption 1 could
be weakened but at the expense of much more complicated proofs, and thus we
keep this assumption.

When d = 2, MPLEs and maximum likelihood estimators coincide. In this
case, Assumption 1 suffices to get the consistency and the asymptotic normality
of these estimators. In general, however, we cannot expect MPLEs to be consis-
tent without further assumptions, because a family of multivariate distributions
cannot always be described by its pairs. There is, therefore, no reason for the
map θ 7→

∑
a La(θ) to admit a unique maximizer, and we need to impose this

as a condition.

Assumption 2. The maximizer of θ 7→
∑
a La(θ) is unique.

It is easy to see that each La is maximized at θ0 and hence so is the mapping∑
a La(θ). Thus, we deduce from Assumption 2 that θ0 is the only maximizer

of
∑
a La(θ). A sufficient condition for Assumption 2 to hold will be given in

Section 5 in the context of copula-based models. In Section 4, Assumption 2 is
checked directly.

Remark 1. Even if θ0 is the only maximizer of
∑
a La(θ), it does not mean that

θ0 is the only maximizer of La. Let d = 3 and let (X11, X12, X13) be a Gaussian
random vector with mean µ01, µ02, µ03, variances equal to one and correlation
parameter ρ0, so that θ0 = (µ01, µ02, µ03, ρ0). Then not only is L12 maximized
at θ0, but also at (µ01, µ02, µ, ρ0) for any µ.

Assumption 1 and Assumption 2 together imply that MPLEs are asymptot-
ically normal. More precisely, we have that

√
n(θ̂MPL

n − θ0) converges in dis-
tribution to a Gaussian random vector with mean zero and variance-covariance
matrix (∑

a∈A
E ˙̀

a
˙̀>
a

)−1(∑
a∈A

∑
b∈A

E ˙̀
a

˙̀>
b

)(∑
a∈A

E ˙̀
a

˙̀>
a

)−1

, (2)
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where E ˙̀
a

˙̀>
b is a shorthand for E ˙̀

a(X
(a)
1 ; θ0) ˙̀

b(X
(b)
1 ; θ0)>. This result is stan-

dard and known since at least [25] but, as it turns out, it is difficult to find in
the literature precise conditions under which this result is true.

Assumption 2 is critical to ensure consistency of pairwise likelihood methods.
Thus it is important to give verifiable conditions under which it holds.

Proposition 1. If, for every a ∈ A, there is a function va on Θ into a Euclidean
space and a family of bivariate densities {f̃a(·, ·;ϑa), ϑa ∈ range va} such that

(i) the family {f̃a(·, ·;ϑa), ϑa ∈ range va} is identifiable

(ii) the distributions f̃a(·, ·; va(θ)) = fa(·, ·; θ) coincide for all θ

(iii) the mapping V (θ) := (va(θ))a∈A is one-to-one

then Assumption 2 holds.

Examples that satisfy the conditions of Proposition 1 will be given in Sec-
tion 5 in the context of copula-based models.

To improve efficiency, weights could be added to the pairwise log-likelihood [25,
20, 26], leading to the maximization of

LWPL
n (θ) =

1

n

∑
a∈A

wa

n∑
i=1

`a(X
(a)
i ; θ), (3)

for some weights wa ≥ 0. In this case, Assumption 2 must be changed to “The
maximizer of θ 7→

∑
a waLa(θ) is unique”. But this is not important, because if

the weights are all positive then the conditions (i), (ii) and (iii) of Proposition 1
still suffice to check the modified assumption. (See the proof of Proposition 1.)

The problem of choosing the optimal weights is difficult. In the one-dimensional
case, that is, when the parameter is a scalar, a formula for the optimal weights
exists but it requires the computation of the middle term in (2). This can be
computationally challenging, as we shall see next. In the more realistic multi-
variate case, according to [25], a solution may not exist, and if it did it would
be difficult to compute.

2.2 Computational issues in higher dimensions

When the number of variables is large, the pairwise likelihood method may be
burdensome to apply. Indeed, the computation of the pairwise log-likelihood re-
quires up to O(nd2) evaluations of a potentially complex function. Perhaps less
apparent but not less important in applications is the computation of confidence
intervals for the parameters. These are also difficult to get because the middle
term in (2) is a double sum over pairs of order up to O(d4). Moreover, comput-
ing confidence intervals requires dealing with distributions in four dimensions,
which were assumed to be quite complex in the first place.

To reduce the computational burden, a natural approach consists of choosing
a small subset of pairs and computing the pairwise log-likelihood based on that
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subset alone. This method can be seen as a particular case of the weighted
pairwise likelihood method, in which some weights are set to zero and the others
equal to one. The performance of the estimator depends on the chosen subset.
Choosing a good subset is a difficult problem. To the best of our knowledge, it
appears that little work on this area exists in the literature. Some algorithms are
given in [35] but no theory is provided. In [14], the mean squared error between
the maximum log-likelihood score and the weighted pairwise log-likelihood score
is minimized, and a penalty term is added to shrink some weights to zero.
However, for this method to work, an initial consistent estimator is needed, and
we are back to our initial problem.

Finally, it should be noted that subset selection methods are not always
applicable. Removing a pair can invalidate the method, as the conditions for
consistency are no longer met. As an example, consider a trivariate Gaussian
distribution with three free correlation parameters. Removing any pair leads to
the impossibility of estimating the corresponding correlation parameter.

3 The randomized pairwise likelihood method

We introduce a new estimator of θ0, based on a randomized version of the
pairwise log-likelihood function and thus cheaper to compute. Interestingly,
confidence intervals can be computed with no more than O(d2) computations.

3.1 Definition and preliminary asymptotics

The randomized pairwise likelihood method consists of taking at random only
some of the pairs a and observations i in (1) to carry out the summation.
Formally, the randomized pairwise log-likelihood function is defined as

LRPL
n (θ) =

1

nπn

n∑
i=1

∑
a∈A

W
(a)
ni `a(X

(a)
i ; θ), (4)

where, for each n, W
(a)
ni , i = 1, . . . , n, a ∈ A, are independent Bernoulli random

variables with parameter 0 < πn ≤ 1. They are assumed to be independent
of X1, . . . , Xn. The unknown parameter θ0 is estimated by maximizing the
function in (4). In practice, one first draws the Bernoulli weights, which allows
certain terms to be excluded from the pairwise log-likelihood function, and then

maximizes the sum of the remaining terms. If πn = 1 then Pr(W
(a)
ni = 1) = 1

and hence the functions (4) and (1) coincide.

Definition 1. Every element θ̂MRPL
n of Θ that satisfies LRPL

n (θ̂MRPL
n ) ≥ LRPL

n (θ)
for all θ in some compact subset of Θ is called a maximum randomized pairwise
likelihood estimator (MRPLE).

As before, it is implicitly understood that the compact subset has been taken
large enough to contain θ0. The parameter πn controls the computational cost.
For clarity, suppose that A is the set of all pairs. Since there are n observations
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and d(d− 1)/2 pairs, the expected number of terms in the randomized pairwise
log-likelihood function is nd(d − 1)πn/2. For instance, if πn = 1/6, d = 3
and n = 10000 then one needs to sum 5000 terms on average to compute the
randomized pairwise likelihood, and 30000 to compute the standard pairwise
likelihood method.

The difference between the criterion functions (3) and (4) is that in the for-
mer, the weights do not depend on i and, hence, when a pair is dropped out,
one removes all of the observations corresponding to it. With the randomized
pairwise log-likelihood function, at least some partial observations will be in-
cluded for any given pair and hence all parameters can be estimated, even in
unstructured models. The probability that all pairs pick out at least one ob-
servation is [1 − (1 − πn)n]d(d−1)/2. For instance, with πn = 9/10, n = 50 and
d = 10, this probability is about 0.793; with n = 100 it is already 0.999.

We now turn to asymptotic properties. In general we let the parameter πn
vary with n. (The reason will be explained later.) For the time being, however,
suppose that πn is equal to some π ∈ (0, 1] for all n.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Assume that
πn is a constant sequence, that is, πn = π ∈ (0, 1] for all n. If θ̂MRPL

n is a

MRPLE such that LRPL
n (θ̂MRPL

n ) ≥ LRPL
n (θ) for all θ ∈ Λ, where Λ is a com-

pact subset of Θ and θ0 is an interior point of Λ, then
√
n
(
θ̂MRPL
n − θ0

)
con-

verges in distribution to a Gaussian random vector with mean zero and variance-
covariance matrix(∑

a

E ˙̀
a

˙̀>
a

)−1(
πE

∑
a,b

˙̀
a

˙̀>
b + (1− π)

∑
a E ˙̀

a
˙̀>
a

π

)(∑
a

E ˙̀
a

˙̀>
a

)−1

. (5)

Remark 2. Without the last sentence of Assumption 1, asymptotic normality
still holds but with a different variance-covariance matrix.

MRPLEs are asymptotically normal with an asymptotic variance-covariance
matrix that depends on π. The numerator of the middle term in (5) can be
rewritten as πE

∑
a6=b

˙̀
a

˙̀>
b +

∑
a E ˙̀

a
˙̀>
a , where we see that the correlations

between the scores appears with a factor π. An explanation for this is that the
correlation structure is broken by the randomization introduced in (4). This
is discussed further below. Note that Theorem 1 implies that, in probability,
θ̂MRPL
n → θ0 as n → ∞. Choosing π = 1 allows us to recover the results of

Section 2.

3.2 Advanced asymptotics to build cheap confidence in-
tervals

Suppose that we want to build confidence intervals for θ0. Theorem 1 suggests
that

Var θ̂MRPL
n ≈ S−1(C − S)S−1

n
+
S−1

nπ
,
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where here S =
∑
a E ˙̀

a
˙̀>
a and C =

∑
a

∑
b E ˙̀

a
˙̀>
b . The problem, as men-

tioned in Section 2.2, is that C is difficult to compute: it requires up to O(d4)
evaluations of a four-dimensional integral.

If nπ is much smaller than n, we expect Var θ̂MRPL
n ≈ S−1/(nπ). This would

be highly advantageous, because S requires at most O(d2) computations of a
2-dimensional integral; compared with O(d4) computations of a 4-dimensional
integral, the cost would thus be greatly reduced. However, if nπ is too small
(with respect to n), we would use too little of the data and the MRPLE would be
a poor estimate of θ0. The question is: how small can nπ be with respect to n,
and notably, how small can π be? To answer this question, we let π = πn → 0
as n → ∞ and see whether we can still get the asymptotic normality of the
estimators, and, if so, at what rate.

