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A Simulations for the exchangeable Gaussian model

A.1 Comparison with the pairwise and the full likelihood meth-

ods

We simulate a set of d-dimensional vectors Y;, ¢ = 1,...,n from an exchangeable multivari-
ate Gaussian distribution with mean vector p and covariance matrix ¥, where all means p
are considered to be known and set to 0, and all variances and correlations are fixed to 1 and
p, respectively. In this case, the only parameter to be estimated is thus p; in different sim-

ulation settings, the true value of p was set to be equal to one of {—0.1,0,0.1,0.2,...,0.9}.



-
I

n
i

RCL(05) RCL(0.2) ML cL RCL(0.5) RCL(02) FML c Rch 5) RCL(0.2) ML cL RCL(05) RCL(0.2)
—]

[ | \—1—1 0800~ —

— ‘—I—‘ ! l l [ l L1 o0- | —
2 (

RCL(0.2) FML cL RCL(0.5) RCL(02) AL c RCL(0.5) RCL(0.2) L cL RCL(05) RCL(0.2)
Estimation method

Figure S1: Boxplots of parameter estimates for n = 500 across 50,000 simulated datasets
using the full maximum likelihood (FML), composite pairwise likelihood (CL), and ran-
domized pairwise composite likelihood (RCL) approaches with 7 = 0.5 and 0.2 for
p={-01...,09}.

We consider n = 100, 1000, and 5000 observations, and the dimension was set to d = 4.
To evaluate the efficiency of the randomized pairwise likelihood, we considered the
sampling parameter values 7 = 0.5 and m = 0.2, and compared the results to those obtained
from the full maximum likelihood, and the pairwise likelihood using all pairs of variables
and all observations; simulations were repeated 50,000 times. Efficiency was calculated as
the ratio of the variance of parameter estimates across simulated datasets in the pairwise
likelihood and randomized pairwise likelihood methods with respect to the full maximum
likelihood approach. For all values of p considered, all methods considered successfully

recover the true value of p, although as expected, the variance of estimators increases
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Figure S2: Boxplots of parameter estimates for n = 1000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likelihood (CL),
and randomized pairwise composite likelihood (RCL) approaches with 7 = 0.5 and 0.2 for
p={-01...,09}.
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Figure S3: Boxplots of parameter estimates for n = 5000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likelihood (CL),
and randomized pairwise composite likelihood (RCL) approaches with 7 = 0.5 and 0.2 for
p={-01...,09}.



from the full maximum likelihood to the pairwise likelihood, and further increases in the
randomized pairwise likelihood as the sampling parameter 7 decreases (see Figures S1-S3).
In comparing the efficiency of estimators in the pairwise approaches with that of the full
maximum likelihood, we remark that the efficiency of the pairwise likelihood is as reported
in Cox and Reid (2004) for d = 4; in addition, as expected, the loss of efficiency for the
randomized pairwise likelihood is consistent with the theoretical results with respect to the

sampling fraction for each value of .

A.2 Coverage for the approximate confidence intervals

In order to examine the asymptotic properties described, we also performed simulations to
evaluate the coverage probabilities for the asymptotic confidence intervals. We still use the
exchangeable Gaussian model model with known means and variances and we estimate the
common correlation parameter p using randomized pairwise likelihood. Based on Theorem
3 and the derivations of Proposition 4, when n is large, we have that, approximately,
Vnr(p—p) ~ N(0,V(p)), where p is the randomized pairwise likelihood estimate, d is
the dimension and V(p) = 2(1 — p?)*/(d(d — 1)(p® — p* — p*> + 1)). One can create an
asymptotically 100(1 — «)% confidence interval as p + Zl,a/g\/W where Z, is the
a—quantile of the standard normal distribution.

We simulated 50,000 samples of dimension d = 4 for values of p € {—0.1,0.2,...,0.9},
n € {500, 1000, 5000, 10000} and corresponding values of 7 to yield subsample sizes nm
of 100 and 200. For each sample we created the asymptotic confidence interval described
above, and we estimated as coverage probability the proportion of times the true value was
inside the interval (using a = 0.05). The results are depicted in Figures S4 and S5. We

can see that, as theoretical results suggest, when the sample size increases, the asymptotic



coverage gets closer to the nominal level verifying the potential of the asymptotic results for
inference. This also highlights the potential of randomized pairwise likelihood for inference.

We repeated the simulations in the previous section for datasets with d € {3,8, 15,20, 50}
to investigate the impact of increasing dimensionality on coverage. Results averaged over

1000 replications are shown in Table S1.

d=3 d=8 d=15 d=20 d=50

p=0 0934 0953 0952 0954 0.946

n—5000 P~ 0.25 0.937 0958 0949 0934 0.858
p=20.5 0932 0940 0939 0934 0.864

p=0.75 0936 0945 0942 0944 0.909
p=0 0930 0.960 0948 0951 0.957

g P= 0.25 0954 0941 0935 0937 0.864
p=05 0929 0940 0929 0941 0.855
p=075 0937 0944 0930 0951 0.895

n = 1000

Table S1: Average coverage (over 1000 replications) for dimension d = {3, 8,15, 20,50} for
sample sizes n = 5000 or 10,000, p € {0,0.25,0.5,0.75}, and sampling probability = = 0.01,
with a = 5%.
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Figure S4: Asymptotic coverage for the exchangeable Gaussian model example, with
a = 5%, averaged over 50,000 replications. The values represent the proportion of times
the asymptotic interval contains the true value used to simulate the data, with p versus

asymptotic coverage by sample size n.
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Figure S5: Asymptotic coverage for the exchangeable Gaussian model example, with
a = 5%, averaged over 50,000 replications. The values represent the proportion of times
the asymptotic interval contains the true value used to simulate the data, for p versus
asymptotic coverage by subsample size nr.