Theorem 2. Suppose that Assumption 1 and Assumption 2 hold. Let θ̂MRPL
n

be a MRPLE. If πn → 0 such that nπn → ∞ then θ̂MRPL
n → θ0 in probability,

as n→∞.

Theorem 2 is not a surprise. It says that the actual number of terms needed
in the randomized pairwise likelihood must go to infinity, while at the same time
it is allowed to be negligible with respect to the sample size. Notice that for a
consistency result, many of the statements in Assumption 1 are not necessary.

Theorem 3. Suppose that Assumption 1 and Assumption 2 hold. Let θ̂MRPL
n

be a MRPLE such that LRPL
n (θ̂MRPL

n ) ≥ LRPL
n (θ) for all θ ∈ Λ, where Λ is a

compact subset of Θ and θ0 is an interior point of Λ. If πn → 0 such that, for
all κ > 0 and all a ∈ A,

1

πn
E Φa(X

(a)
1 ; θ0)4 exp

(
−nπnκ∑

a∈A Φa(X
(a)
1 ; θ0)2

)
→ 0, (6)

where

Φa(X
(a)
1 ; θ) := max

i1,i2
max

(∣∣∣∣∣∂`a(X
(a)
1 ; θ)

∂θi1

∣∣∣∣∣ ,
∣∣∣∣∣∂2`a(X

(a)
1 ; θ)

∂θi1∂θi2

∣∣∣∣∣ ,Ψa(X
(a)
1 )

)
then, as n→∞,

√
nπn

(
θ̂MRPL
n − θ0

)
d→ N

0,

(∑
a∈A

E ˙̀
a

˙̀>
a

)−1
 . (7)

Theorem 3 suggests exactly what we were looking for. Namely,

Var θ̂MRPL
n ≈ S−1

nπn
, (8)

whenever nπn is small with respect to n; “small” being captured by the condi-
tion (6). Notice that (6) implies nπn →∞ and hence Theorem 2 and Theorem 3
are consistent with each other.
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What has happened? Why is the numerator in (8) the cheap S−1 and why
has the arduous S−1CS−1 disappeared? It turns out that the randomization

mechanism destroys the correlation structure between the scores ˙̀
a(X

(a)
1 ; θ0),

a ∈ A. One way to see this is to rewrite S−1CS−1 = S−1 + S−1DS−1, where
here D =

∑
a6=b E ˙̀

a
˙̀>
b and to notice that both sides of the equation are equal

whenever D = 0.
Translating the condition (6) into a more transparent condition on πn is not

always easy. A simple case is that of smooth models with a compact support,
because the derivatives are bounded.

Proposition 2. Suppose that, in Assumption 1, the first and second derivatives
and the functions Ψa are bounded in absolute value by some constant. If πn → 0
such that nπ2

n →∞ then (6) is satisfied.

In the context of Proposition 2, if πn = n−α, 0 < α < 1/2, then n(1−α)/2(θ̂MRPL
n −

θ0) goes to a Gaussian limit. The Bernoulli parameter πn can decrease almost
as fast as 1/

√
n. Another example that satisfies (6) is given in Section 4.

4 Example of the exchangeable standard Gaus-
sian model

The exchangeable standard Gaussian model [8] is a model where explicit calcu-
lations are feasible and hence facilitates our understanding of the randomized
pairwise likelihood method.

The density of the Gaussian model with a common correlation parameter
and standard Gaussian univariate margins is given by

f(x; θ) = (2$)−d/2|Σθ|−1/2 exp

(
−1

2
x>Σ−1

θ x

)
, (9)

x ∈ Rd, θ ∈ (−1/(d− 1) + ε, 1− ε) =: Θ, ε > 0, and

Σθ =

1 · · · θ
. . .

θ · · · 1

 .

(Above Σθ has 1 on its diagonal and θ elsewhere and $ is such that
√

2$ =∫
e−x

2/2 dx.) The matrix Σθ is always positive-definite because Θ ⊂ (−1/(d −
1), 1). The addition of ±ε at both ends of Θ allows it to be enlarged to a compact
interval on which continuous functions can be bounded, which helps to satisfy
the assumptions. If a = {i, j} then

`a(xi, xj ; θ) = − log(1− θ2)

2
−

x2
i + x2

j

2(1− θ2)
+
θxixj
1− θ2

+ constant,

where xi and xj are the ith and jth components of x, respectively.

10



Proposition 3. If {f(•; θ), θ ∈ Θ} is the Gaussian model (9) then Assump-
tion 1 and Assumption 2 hold.

Proposition 3 is trivial. In the proof, the assumptions are checked directly.

4.1 A class of asymptotically normal estimators

Let πn = n−α, α > 0, and let θ̂MRPL
n (α) be a MRPLE. In this setting MR-

PLEs depend on α because they are maximizers of the randomized pairwise
likelihood, which depends on πn through the weights. Clearly, α < 1; other-
wise the estimator has no chance to be consistent. Hence a class of estimators
{θ̂MRPL
n (α), 0 < α < 1} has been defined and we may wonder whether all mem-

bers of this class are asymptotically normal.

Proposition 4. If {f(•; θ), θ ∈ Θ} is the Gaussian model (9) and πn = n−α,
0 < α ≤ 1/4, then (6) is satisfied.

Proposition 4 gives the precise rate at which the estimators go to a limit
distribution. Corollary 1 below is an immediate consequence.

Corollary 1. If {f(•; θ), θ ∈ Θ} is the Gaussian model (9) and θ̂MRPL
n (α) is

a MRPLE with 0 < α ≤ 1/4 then

n(1−α)/2(θ̂MRPL
n (α)− θ0)→ N

(
0,

2

d(d− 1) E ˙̀2
12

)
, n→∞,

where

E ˙̀2
12 = E

∂`12(X11, X12, θ)

∂θ

∣∣∣∣2
θ=θ0

=
θ6

0 − θ4
0 − θ2

0 + 1

(1− θ2
0)4

.

The parameter α controls the compromise between the computational cost
and the statistical efficiency of the estimator. If α is large then the computa-
tional burden will be reduced but there will be a loss of statistical efficiency. If α
is small the reverse is true. In any case, πn cannot go to zero too fast. Compare
the admissible range of values for α in Corollary 1 with the range 0 < α ≤ 1/2
found in Proposition 2. In Proposition 2 the Bernoulli parameter was allowed
to go to zero faster because the assumed model had lighter (in fact, bounded)
tails than the Gaussian model.

For the sake of completeness, we give the formulas for the cross-correlations:

(1− θ2
0)4 E ˙̀

12
˙̀
13 = θ2

0(1− θ2
0)2 − 4θ2

0(1− θ2
0)

+ 2θ2
0(1 + θ2

0)(1− θ2
0) + 6θ2

0(1 + θ2
0)− 2θ2

0(1 + θ2
0)(4 + 2θ0)

+ θ0(1 + θ2
0)2(1 + 2θ0)

and

(1− θ2
0)4(E ˙̀

12( ˙̀
13 − ˙̀

34)) = (1 + θ2
0)θ0(1− θ0)(1 + θ2

0 − 4θ0) + 2θ2
0(1− θ2

0).
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4.2 Insight into the impact of randomization on estimator
precision

Although this is not true in general, removing the correlation structure can yield
an improvement in the precision of the estimator. For instance, in the model (9)
with d = 6 and θ0 = 0.7, we have compared the asymptotic variance-covariance
matrix of

√
n(θ̂MRPL

n − θ0) to that of
√
n(θ̂A

′ − θ0), where θ̂A
′

is the standard
pairwise likelihood estimator based on some subset of pairs A′. The estimator
θ̂MRPL
n is based on the set of all pairs. The asymptotic variance-covariance

matrix of the former is given by (5) and the the asymptotic variance-covariance
matrix of the later is given by (2) with A replaced by A′. To make the methods
comparable, we set πn = 2|A′|/(d(d − 1)), where |A′| is the size of A′. Both
methods require a computational budget equal to |A′|n = πnnd(d − 1)/2. For
each value of |A′|, the subset of pairs was chosen randomly. The results are
shown in Figure 1. In this case the budget divided by the sample size is |A′|.
When the budget is large with respect to the sample size, that is, when A′
contains many pairs, or put differently still, when πn is large, both methods
perform similarly. However, when fewer and fewer pairs are selected (i.e., moving
from right to left in Figure 1), coinciding with a smaller and smaller πn, the
randomized pairwise likelihood method performs much better than the subset
method.

This can be explained as follows. The variance of the estimator for the subset
method is about

Var θ̂A
′
≈ 1

n|A′|E ˙̀2
12

+

∑
a,b∈A′, a 6=b E ˙̀

a
˙̀
b

n|A′|2(E ˙̀2
12)2

,

and the variance of the MRPLE with πn = 2|A′|/(d(d− 1)), when |A′| is small,
is about 1/(n|A′|E ˙̀2

12); the difference, when |A′| is small, is about

Var θ̂A
′
−Var θ̂MRPL

n ≈
∑
a,b∈A′, a 6=b E ˙̀

a
˙̀
b

n|A′|2(E ˙̀2
12)2

.

The only remaining term involves the cross-correlations between the scores. If
the scores are positively correlated, then the randomized pairwise likelihood
method will be better than the subset method. This in fact represents the most
plausible situation in model (9); Figure 2 shows both (7) and (2) and we see
that more often than not, (7) is smaller than (2).

5 Application to multivariate count models based
on copulas

When working with multivariate count data, it is not straightforward to define
appropriate models in high dimensions. Several research directions exist, includ-
ing the generalization of lower-dimensional models (e.g., the bivariate Poisson
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distribution) to higher dimensions (e.g., the multivariate Poisson distribution).
In such cases, it is often necessary to specify a model that may be complicated
and intractable in practice to obtain the full correlation structure of the data;
see the details in [21]. Other proposals make use of models based on conditional
distributions [1] or finite mixtures [22]. However, these strategies are generally
greatly complicated by the discrete nature of the data as compared to simi-
lar models for continuous data, where the multivariate normal distribution is
a cornerstone allowing for both great flexibility and feasible calculations; for
a recent review see [16]. Another classic approach is the use of latent (con-
tinuous) variable models to describe interdependencies between the observed
discrete variables. However, the joint distribution of the observable variables is
often intractable, and inference typically relies on complex versions of the EM
algorithm or variational methods [5, 6]. In the latter case, there are no theoret-
ical guarantees on the estimators in general [2]. In addition, it may be difficult
to control even simple aspects of the model, such as the marginal distributions.

An alternative interesting approach uses copulas [19, 29], which are quite
common for continuous data [18] but not widely used for discrete data [see,
e.g. 30, for a discussion of the challenges in applying copulas to multivariate
counts]. Copula theory makes it quite simple to build multivariate models with
the ability to control the marginals. Thus, for instance, one may replace with-
out effort a Poisson marginal by a negative binomial marginal to account for
overdispersion. However, for discrete data the difficulty lies not in the con-
struction of the models, but rather in the inference. The computation of the
likelihood of copula-based models for discrete data suffers from a combinatorial
explosion [30]. Moreover, computational problems often arise from the need to
invert large matrices and/or to approximate intractable integrals or sums.

We now consider models defined through copulas and use the randomized
pairwise likelihood to facilitate their application for multivariate count data. A
copula is a function which can “couple” the marginals to model the dependence
structure [29]. A copula is a multivariate distribution function with uniform
marginals. The importance of copulas in statistical modelling stems from Sklar’s
theorem [see, 29, §2.3], which shows that a copula corresponds to every mul-
tivariate distribution and, more importantly, provides a general mechanism to
construct new multivariate models in a straightforward manner. More precisely,
let

{Fi(·;µi), µi ∈ Θi ⊂ Rmi}, (10)

i = 1, . . . , d, be families of univariate distribution functions. For every µi ∈ Θi,
the distribution function Fi(·;µi) is also denoted by Fµi

. Let

{C(•; ρ), ρ ∈ Θcop ⊂ Rmd+1} (11)

be a family of copulas defined on [0, 1]d. For each θ := (µ1, . . . , µd, ρ) ∈ Θ :=
Θ1 × · · · ×Θd ×Θcop, the function defined by

F (x1, . . . , xd; θ) = C(Fµ1(x1), . . . , Fµd
(xd); ρ), (12)
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x1, . . . , xd ∈ R, is a well-defined distribution function on Rd with marginals
Fµ1 , . . . , Fµd

. For consistency with Section 2, we can assumem1+· · ·+md+1 = q.
It is easy to show that if the families (10) and the copula family (11) are iden-
tifiable then the family of multivariate distribution functions defined by (12) is
identifiable, too. Note that if the marginal distribution functions are continu-
ous then the copula is unique. In the discrete case, the copula is not unique in
general but it still permits the construction of valid parametric statistical mod-
els. The difference with the continuous case is that the copula parameter alone
does not characterize the dependence between the random variables at play [13].
Nevertheless, since any well-defined copula-based model is a particular instance
of a statistical model, the tools and the methods of the latter can be applied to
the former.

For count data, a common starting point is to use the Poisson distribution
for the marginals:

Fµj (xj) =

xj∑
m=0

µmj
m!

e−µj , xj = 0, 1, . . . ,

µj > 0, j = 1, . . . , d. We can then couple the marginals to add a dependence
structure. In practice there are few copulas that can consider a full structure
for d-dimensional data, allowing for flexible modelling of such data. A common
choice is the Gaussian copula, given by

C(u1, . . . , ud; ρ) = Φd(Φ
−1
1 (u1), . . . ,Φ−1

1 (ud);R(ρ)), u1, . . . , ud ∈ (0, 1), (13)

where Φd(•;R(ρ)) is the distribution function of a standard d-variate Gaussian
distribution with correlation matrix R(ρ).

Although copulas make model building straightforward, maximum likeli-
hood inference lead to combinatorial difficulties. Indeed, the probability mass
function associated with (12) is given by∑

(v1,...,vd)

sgn(v1, . . . , vd)C(Fµ1(v1), . . . , Fµd
(vd); ρ), (14)

where the sum is over all (v1, . . . , vd) ∈ {x1 − 1, x1} × . . . × {xd − 1, xd} and
sgn(v1, . . . , vd) = 1 if vj = xj−1 is even , and sgn(v1, . . . , vd) = −1 if vj = xj−1
is odd [34]. This sum has 2d terms, which can quickly lead to a prohibitive
computational cost.

In this context, it is advantageous to consider pairwise likelihood based meth-
ods to perform the inference. Instead of having to deal with the model up to
d dimensions, which can lead to an intractable likelihood as extensive summa-
tions are needed, it suffices to handle bivariate margins alone, which are much
easier to obtain and whose probability mass functions require only summations
of small dimension. Denote by Fa(·, ·; θ) the bivariate distribution function cor-
responding to the pair a = {i, j}; that is, if (X11, . . . , X1d) ∼ F (•; θ) then
(X1i, X1j) ∼ Fa(·, ·; θ). Then Fa(xi, xj ; θ) = Ca(Fµi(xi), Fµj (xj); ρ), where
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Ca(ui, uj ; ρ) := C(1, . . . , ui, . . . , uj , . . . , 1; ρ) is the bivariate copula correspond-
ing to the pair a (all arguments have been replaced by ones but at the ith and
jth positions). The bivariate density associated with Fa(·, ·; θ) is then given by

fa(xi, xj , µi, µj ; ρ) =Ca(Fµi(xi), Fµj (xj); ρ)− Ca(Fµi(xi), Fµj (xj − 1); ρ)

− Ca(Fµi(xi − 1), Fµj (xj); ρ) + Ca(Fµi(xi − 1), Fµj (xj − 1); ρ).

Through such an approach, we thus avoid the need to fully specify the likeli-
hood. Similar approaches have been proposed in the past for discrete data [31].
Randomization of the pairwise likelihood pushes further the computational gain
because not all of the nd(d−1)/2 bivariate probability mass functions need to be
evaluated and because confidence intervals can be obtained in the case where πn
is small. Pairwise likelihood methods can estimate all correlation parameters,
while at the same time we do not need to implement probability mass functions
of dimension higher than 2.

Recall that Assumption 2 is critical to the success of pairwise likelihood
methods. We specialize Proposition 1 to the case of copula-based models.

Proposition 5. Suppose that the families (10) are identifiable. If, for every
a ∈ A, there is a function wa on Θcop into some Euclidean space and a family
of bivariate copulas {C̃a(·, ·; %), % ∈ rangewa} such that

(i) the family {C̃a(·, ·; %), % ∈ rangewa} is identifiable

(ii) the copulas C̃a(·, ·;wa(ρ)) = Ca(·, ·; ρ) coincide for all ρ ∈ Θcop

(iii) the mapping W (ρ) := (wa(ρ))a∈A is one-to-one

then Assumption 2 holds.

The conditions in Proposition 5 are verifiable for at least some classes of
models. For models of the form (12) and (13), it all depends on the structure of
the correlation matrix. Simple suitable structures are given in Example 1 and
Example 2. More complex and suitable structures can be built.

Example 1. Let C be the Gaussian copula (13) with correlation matrix

R(ρ) =


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 ,
for ρ ∈ (−1/(d − 1), 1) =: Θcop. Put wa(ρ) = ρ so that rangewa = (−1/(d −
1), 1). The mapping W is one-to-one. Set C̃a(·, ·; %) to be a bivariate Gaussian
copula with correlation % ∈ (−1/(d−1), 1). Then clearly the family {C̃a(·, ·; %), % ∈
(−1/(d− 1), 1)} is identifiable and the copulas C̃a(·, ·;wa(ρ)) and Ca(·, ·; ρ) co-
incide for all ρ ∈ Θcop. (Remember that Ca is the marginal of C corresponding
to the pair a.)
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Example 2. Let C be the Gaussian copula (13) with correlation matrix

R(ρ) =


1 ρ12 . . . ρ1d

ρ21 1 . . . ρ2d

...
...

. . .
...

ρd1 ρd2 . . . 1

 ,
for all ρ = (ρ12, . . . , ρd−1,d) ∈ (−1, 1)d(d−1)/2 such that R(ρ) is nonnegative
definite. Let Θcop be this space. If a = {i, j} then put wa(ρ) = ρij so that

rangewa ⊂ (−1, 1). Let C̃a(·, ·; %) be the bivariate Gaussian copula with cor-
relation % ∈ (−1, 1). The family {C̃a(·, ·; %)} indexed by (−1, 1) is identifiable
and hence so is this family restricted to rangewa. Moreover, C̃a(·, ·; ρij) =
Ca(·, ·; ρij) for all ρij ∈ rangewa. The mapping W is one-to-one.

6 Simulations

To investigate the performance of the proposed randomized pairwise likelihood
approach for multivariate count data, we performed three independent sets of
simulation experiments. In the first two, based on a Gaussian distribution as
in [8], we aim to establish the general asymptotic efficiency and coverage of
our proposed two-way sampling approach for continuous multivariate data. In
the third, we turn our attention to the case of discrete data specifically, using
the copula framework described in Section 5, to provide insight into the trade-
off between efficiency and computational time for multivariate count data of
moderate dimension.

6.1 Asymptotic efficiency

First, we simulate a set of d-dimensional vectors Yi, i = 1, . . . , n from a sym-
metric multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ, where all means µ are considered to be known and set to 0, and
all variances and correlations are fixed to 1 and ρ, respectively. In this case,
the only parameter to be estimated is thus ρ; in different simulation settings,
the true value of ρ was set to be equal to one of {−0.1, 0, 0.1, 0.2, ..., 0.9}. We
consider n = 100, 1000, and 5000 observations, and the dimension was set to
d = 4.

To evaluate the efficiency of the randomized pairwise likelihood, we consider
sub-sampling parameters of π = 0.5 and π = 0.2 as compared to the results from
the full maximum likelihood, pairwise likelihood using all pairs of variables and
all observations, and the randomized pairwise likelihood for each considered
value of π; simulations were repeated 50,000 times. Efficiency was calculated as
the ratio of the variance of parameter estimates across simulated datasets in the
pairwise likelihood and randomized pairwise likelihood methods with respect to
the full maximum likelihood approach. For all values of ρ considered, all meth-
ods considered successfully recover the true value of ρ, although as expected,
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the variance of estimators increases from the full maximum likelihood to the
pairwise likelihood, and further increases in the randomized pairwise likelihood
as the sampling parameter π decreases (Supplementary Figures S1-S3). In com-
paring the efficiency of estimators in the pairwise approaches with that of the
full maximum likelihood, we remark that the efficiency of the pairwise likelihood
is as reported in [8] for d = 4; in addition, as expected, the loss of efficiency
for the randomized pairwise likelihood is consistent with the theoretical results
with respect to the sampling fraction for each value of π.

6.2 Asymptotic coverage

In order to examine the asymptotic properties described, we also performed
simulations to evaluate the coverage probabilities for the asymptotic confidence
intervals. We still use the compound symmetry model with known means and
variances and we estimate the common correlation parameter ρ using random-
ized pairwise likelihood. Based on Theorem 3 and the derivations of Proposition
3, when n is large, we have that, approximately,

√
nπ(ρ̂−ρ) ∼ N(0, V (ρ̂)), where

ρ̂ is the randomized pairwise likelihood estimate, d is the dimension and

V (ρ̂) =
(1− ρ̂2)4

d(d−1)
2 (ρ̂6 − ρ̂4 − ρ̂2 + 1)

.

One can create an asymptotically 100(1− α)% confidence interval as

ρ̂± Z1−α/2

√
V (ρ̂)

nπ

where Za is the a−quantile of the standard normal distribution.
We simulated 50,000 samples of dimension d = 4 for values of ρ ∈ {−0.1, 0.2, . . . , 0.9},

n ∈ {500, 1000, 5000, 10000} and corresponding values of π to yield subsample
sizes of 100 and 200. For each sample we created the asymptotic confidence inter-
val described above, and we estimated as coverage probability the proportion of
times the true value was inside the interval (using α = 0.05). The results are de-
picted in Figure 3. Additional results for fixed values of π ∈ {0.01, 0.05, 0.2, 0.5}
are shown in Supplementary Figure S4. We can see that, as theoretical results
suggest, when the sample size increases, the asymptotic coverage gets closer
to the nominal level verifying the potential of the asymptotic results for infer-
ence. This also highlights the potential of randomized pairwise likelihood for
inference.

6.3 Multivariate count data

We next turn our attention to the specific case of multivariate count data.
Using the random number generator of an elliptical copula implemented in
the rCopula function of the copula R package [47], we first generate n d-
dimensional random variates from a Gaussian copula with an exchangeable
dispersion matrix parameterized by ρ. Subsequently, by pairing these random

18



A

B

Figure 3: Asymptotic coverage for the compound symmetry example, with α =
5%, averaged over 50,000 replications. The values represent the proportion of
times the asymptotic interval contains the true value used to simulate the data.
(A) ρ versus asymptotic coverage by sample size n; (B) ρ versus asymptotic
coverage by subsample size n× π.

variates with Poisson marginal distributions parameterized by λ = 1, we then
generate a multivariate Poisson variable for individual i using the Poisson prob-
ability quantile function. We consider a variety of different simulation settings:
n ∈ {200, 500, 1000, 5000} observations with dimension d = 4, . . . , 8, correlation
parameter ρ ∈ {0.25, 0.75}, and sampling parameter π ∈ {0.1, 0.3, 0.5, 0.7, 1};
for each combination of parameters, simulations were repeated 300 times. Note
that the setting where π = 1 corresponds to the classical pairwise likelihood
approach; in all other cases, pairs of variables and observations are subsampled
according to Bernoulli probability π. Finally, unlike the previous simulation
experiment, here we consider that both the d-dimensional mean vector λ and
the (d × (d − 1))-dimensional vector ρ (corresponding to the off-diagonal ele-
ments of the copula dispersion matrix, which is assumed to be unstructured)
are unknown and must be estimated.

Note that for the Gaussian copula the joint marginal distributions are char-
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acterized by the same copula and hence the pairwise likelihood approach uses
the correct bivariate marginals. This in turn implies that we estimate the pa-
rameters used to generate the data. To apply the randomized pairwise like-
lihood estimation procedure, we first initialize parameter values for λ and ρ
using the marginal means of each variable and the Pearson correlation of each
pair of variables, respectively. Finally, we maximize the randomized pairwise
likelihood using the optimization algorithm of [4] ("L-BFGS-B" method in the
general-purpose optimization R function optim); the maximum number of iter-
ations for the optimization algorithm is capped at 30,000.
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Figure 4: Average mean squared error (across 300 replications) using the ran-
domized pairwise likelihood approach with π = {0.1, 0.3, 0.5, 0.7, 1} for simu-
lated data with dimension d = 4 or 8, copula dispersion ρ = 0.25 or 0.75, and
number of observations ranging from n = 200 to 5000.

We first investigate the trade-off between efficiency and computational time,
with respect to the chosen value for the Bernoulli sampling probability π, for
the randomized pairwise likelihood approach. In Figure 4, for cases of moder-
ately (ρ = 0.25) and highly structured data (ρ = 0.75) in data of dimension
d = 4 or 8, we present the mean squared error (MSE) of parameter estimates
for the randomized pairwise likelihood with varying Bernoulli sampling rates.
The results for dimensions d = 5, 6, 7 are shown in Figure S5. We remark that
the randomized pairwise likelihood yields similar MSEs as compared to the full
maximum likelihood (π = 1) when a sufficiently large Bernoulli sampling rate
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is used (e.g., π = 0.5); in addition, this appears to hold true for varying sample
sizes (n = 200 to 5000). Perhaps unsurprisingly, differences in efficiency for
the randomized pairwise likelihood compared to the full maximum likelihood
tend to be smaller for highly structured data (ρ = 0.75), as the subsampling of
observations and variable pairs removes largely redundant information without
negatively impacting parameter estimation. In addition, the efficiency of pa-
rameter estimation does not appear to suffer with even smaller rates (π = 0.1);
particularly when data have a sufficiently large number of observations (e.g.,
n ≥ 500); this is notable, as the efficiency is not unduly impacted despite a
significant decrease in the amount of data used for estimation.
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Figure 5: Average computational time in seconds (across 300 replications) using
the randomized pairwise likelihood approach with π = {0.1, 0.3, 0.5, 0.7, 1} for
simulated data with dimension d = 4 or 8, copula dispersion ρ = 0.25 or 0.75,
and number of observations ranging from n = 200 to 5000.

The reduction in data used for estimation due to the pairwise sampling
scheme brings with it considerable gains in computational time (Figure 5), par-
ticularly for larger sample sizes; for example, in the case of n = 5000 obser-
vations and ρ = 0.75, a fivefold gain in average computational time can be
achieved for all dimensions considered (d = 4, . . . , 8) by using the randomized
pairwise likelihood with π = 0.1 instead of the full maximum likelihood.
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7 Application on microbiome and transcriptome
data

In the following section, we illustrate the application of our proposed random-
ized pairwise likelihood procedure for multivariate count data on two biological
applications, focusing in particular on the gain in computational time achieved
through the proposed two-way sampling strategy.

7.1 Fungal interaction networks in oak powdery mildew

Microorganisms are known to form a variety of complex ecological relation-
ships with one another, including phenomena such as mutualism, parasitism,
and competition, and the inference of these interaction networks from microbial
abundance data is a primary question of interest [11]. In a recent study, [17]
sought to identify microbial interactions between the causal agent of a fungus
called oak powdery mildew, Erysiphe alphitoides, and other foliar microorgan-
isms of the pedunculate oak (Quercus robur L.) In their experiment, DNA was
extracted from a total of approximately 40 leaves collected from each of three
trees, and 454 pyrosequencing was performed for fungal and bacterial assem-
blages using marker-gene (ITS1 and 16S, respectively) based metabarcoding. A
variety of other covariates were collected for each sample, including leaf position
and infection level of the leaf. Full details of the experimental design may be
found in [17]. Following pre-processing, the data consist of counts of microbial
species (operational taxonomic units; OTU) in n = 116 samples for a total of
114 species (E. alphitoides, 47 fungal OTUs, and 66 bacterial OTUs).

As in the original study, our goal is to identify the interactions between
E. alphitoides and the other microbial species; in this work, we focus our at-
tention on the 13 fungal OTUs identified as having putative interactions with
E. alphitoides by [17], and we use the randomized pairwise likelihood with an
unstructured Gaussian copula paired with Poisson marginals. To account for
the recorded environmental covariates, we first fit a marginal Poisson gener-
alized linear model to each OTU abundance using leaf distance to base, leaf
distance to trunk, leaf distance to ground, and orientation as predictors. The
marginal expected values (on the response scale) from the GLM were subse-
quently plugged in for the d-dimensional mean vector λ. Initial values for the
d × (d − 1)-dimensional dispersion vector ρ, corresponding to the off-diagonal
elements of the unstructured copula dispersion matrix, were set to be equal to
the pairwise Pearson correlations among OTUs, and the randomized pairwise
likelihood was maximized using the "L-BFGS-B" method constrained by [−1, 1].

In Table 1, we report the estimated parameters of the unstructured Gaussian
copula correlation matrix between each considered fungal OTU and E. alphi-
toides using the pairwise likelihood and randomized pairwise likelihood strate-
gies. Estimated values for these parameters are similar whether the randomized
pairwise likelihood for all observations and variable pairs (π = 1) or the random-
ized pairwise likelihood (π = 1/ log n) are used, but computational time is nearly
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Table 1: Fungal OTUs and their estimated interaction with E. alphitoides by
pairing Poisson marginals with an unstructured Gaussian copula and using the
pairwise likelihood (PL; π = 1) or randomized pairwise likelihood (RPL; π =
1/ log n).

OTU Putative species/genus PL RPL
1 Naevala minutissima -0.22 -0.19
2 Mycosphaerella punctiformis -0.19 -0.16
9 Cladosporium cladosporioides 0.00 0.01
10 — -0.06 -0.04
15 Monochaetia kansensis -0.05 -0.03
19 — -0.13 -0.11
20 Lalaria inositophila -0.03 -0.01
23 Sporobolomyces roseus 0.29 0.27
25 — -0.02 0.01
26 Taphrina carpini 0.56 0.57
28 Sporobolomyces gracilis 0.12 0.14
1278 Mycosphaerella punctiformis -0.20 -0.21
1567 — -0.04 -0.06
Computational run time (minutes) 9.68 5.41

halved by using randomized sampling. The signs and values of the estimated
correlations are largely in agreement with the interactions reported in [17], with
the exception of OTUs 28, 1567, and 20. In particular, OTU 26 (Taphrina
carpin), which was identified as having the largest positive interaction effect
with E. alphitoides by [17] using a Bayesian network inference approach, sim-
ilarly has the largest estimated interaction using pairwise likelihoods. Finally,
as in the original study, we note that a majority of the pairwise interactions
among fungal OTUs appear to be positive for this community, suggesting the
strong role of mutualism and commensalism in oak leaves.

We remark that the inference of microbial networks is currently an active
area of research [see, for example, 6, 27, 7], with many proposed approaches fo-
cusing on the identification of direct versus indirect associations, simultaneous
estimation of covariate effects and interactions, the presence of overdispersed
and zero-inflated counts, and the compositional nature of the microbial abun-
dance data. Although it is beyond the scope of this work to extensively evaluate
these approaches, our results suggest the potential benefit of incorporating a
pairwise sampling scheme into these approaches.

7.2 Global transcriptome correlations across life cycles in
a honeybee parasite

The parasitic mite Varroa destructor is widely considered to represent a signifi-
cant threat to the western honeybee Apis mellifera, but progress in developing
solutions to control it have been slowed by a lack of knowledge of its biology. To
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address this gap, [28] generated a transcriptomic catalogue over ten points in
the full life cycle in Varroa mites, including seven stages in reproducing females
(young, phoretic, arresting, pre-laying, laying, post-laying, and emerging mites),
non-reproducing female mites, males, and artificially reared phoretic mites, with
a total of 4 replicated pools of 10 mites for each group. Using high-throughput
sequencing of total RNAs, counts of mapped sequencing reads were obtained
for 41,801 contigs; additional details about the experimental design and data
pre-processing may be found in [28].

Our goal here is to perform an exploratory analysis to evaluate the overall
transcriptome-wide correlation among different life stages in Varroa. We focus
on the gene expression data obtained from a single colony (R204) across the 10
different life cycle groups, yielding count data for n=31,267 contigs and d=10
life cycle groups. For RNA-seq data, counts of expression in a given sample
are strongly associated with the sequencing effort of each sample (known as the
library size) and the length of the gene; larger library sizes and longer genes
tend to have higher counts. To adjust for these two biases, for each life cycle
group we first fit a marginal Poisson generalized linear model with a per-contig
offset term corresponding to the log of the normalized (using the Trimmed Mean
of M values approach; [38]) total expression. As for the microbiome example,
GLM marginal expected values on the response scale were plugged in for the
mean vector λ, the dispersion vector ρ was initialized using pairwise Pearson
correlations among life cycle groups, and "L-BFGS-B" was used to optimize the
randomized pairwise likelihood.

Similarly to the microbiome example above, the use of the randomized pair-
wise likelihood (with π = 1/ log n) in the place of the pairwise likelihood rep-
resented a significant gain in computational time, respectively corresponding to
37.1 minutes as compared to 96.7 minutes. In this example, however, a more
modest agreement was found between the pairwise likelihood and randomized
pairwise likelihood strategies (Spearman correlation ρ = 0.21), perhaps due to
the wider range of counts observed in the RNA-seq data (median = 94, max-
imum = 11,178,256) compared to the microbiome data (median = 14, maxi-
mum = 2027). Figure 6 provides a visualization of the pairwise dispersion be-
tween groups estimated by the randomized pairwise likelihood. Similar to the
results of [28], we note a distinction between reproductive (young, arresting,
pre-laying, laying, phoretic) and post- or non-reproductive stages (emerging,
post-lay, non-reproductive female); interestingly, male and lab-reared Varroas
appear to cluster with the latter group as well. In practice, exploratory analyses
of transcriptome sequencing data typically rely on the use of variance stabiliz-
ing transformations to facilitate the application of methods such as principal
components analysis; in this illustration, we have instead explicitly modelled
the count nature of these expression data via a Poisson distribution and used
Gaussian copulas to model the dependency structure among groups.
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Figure 6: Clustered heatmap of the estimated pairwise correlation parameters,
using the randomized pairwise likelihood (π = 1/ log n) between Varroa life
cycle groups for the [28] transcriptome data.

8 Conclusions

In this work, we considered a randomized pairwise likelihood to reduce the com-
putational burden associated with the standard pairwise likelihood. We showed
that when πn → 0, the two-way random sampling mechanism permits the com-
putation of approximate confidence intervals of computational complexity of
order d2, where only bivariate marginals are involved, to be compared to the
original problem of computational complexity of order d4, where up to four-
dimensional marginals were involved. Moreover, the number of summands that
comprise the randomized pairwise likelihood has been lowered by a factor πn.

The proposed method is applicable in general but we had a particular focus
on copula-based models for count data, where inference is particularly challeng-
ing and remains largely an open problem once the number of variables is more
than a few. We believe that the proposed method opens the door to design-
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ing affordable inference procedures in these model,s and hence facilitating their
use. In the two data applications we presented, we used a two-step approach
to first estimate the marginal parameters and then the correlation parameters,
but it is also possible to simultaneously estimate the dependence parameters and
marginal parameters. Note that the randomized pairwise likelihood method can
also benefit other types of models, such as latent variable models, especially as
alternatives to variational methods for which the asymptotic properties of the
estimators remain unknown in general.

In the future, other sampling schemes could be implemented to exploit in-
formation of the data or impose structural or sparsity constraints. For example,
one could define a threshold on the number of pairs sampled per observation
or impose restrictions on the parameters—for instance, common correlations
for some pairs. We also wonder whether the maximum randomized pairwise
likelihood estimator could serve as a starting point to the procedure of [14].
The rate of the maximum randomized pairwise likelihood estimator is not

√
n

as soon as πn → 0, but it can be close. This raises the theoretical question of
whether it is possible to get asymptotic results when d→∞. This makes sense
in the high dimensional context, but the general problem appears to be very
challenging. Finally, although not discussed in detail here, the maximization
of the randomized pairwise likelihood may be made easier by considering other
estimation strategies. For instance, maximization by parts approaches, which
split the full maximization problem into smaller ones, can likely lead to further
considerable gains in computational time.
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A Proofs of the theorems

In the proofs, it will be convenient to consider the bivariate functions fa(X
(a)
i ; θ)

as functions taking as an argument the whole vector Xi so that fa(X
(a)
i ; θ) will

be denoted by fa(Xi; θ). To take advantage of empirical process techniques, we
shall build empirical processes related to our problem.

Let Ga, a = 1, 2, . . . , A, be classes of functions ga : Rd → RL satisfying
E ga(X1)2 < ∞ componentwise. Let M(G1, . . . ,GA) be the set of functions m

of the form m(x,w) =
∑A
a=1 waga(x), x ∈ Rd, w = (w1, . . . , wA) ∈ [0,∞)A,

ga ∈ Ga, a = 1, . . . , A. Let Xi, i = 1, . . . , n, be i.i.d. random vectors in

Rd with law P . For each n, let W
(a)
ni , i = 1, . . . , n, a = 1, . . . , A, be i.i.d.

Bernoulli random variables with parameter 0 < πn ≤ 1. For each n, X1, . . . , Xn

and W
(1)
n1 ,W

(2)
n1 , . . . ,W

(A)
nn are independent. For i = 1, . . . , n, let Wni be the

vector with components W
(a)
ni , a = 1, . . . , A. For a probability measure P and

a function f , Pf denotes
∫
f dP . Let Pnn be the average of Dirac measures at
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the points (Xi,Wni/πn), i = 1, . . . , n; thus if m ∈M(G1, . . . ,GA) then

Pnnm =

∫
mdPnn =

1

n

n∑
i=1

m

(
Xi,

Wni

πn

)
=

1

n

n∑
i=1

A∑
a=1

W
(a)
ni

πn
ga(Xi).

Let P ∗n be the probability distribution of (X1,Wn1/πn); thus

P ∗nm = E m

(
X1,

Wn1

πn

)
=

A∑
a=1

E
W

(a)
n1

πn
ga(X1) =

A∑
a=1

E ga(X1) = Pm(·, 1).

Notice that it does not depend on n. Denote by G∗nn the signed measure√
nπn(Pnn−P ∗n). We shall use the concept of a bracketing number [39, 41, 36].

If G is a class of real-valued functions on some Euclidean space equipped with a
probability measure P and δ is a positive real number, then the bracketing num-
ber of G, denoted by N(δ,G, P ), is the smallest number N of brackets [gLj , g

U
j ],

j = 1, . . . , N , such that (i) PgU
j − PgL

j ≤ δ, j = 1, . . . , N , and (ii) for all g in

G, there is j ∈ {1, . . . , N} such that gL
j ≤ g ≤ gU

j . Recall that two asymptotic
frameworks are considered: πn = π is constant and πn → 0 as n→∞.

The following lemmas establish a uniform law of large numbers and a central
limit theorem expressed in terms of the new empirical processes. These results
are the building blocks on the top of which the proofs of the theorems rest.
Measurability issues are ignored. See [41, 40] for a way of addressing this.

Lemma A.1. Let m ∈ M(G1, . . . ,GA) with L = 1. If πn > 0 is constant or if

πn → 0 such that nπn →∞ then |Pnnm− P ∗nm|
P→ 0 as n→∞.

Lemma A.2. Let m ∈ M(G1, . . . ,GA) with L = 1. Assume furthermore that
N(δ,Ga, P ) < ∞ for all δ > 0 and all a = 1, . . . , A. If πn > 0 is constant or if
πn → 0 such that nπn →∞ then

sup
m∈M(G1,...,GA)

|Pnnm− P ∗nm|
P→ 0, n→∞.

Lemma A.3. Let m ∈ M(G1, . . . ,GA). If πn = π is constant then G∗nnm
converges in distribution to a centered Gaussian vector with variance-covariance
matrix

(1− π)

(
A∑
a=1

E ga(X1)ga(X1)>

)

+ π

(
A∑
a=1

A∑
b=1

E ga(X1)gb(X1)> − E ga(X1) E gb(X1)>

)
.

If πn → 0 such that

E gal(X1)4 exp

(
− nπnκ∑A

a=1 gal′(X1)2

)
= o(πn) (15)
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for all κ > 0 and all l, l′ = 1, . . . , L, then G∗nnm converges in distribution to a
centered Gaussian random vector with variance-covariance matrix

A∑
a=1

E ga(X1)ga(X1)>. (16)

Proof of Theorem 1

One can follow almost word for word the proofs of Theorem 2 and Theorem 3.
The appropriate changes are easily made: it suffices to switch to the appropriate
asymptotic frameworks in Lemma A.2 and Lemma A.3.

Proof of Theorem 2

Since θ̂MRPL
n is a MRPLE, there is a compact subset Λ ⊂ Θ that contains θ0

such that LRPL
n (θ̂MRPL

n ) ≥ LRPL
n (θ) for all θ ∈ Λ. Denote LPL(θ) =

∑
a La(θ),

θ ∈ Θ. Then LPL is uniquely maximized at θ0 ∈ Λ and ELRPL
n (θ) = LPL(θ),

θ ∈ Θ. Since θ0 ∈ Λ, certainly

LRPL
n (θ̂MRPL

n ) ≥ sup
θ∈Λ

LRPL
n (θ) ≥ LRPL

n (θ0).

Theorem 5.7 in [40] asserts that if the conditions

(i) ∀ε > 0, sup
θ∈Λ:|θ−θ0|≥ε

LPL(θ) < LPL(θ0)

(ii) sup
θ∈Λ
|LRPL
n (θ)− LPL(θ)| P→ 0

hold, then θ̂MRPL P→ θ0 as n→∞.
Let us check (i). Since f(·, θ0) belongs to L2(Rd), it follows that LPL(θ0) <

∞. By Assumption 1, the function LPL : Λ −→ [−∞,∞) is continuous on Λ.
Since the set {θ ∈ Λ : |θ−θ0| ≥ ε} is compact, the supremum of LPL is reached.
But this supremum must be less than LPL(θ0), because, by Assumption 2, the
point θ0 is the unique maximizer. Condition (i) is fulfilled.

Let us check (ii). Using the notation introduced at the beginning of this
section, we can write

sup
θ∈Λ
|LRPL
n (θ)− LPL(θ)|

= sup
θ∈Λ

∣∣∣∣∣∑
a∈A

1

n

n∑
i=1

(
W

(a)
ni

πn
log fa(Xi; θ)− E log fa(X1; θ)

)∣∣∣∣∣
≤ sup
m∈M(Ga,a∈A)

|Pnnm− P ∗nm| ,

where Ga = {log fa(·; θ), θ ∈ Λ}, a ∈ A. By Lemma A.2, the condition (ii) will
hold if we can show that the bracketing numbers N(δ,Ga, P ), δ > 0, are finite.
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But it is well known that classes indexed by a compact subset of an Euclidean
space have finite bracketing numbers; see for instance Lemma 3.10 in [39] for a
proof. Hence condition (ii) is fulfilled as well.

Proof of Theorem 3

Recall the notation introduced at the beginning of this section and letm(x,w, θ) =∑
a∈A wa`a(x; θ). As in the proof of Theorem 2 let LPL(θ) =

∑
a La(θ). Denote

the gradient of m with respect to θ by ∇m. Denote the Hessian matrix of LPL

at θ0 by ∇2LPL(θ0). If we can show

√
nπn(θ̂MRPL − θ0) = −

[
∇2LPL(θ0)

]−1
G∗nn∇m(·, ·, θ0) + oP (1), (17)

then Lemma A.3 will imply that
√
nπn(θ̂MRPL − θ0) converges in distribution

to a centered Gaussian random vector with variance-covariance matrix

[
∇2LPL(θ0)

]−1

(1− π)
∑
a

E ˙̀
a

˙̀>
a + π

∑
a,b

E ˙̀
a

˙̀>
b − E ˙̀

a E ˙̀>
b

[∇2LPL(θ0)
]−1

,

if πn is a constant, and
∑
a E ˙̀

a
˙̀>
a if πn → 0. The asymptotic variance-

covariance matrices above are those announced by Theorem 1 and Theorem 3,
respectively, because Assumption 1 implies E ˙̀

a = 0 and∇2LPL(θ0) = −
∑
a E ˙̀

a
˙̀>
a .

So we need to show (17). The map LPL is two times continuously differ-
entiable at θ0 with gradient ∇LPL(θ0) = P∇m(·, 1, θ0) and negative definite
Hessian matrix ∇2LPL(θ0) = P∇2m(·, 1, θ0). Let Λ̊ be the interior of Λ, that
is, its biggest open subset. For every n,

LRPL
n (θ̂MRPL

n ) ≥ sup
θ∈Λ̊

LRPL
n (θ)

and θ̂MRPL
n is consistent for θ0 by Theorem 2. Thereore equation (17) follows

from Theorem 3.2.16 of [41, p. 300], which itself is a generalization of an idea
of [36, 37], provided that

√
nπn

([
LRPL
n (θ0 + h̃n)− LPL(θ0 + h̃n)

]
−
[
LRPL
n (θ0)− LPL(θ0)

])
= h̃>nG

∗
nn∇m(·, ·, θ0) + oP

(
‖h̃n‖+

√
nπn‖h̃n‖2 +

1
√
nπn

)
,

for all random sequences h̃n = oP (1). Denoting

∇i1m(·, ·, θ) =
∂m(·, ·, θ)
∂θi1

, ∇2
i1i2m(·, ·, θ) =

∂2m(·, ·, θ)
∂θi1∂θi2

, etc,

and using the notation introduced at the beginning of this section, one can see
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that this condition boils down to

1

2

∑
i1,i2

h̃i1 h̃i2G
∗
nn∇2

i1i2m(·, ·, θ0) +
1

6

∑
i1,i2,i3

h̃i1 h̃i2 h̃i3G
∗
nn∇3

i1i2i3m(·, ·, ĥ)

= oP

(
‖h̃‖+

√
nπn‖h̃‖2 +

1
√
nπn

)
, (18)

where ĥ is a point between θ0 and θ0 + h̃. Above we have dropped the sub-
scripts n of h̃ and ĥ. In view of Assumption 1 and (6), Lemma A.3 implies
G∗nn∇2

i1i2
m(·, ·, θ0) = OP (1) whether πn is a constant or πn → 0. Remember

that the third derivatives are bounded by the functions Ψa, put Ψ(x,w) :=∑
a∈A waΨa(x) so that |∇3

i1i2i3
m(x,w, ĥ)| ≤ Ψ(x,w), which entails

|G∗nn∇3
i1i2i3m(·, ·, ĥ)| ≤ G∗nnΨ + 2

√
nπnPΨ(·, 1) = OP (

√
nπn),

because G∗nnΨ = OP (1) by Lemma A.3. Thus, in both cases πn → 0 and πn

constant, the left hand side in (18) is OP

(
‖h̃‖2

(
1 + ‖h̃‖√nπn

))
. The proof is

complete.

B Proofs of the Lemmas in Section A

Proof of Lemma A.1

We have

|Pnnm− P ∗nm| =

∣∣∣∣∣ 1n
n∑
i=1

A∑
a=1

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣∣ .
Let ε > 0. Since

∑
a(π−1

n W
(a)
ni ga(Xi)−E ga(X1)), i = 1, . . . , n, are i.i.d., Cheby-

chev’s inequality yields

P

(∣∣∣∣∣ 1n∑
i

∑
a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣∣ > ε

)

≤
Var

∑
a

(
W

(a)
n1 ga(X1)/πn − E ga(X1)

)
nε2

=
(1− πn)

∑
a E ga(X1)2

nπnε2
+

E (
∑
a ga(X1)− E ga(X1))

2

nε2
→ 0

whether πn is constant or πn → 0 because nπn →∞ either way.

Proof of Lemma A.2

We have

sup
m∈M(G1,...,GA)

|Pnnm− P ∗nm| = sup
g1∈G1,...,gA∈GA

∣∣∣∣∣ 1n
n∑
i=1

A∑
a=1

W
(a)
ni

πn
ga(Xi)− E ga(X1)

∣∣∣∣∣ .
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Let δ > 0. Denote Na = N(δ,Ga, P ). For every a = 1, . . . , A, there are brackets
[gL
a,j , g

U
a,j ], j = 1, . . . , Na, such that (i)

∫
gU
a,j−gL

a,j dP < δ for all j ∈ {1, . . . , Na}
and (ii) for every ga ∈ Ga, there is j(a) ∈ {1, . . . , Na} such that gL

a,j(a) ≤ ga ≤
gU
a,j(a). This implies

−Aδ +
1

n

∑
i,a

(
W

(a)
ni

πn
gL
a,j(a)(Xi)− E gL

a,j(a)(X1)

)

≤ 1

n

∑
i,a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)

≤ 1

n

∑
i,a

(
W

(a)
ni

πn
gU
a,j(a)(Xi)− E gU

a,j(a)(X1)

)
+Aδ

and hence

sup
g1∈G1,...,gA∈GA

∣∣∣∣∣∣ 1n
∑
i,a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣∣∣
≤ max


∣∣∣∣∣∣ 1n
∑
i,a

(
W

(a)
ni

πn
gS
a,j(a)(Xi)− E gS

a,j(a)(X1)

)∣∣∣∣∣∣ ,S ∈ {L,R}
+Aδ.

Regardless of the behavior of the sequence πn, the first term in the right-hand
side goes to zero in probability by Lemma A.1. Since δ was arbitrary, the proof
is complete.

Proof of Lemma A.3

Case πn = π constant. We have

G∗nnm =

√
π√
n

n∑
i=1

Yi,

where

Yi =

A∑
a=1

(
W

(a)
ni

π
ga(Xi)− E ga(X1)

)
, i = 1, . . . , n,

are independent, identically distributed and centered random vectors. There-
fore, by the central limit theorem, G∗nnm goes to a centered Gaussian ran-
dom vector with variance-covariance matrix (1 − π) E

∑
a ga(X1)ga(X1)> +

π
∑
a,b(E gag

>
b − E ga E g>b ).
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Case πn → 0. We have

G∗nnm =
1

√
nπn

n∑
i=1

(
A∑
a=1

W
(a)
ni ga(Xi)− πn E ga(X1)

)

=
1

√
nπn

∑
i,a

(W
(a)
ni − πn)ga(Xi) +

√
nπn

 1

n

∑
i,a

ga(Xi)− E ga(X1)

 ,

where the second term is of order
√
πnOP (1) and hence vanishes in probability as

n→∞. It remains to show that the first term goes to a Gaussian distribution.
By Lindeberg-Feller’s central limit theorem (see e.g. [40, p. 20]), this is true
under two conditions:

(C1)
∑
i

Var

[
1

√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

]
→ Σ,

(C2) For all ε > 0,

∑
i

E

∥∥∥∥∥ 1
√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

∥∥∥∥∥
2

1

{∥∥∥∥∥ 1
√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

∥∥∥∥∥ > ε

}]
→ 0.

Since the random vectors
∑
a(W

(a)
ni − πn)ga(Xi), a = 1, . . . , A, are independent

and identically distributed, the condition (C1) boils down to

1

πn
Var

(∑
a

(W
(a)
n1 − πn)ga(X1)

)
→ Σ.

Thanks to the independence between {W (a)
n1 , a = 1, . . . , A} and X1, the lth row

and l′th column of the variance-covariance matrix

Var

(∑
a

(W
(a)
n1 − πn)ga(X1)

)

= E E

[∑
a

(W
(a)
n1 − πn)ga(X1)

][∑
a

(W
(a)
n1 − πn)ga(X1)

]> ∣∣∣∣X1


is given by

E
∑
a,a′

gal(X1)ga′l′(X1) E(W
(a)
n1 − πn)(W

(a′)
n1 − πn)

= Eπn(1− πn)
∑
a

gal(X1)gal′(X1).
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Thus, the left-hand side in the condition (C1) is (1− πn) E
∑
a ga(X1)ga(X1)>

and we have shown that it goes to Σ = E
∑
a ga(X1)ga(X1)>.

Let us now show that the condition (C2) holds. Choosing the Euclidean
norm, the condition boils down to

E

E

∥∥∥∥∥
A∑
a=1

W
(a)
n1 − πn√
πn

ga(X1)

∥∥∥∥∥
2

Bn

∣∣∣∣∣X1

→ 0,

where Bn = 1
{∥∥∥∑a(W

(a)
n1 − πn)ga(X1)

∥∥∥ > ε
√
nπn

}
. The inner expectation is

bounded by

2A−1
A∑
a=1

L∑
l=1

E

(W (a)
n1 − πn√
πn

)2

gal(X1)2Bn

∣∣∣∣X1



By Cauchy-Schwartz’s inequality and the independence between X1 and W
(a)
n1 ,

the expectation above is less than√√√√E

(
W

(a)
n1 − πn√
πn

)4√
gal(X1)4 E(Bn|X1).

Straightforward calculations show that the first factor is equivalent to 1/
√
πn.

Let us bound the second one. We have

E(Bn|X1) = P

(∥∥∥∥∥∑
a

(W
(a)
n1 − πn)ga(X1)

∥∥∥∥∥
2

> ε
√
nπn

∣∣∣∣∣X1

)

≤ P

(∥∥∥∥∥∑
a

(W
(a)
n1 − πn)ga(X1)

∥∥∥∥∥
∞

>
ε
√
nπn√
L

∣∣∣∣∣X1

)

≤
L∑
l=1

P

(∣∣∣∣∣∑
a

(W
(a)
n1 − πn)gal(X1)

∣∣∣∣∣ > ε
√
nπn√
L

∣∣∣∣∣X1

)

≤
L∑
l=1

2 exp

(
− 2nπnε

2

L
∑
a 4(1− πn)2|gal(X1)|2

)
.

The last inequality is an application of Hoeffding’s inequality, see e.g [39, p.
33]. Gluing the pieces together, the left-hand side in condition (C2) is bounded
above by

2A−1/2
A∑
a=1

L∑
l=1

√√√√ L∑
l′=1

E
gal(X1)4

πn
exp

(
− 2nπnε2

L
∑A
a′=1 4(1− πn)2|ga′l′(X1)|2

)
.

The condition in Lemma A.3 implies that the expectation above goes to zero.
The proof is complete.
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C Proofs of the Propositions

Proof of Proposition 1

We begin with a lemma.

Lemma C.1. Let wa > 0 for all a ∈ A. If the two statements

(i) θ0 is a maximizer of La for every a ∈ A

(ii) θ 6= θ′ implies that there exists a pair a such that La(θ) 6= La(θ′)

are true then the maximizer of θ 7→
∑
a waLa(θ) is unique.

Proof. If θ′0 were another maximizer of
∑
a waLa then there is a ∈ A such

that waLa(θ′0) < waLa(θ0). But then
∑
a waLa(θ′0) <

∑
a waLa(θ0), which is a

contradiction.

It is straightforward to show that Lemma C.1 (i) is true. It remains to ensure
that Lemma C.1 (ii) is true as well. Take a = {i, j} ∈ A, choose θ, θ′ ∈ Θ and
assume La(θ) = La(θ′). By (ii) of the Proposition, E log f̃a(X1i, X1j ; va(θ)) =

E log f̃a(X1i, X1j ; va(θ′)) and hence, by (i), va(θ) = va(θ′). Since the pair a was
arbitrary, (iii) implies θ = θ′. The proof is complete.

Proof of Proposition 2

In this case the functions Φa in Theorem 3 are bounded by a constant, say C.
Let A be the cardinal of A. The left hand side of (6) is bounded by

1

πn
C4 exp

(
−nπnκ
AC2

)
,

which goes to zero because π−1
n e−π

−1
n → 0 and exp([AC2−nπ2

nκ]/[AC2πn]) ≤ 1
as soon as nπ2

nκ ≥ AC2.

Proof of Proposition 3

Assumption 1: Clearly, for all x ∈ R2,

max

(∣∣∣∣∂`a(x; θ)

∂θ

∣∣∣∣ , ∣∣∣∣∂2`a(x; θ)

∂θ2

∣∣∣∣ , ∣∣∣∣∂3`a(x; θ)

∂θ3

∣∣∣∣ ,) ≤ ϕ(θ)(1 + ‖x‖2),

for some positive and continuous function ϕ defined on (−1/(d− 1) + ε, 1− ε).
This set can be extended to the compact set [−1/(d − 1) + ε/2, 1 − ε/2] and
hence

E Φa(X1; θ0)2 ≤ C(1 + ‖x‖2)2 (19)

for some constant C. (Remember that θ0 is the true parameter.) Since E(1 +
‖X1‖2)2 <∞, the first statements in Assumption 1 have been checked. Also, it
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is clear that the derivatives can be passed under the integral sign. Assumption 1
has been checked.

Assumption 2: We have

La(θ) = − log(1− θ2)

2
− 1

1− θ2
+

θθ0

1− θ2
+ constant

and hence ∂La(θ)∂θ = 0 iff −θ3 + θ0θ
2 − θ + θ0 = 0. This polynomial in θ

has only one real root (the two other are complex) and hence the maximizer of∑
a La(θ) = d(d− 1)L12(θ)/2 is unique.

Proof of Proposition 4

In view of (19) and since the the left hand side in (6) is an increasing function
of Φa, a ∈ A, it suffices to show that

E
(
1 + ‖X1‖2

)4
exp

(
− nπnκ

(1 + ‖X1‖2)2

)
∝
∫
Rd

(1 + ‖x‖2)4 exp

(
− nπnκ

(1 + ‖x‖2)2

)
exp

(
−1

2
x>Σ−1

θ0
x

)
dx

≤
∫
Rd

(1 + ‖x‖2)4 exp

(
− nπnκ

(1 + ‖x‖2)2
− ‖x‖

2

4λmax

)
dx

=

∫ ∞
0

(1 + r2)4rd−1 exp

(
− nπnκ

(1 + r2)2
− r2

4λmax

)
dr

is of order o(πn) for all κ > 0. The inequality above is true because Σ−1
θ0
−

1/(4λmax)I is positive definite. The last equality holds by a change of vari-
ables [3]. Since (1 + r2)4rd−1 is a polynomial in r, the last integral is a sum
of integrals of the form given in Lemma D.2 and hence, by Corollary D.1, it
is of order O(exp(−[nπnκ]1/3/(8λmax ∨ 1))) whenever nπn → ∞. Substituting
πn = n−α with 0 < α ≤ 1/4 and letting n go to infinity completes the proof.

Proof of Proposition 5

It suffices to check (i), (ii) and (iii) in Proposition 1. Let a = {i, j}. Put va(θ) =
va(µi, µj , ρ) = (µi, µj , wa(ρ)) so that range va = Θi×Θj× rangewa. The condi-
tion (ii) in Proposition 1 is checked because Fa(xi, xj ; θ) = Ca(Fµi(xi), Fµj (xj); ρ) =

C̃a(Fµi
(xi), Fµj

(xj);wa(ρ)) =: Fa(xi, xj ; va(θ)). These distribution functions
define a family indexed by range va. This family is identifiable: if (µi, µj , %), (µ′i, µ

′
j , %
′) ∈

range va and C̃a(Fµi
(xi), Fµj

(xj); %)) = C̃a(Fµ′i(xi), Fµ′j (xj); %
′) then letting

xi → ∞ yields that µj = µ′j and by the same token µi = µ′i and hence % = %′.
Thus the condition (i) in Proposition 1 is true. Finally, choose θ = (µ1, . . . , µd, ρ)
and θ′ = (µ′1, . . . , µ

′
d, ρ
′) in Θ. If V (θ) = V (θ′) then clearly µ1 = µ′1, . . . , µd = µ′d

and wa(ρ) = wa(ρ′) for all a ∈ A. But then ρ = ρ′ because the mapping W is
one-to-one. Thus the last condition (iii) in Proposition 1 is checked.
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D Bound on an integral

Lemma D.1. If f is a function defined by

f(x) =
−α log x

x2
+

λ

(β + γx4)x2
,

x > 0, λ > 0, α > 0, β > 0, γ > 0, then there is x? ∈ (0,∞) such that
f(x) ≥ f(x?) for all x and −α(1−2 log x?)(β+γx?4)2−λγx?4 = 2λβ. Moreover,
f(x?)→ 0 as λ→∞.

Proof. We have f ′(x) ≥ 0 iff

−α(1− 2 log x)(β + γx4)2 − λγx4 ≥ 2λβ. (20)

Note that if x ≤ e1/2 then f ′(x) ≤ 0. Otherwise, (20) is equivalent to

x4(ϕ1(x) + ϕ2(x)− λγ) + ϕ3(x) ≥ 2λβ, (21)

where ϕ1(x) = −αγ2(1 − 2 log x)x4, ϕ2(x) = −2αβγ(1 − 2 log x) and ϕ3(x) =
−αβ2(1− 2 log x). The functions ϕ1, ϕ2 and ϕ3 are increasing and nonnegative
on [e1/2,∞). Thus the function in the left-hand side of (21) is continuous and
increasing and is equal to −λγe2 at e1/2. Therefore, it reaches 2λβ at a unique
point x? > e1/2; this point satisfies (21) and hence (20) with “=” instead of
“≥”. It follows that the function f is decreasing on (0, x?), reaches its global
minimum at x? and is increasing on (x?,∞). It remains to show that f(x?)→ 0
as λ→∞. We have

f(x?) =
−α log x?

x?2
+

λ

(β + γx?4)x?2

and from (21) we know that x? →∞. This implies that the limit is as required.

Lemma D.2. Let $ be such that
√

2$ =
∫
e−x

2/2 dx. If

I(λ) =

∫ ∞
0

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx,

σ > 0, λ > 0, α > 0, then for every 0 < γ ≤ 1, there are η0 > 0 and λ0 > 0
such that

I(λ) ≤

(
ηα exp

[
− λ

1 + γη4

]
σ
√

2$

2
+ exp

[
− η2

4σ2

])
exp

[
λ

1 + γη4
− λ

(1 + η2)2

]
for all η > η0 and λ > λ0.
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Proof. Choose 0 < γ ≤ 1 and put f(x) := (1 + γx4)−1 − (1 + x2)−2. There is
η0 > 0 such that f ′(x) < 0 for all x > η0. Now choose η > η0. Then

B :=

∫ ∞
η

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx

≤ exp [λf(η)]

∫ ∞
η

xα exp

[
− λ

1 + γx4
− x2

2σ2

]
dx.

Let ν > 0. The integrand above is bounded by exp[−x2/(2ν2)] iff−2α log(x)/x2+
2λ/[(1 + γx4)x2] ≥ 1/ν2 − 1/σ2. In the above inequality, the function in the
left is bounded below by some constant that goes to zero as λ goes to infinity.
(See Lemma D.1.) Taking ν2 = 2σ2 ensures that the inequality is true for all x
as soon as λ is greater than some number λ0. Therefore,

B ≤ exp

[
λ

1 + γη4
− λ

(1 + η2)2

] ∫ ∞
η

exp

[
− x2

4σ2

]
dx

≤ exp

[
λ

1 + γη4
− λ

(1 + η2)2

]
exp

[
− η2

4σ2

]
for all η > η0 and λ > λ0. Finally,

A :=

∫ η

0

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx

≤ ηα exp

[
− λ

(1 + η2)2

] ∫ η

0

exp

[
− x2

2σ2

]
dx

≤ ηα exp

[
− λ

(1 + η2)2

]
σ
√

2$

2

and, since I(λ) = A+B, the proof is complete.

Corollary D.1. The integral I(λ) defined in Lemma D.2 satisfies

I(λ) = O

(
exp

[
− λ1/3

4σ2 ∨ 2

])
, λ→∞.

Proof. In Lemma D.2, we may take η = λa, a > 0, because both η and λ are
allowed to go to infinity. If, furthermore, a < 1/4, then the first factor in the
upper bound go to zero. If γ = 1 and a ≥ 1/6 then the second factor goes to a
nonnegative constant, say K. Now, with γ = 1 and a = 1/6,(

λα/6 exp

[
− λ

1 + λ2/3

]
σ
√

2$

2
+ exp

[
−λ

1/3

4σ2

])
exp

[
λ1/3

4σ2 ∨ 2

]
= λα/6 exp

[
λ1/3

4σ2 ∨ 2
− λ1/3

λ−2/3 + 1

]
σ
√

2$

2
+ exp

[
λ1/3

4σ2 ∨ 2
− λ1/3

4σ2

]
.

The limit is zero if 4σ2 < 2 and one if 4σ2 ≥ 2. Therefore the limit of
I(λ) exp[λ1/3/(4σ2 ∨ 2)] is at most K. The proof is complete.
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Figure S1: Boxplots of parameter estimates for n = 500 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likeli-
hood (CL), and randomized pairwise composite likelihood (RCL) approaches
with π = 0.5 and 0.2 for ρ = {−0.1 . . . , 0.9}.

38



●

●●

●

●
●
●

●
●

●

●

●

●
●

●

●●

●●

●

●
●●

●●

●

●●
●

●●

●
●●
●

●

●
●

●

●

●
●

●●
●
●●●●●●

●

●●●●
●

●●

●●

●●

●
●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●

●●

●●
●
●●●●●●●●●●
●

●
●

●●

●●●

●

●

●

●
●

●

●●

●

●●●

●●

●

●

●●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●
●
●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●●●●

●
●●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●●
●

●
●
●
●

●

●●●●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●●

●

●
●
●

●

●●

●

●

●●

●
●
●

●

●●
●●

●

●

●

●

●

●
●

●
●

●
●

●●

●●

●●
●
●

●

●●●●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●●●
●
●

●

●●

●

●

●●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●●
●

●

●

●●
●

●
●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●
●●

●
●●●●

●

●

●●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●●●

●
●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●●
●

●
●●●●

●

●

●●●●

●

●

●
●

●

●

●●●●

●
●

●

●

●
●●
●
●●●

●

●●●●

●

●●

●

●
●●

●●

●●

●●

●

●●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●●●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●●

●

●●●●●●●

●

●●

●

●●

●

●
●

●

●

●

●
●

●●●
●

●

●●●

●

●●

●

●

●●●●●

●

●●●

●●
●●
●

●

●

●●
●
● ●

●
●

●●●

●●●●

●

●●

●●●
●
●●●

●
●●●

●

●

●

●

●
●●●

●
●

●

●

●●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●●●●●●

●

●

●
●
●●
●●●

●●●●

●

●
●

●

●

●

●
●●

●

●

●

●●●

●

●●●

●
●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●
●
●●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●●●●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●●

●
●●●
●●●

●

●

●
●

●

●
●●●●

●

●

●
●●●
●●

●

●●●●

●

●●●

●

●

●●●●●

●

●●

●●●

●

●

●

●
●●

●
●●

●

●
●●●

●

●

●●
●●

●

●

●

●
●

●

●●●
●●

●

●

●

●
●
●
●
●
●●

●

●

●
●
●●
●

●
●●●●
●

●
●

●
●●●●

●

●

●

●●

●●●

●
●

●

●
●

●

●
●

●
●●

●
●
●

●●●
●

●

●

●●
●●

●

●

●
●

●●

●

●●
●

●

●

●●●

●

●

●●
●

●

●

●

●●

●

●●
●●
●●
●

●

●

●
●●

●

●

●

●
●●

●●
●●
●●●
●●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●●●●

●

●
●

●

●
●

●

●●
●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●
●
●

●

●●

●

●●●

●
●

●●

●

●●●

●

●

●

●●
●

●

●●

●

●
●
●
●●
●●●●●

●●

●

●
●
●

●

●

●

●

●

●●

●●

●
●●

●
●
●

●●

●●

●

●

●

●

●●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●●
●
●
●
●●●
●●

●●

●●

●●
●
●

●

●
●

●

●

●

●●

●●
●●●

●●●

●
●

●

●●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●
●●

●

●●

●
●

●●

●

●

●

●

●

●●
●

●●

●

●
●
●
●●
●
●
●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●●●

●

●●

●●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●

●●●

●●●●

●●

●●

●●●●●●
●●●●

●●

●

●

●
●●

●●

●

●●

●
●

●
●●

●●●●
●

●●
●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●

●●●

●●●●

●●

●●

●●●●●●●●●●

●●

●

●

●
●●

●●

●

●●

●
●

●
●●

●●●●
●

●●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●●●

●●
●
●●

●

●●●●
●

●

●

●

●

●

●

●●●

●
●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●●●
●
●
●

●

●

●

●

●●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●
●●

●

●●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●●
●

●●

●

●

●●●
●●
●

●

●●

●

●

●●

●●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●●

●

●●●

●
●

●

●

●
●

●

●●
●

●

●●
●

●

●
●

●●●

●

●●
●
●●

●●
●
●●

●

●●
●●

●

●

●
●

●
●
●

●

●

●

●

●
●
●
●

●

●●

●●●
●

●

●

●

●●
●●●

●●

●

●●●

●
●
●

●●
●
●●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●●●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●●●●
●
●●

●

●
●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●●
●
●●●●

●

●

●●●

●

●

●

●

●
●●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●●●●
●●

●

●

●
●

●

●

●

●
●

●●●
●
●

●●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●●●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●●●●

●

●
●
●

●

●

●●

●●

●●●●
●

●●

●

●

●

●

●

●●

●
●

●

●●

●
●●

●●●●
●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●
●

●

●●

●

●

●●

●
●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●
●
●
●
●●●●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●●

●●●

●●

●●
●
●

●

●

●

●
●

●

●●

●
●

●

●●●

●

●
●

●●●

●●

●

●
●
●●
●●

●

●●
●

●

●●

●
●

●

●●●●●

●

●

●

●

●
●

●●

●●●

●●

●
●
●

●

●

●

●●

●

●●

●
●

●

●●●

●

●

●

●

●●●

●●

●
●
●
●●
●●

●

●●

●

●●

●
●
●

●

●●●●●

●

●

●●

●

●

●

●

●●●

●●●

●
●

●●

●
●

●
●

●●●
●
●●

●

●

●

●

●

●

●
●
●

●

●●
●

●●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●●●

●
●
●●

●●●

●

●

●

●

●
●

●●

●

●
●

●

●●●

●

●
●

●

●

●
●
●
●

●●

●

●

●●

●

●

●
●
●●
●●

●●

●●●
●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●●

●

●
●●●

●●

●
●

●

●

●

●●●
●

●●

●●
●

●●

●●

●
●

●

●●●●●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●●
●

●●

●●

●●

●

●
●●
●●●
●

●

●

●

●
●

●●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●●

●

●

●●●●

●

●●

●●

●●●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●
●
●

●

●

●●

●
●●●
●●

●

●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●●

●
●●

●●●

●
●

●
●

●

●

●●

●

●

●●

●
●●●
●
●

●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●●●

●

●●

●

●

●●
●●
●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●●●
●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●●
●

rho =  0.6 rho =  0.7 rho =  0.8 rho =  0.9

rho =  0.2 rho =  0.3 rho =  0.4 rho =  0.5

rho =  −0.1 rho =  −0.2 rho =  0 rho =  0.1

FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2)

FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2)

FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2) FML CL RCL(0.5) RCL(0.2)

0.00

0.05

0.10

0.15

0.20

0.40

0.45

0.50

0.55

0.89

0.90

0.91

−0.10

−0.05

0.00

0.05

0.10

0.30

0.35

0.40

0.45

0.50

0.76

0.78

0.80

0.82

−0.30

−0.25

−0.20

−0.15

−0.10

0.20

0.25

0.30

0.35

0.40

0.66

0.69

0.72

0.75

−0.20

−0.15

−0.10

−0.05

0.00

0.10

0.15

0.20

0.25

0.30

0.56

0.60

0.64

Estimation method

es
tim

at
e

Figure S2: Boxplots of parameter estimates for n = 1000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likeli-
hood (CL), and randomized pairwise composite likelihood (RCL) approaches
with π = 0.5 and 0.2 for ρ = {−0.1 . . . , 0.9}.
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Figure S3: Boxplots of parameter estimates for n = 5000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likeli-
hood (CL), and randomized pairwise composite likelihood (RCL) approaches
with π = 0.5 and 0.2 for ρ = {−0.1 . . . , 0.9}.
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Figure S4: Asymptotic coverage for the compound symmetry example, with
α = 5%, averaged over 50,000 replications. The values represent the proportion
of times the asymptotic interval contains the true value used to simulate the
data.
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Figure S5: Mean squared error averaged across 300 replications using the ran-
domized pairwise likelihood approach with π = {0.1, 0.3, 0.5, 0.7, 1} for simu-
lated data with dimension d = 5, 6, 7, copula dispersion ρ = 0.25 or 0.75, and
number of observations ranging from n = 200 to 5000.
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Figure S6: Average computational time in seconds (across 300 replications)
using the randomized pairwise likelihood approach with π = {0.1, 0.3, 0.5, 0.7, 1}
for simulated data with dimension d = 5, 6 or 7, copula dispersion ρ = 0.25 or
0.75, and number of observations ranging from n = 200 to 5000.
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