B Additional Table

Phor Male Pre-Lay  Arrest Post-Lay Young Emerg Non-rep Laying Lab
Mean 2.3e-07 6.1e-07  2.1e-07 8.7e-07 1.3e-07 8.3e-07 1.6e-07 1.7e-07 6.4e-07 1.8e-07
Phor 1.4e-06  1.2e-06 1.4e-06 1.3e-06  1.4e-06 1.3e-06  2.5e-07 1.1e-06 1.4e-06
Male 1.4e-06  3.3e-06 9.8e-07 1.7¢-06 1.0e-06  1.2e-06 2.8e-06 1.1e-06
Pre-Lay 1.9e-06 1.2e-06 1.6e-06 1.1e-06  2.2e-07 8.8e-07 7.7e-07
Arrest 3.0e-06 2.4e-06 1.6e-06 1.4e-04 4.6e-05 3.4e-06
Post-Lay 2.1e-06  2.0e-07  1.9e-06 1.4e-06 2.0e-07
Young 2.6e-06  2.7e-06 2.4e-06 1.3e-06
Emerg 1.6e-06 2.4e-06 1.4e-06
Non-rep 1.1e-04 1.6e-06
Laying 1.9e-06

Table S2: Estimated standard errors for Poisson means (top row) and Gaussian copula
parameters (bottom) for the Varroa life cycle transcriptome data, using the randomized
pairwise likelihood (7 = 0.01) approach.



C Additional Figures
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Figure S6: Performance of the randomized pairwise likelihood in the one-factor multivariate
Poisson simulations with d = 30 over 500 replications. (A) boxplot of the absolute relative
errors for the marginal parameters (left) and the factorized correlations (middle), and the
corresponding computational times in seconds (right). (B) Averaged variance estimates
across parameters (points) for different values of m. The solid line connecting the points
corresponds to the theoretical prediction for 7 = 0.1,0.3 knowing the variance at © =
0.5. The dotted line corresponds to the theoretical prediction under the assumption of a
homogeneous inflation factor, knowing the variance at m = 0.5.

10



>

o
N
1

L[]

0054 | e
1500
n
0.00 I 10004 1 E3 100
. B3 500
B3 1000
° [
-0.05 500 ‘

(LI}

o
Time (s)

o
-
1
L]
L]
]

marginal parameters
o
o
1
_-_
copula parameters
L]

n=100 n=500 n=1000

_.0.044 %
0.03 N
0.02-

001 o~ Tt

average variance (all

0.004

0:1 012 0:3 0:4 0:5 0:1 0:2 0:3 0:4 OI.5 0:1 0:2 0?3 0:4 0:5

Figure S7: Performance of the randomized pairwise likelihood in the blockwise exchange-
able multivariate Poisson simulations with d = 30 over 500 replications. (A) boxplot of
the averaged centered estimates for the mean parameters (left) and the copula parameters
(middle), and the corresponding computational times in seconds (right). (B) Averaged
variance estimates across parameters (points) for different values of 7. The solid line con-
necting the points corresponds to the theoretical prediction for 7 = 0.1,0.3 knowing the
variance at m = 0.5. The dotted line corresponds to the theoretical prediction under the
assumption of a homogeneous inflation factor, knowing the variance at = = 0.5.
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D Proofs of the theorems

In the proofs, it will be convenient to consider the bivariate functions f, (Xz(a); 0) as functions
taking as an argument the whole vector X; so that fa(Xi(a); 0) will be denoted by f.(X;;0).
To take advantage of empirical process techniques, we shall build empirical processes related
to our problem.

Let G,, a=1,2,..., A, be classes of functions g, : R? — R’ satisfying E g,(X;)? < oo
componentwise. Let M(Gy,...,Ga) be the set of functions m of the form m(x,w) =
Zle Wega(r), * € RY, w = (wy,...,wa) € [0,00)1, g € Gy, a = 1,..., A, Let X;,
i=1,...,n, beiid. random vectors in R? with law P. For each n, let Wm ,1=1,...,n,
a=1,..., A, beiid. Bernoulli random variables with parameter 0 < m, < 1. For each
n, Xq,...,X, and I/Vn1 ,Wnl), cee W,gﬁ) are independent. For ¢ = 1,...,n, let W,,; be the
vector with components Wm ,a=1,... A. For a probability measure P and a function f,
Pf denotes [ fdP. Let P,, be the average of Dirac measures at the points (X;, W,;/m,),

i=1,...,n; thus if m € M(Gy,...,G4) then

W, ”7(‘1)
P, dP,, = — X, — | =- E E 2 g.(X;).
m = /m 1 ( py ) n L py g ( )

=

Let P be the probability distribution of (X, W, /m,); thus

Prm=Em (Xl,

W(a) A
) ZE I)IZEQa(X1) = Pm(-,1).

Notice that it does not depend on n. Denote by G, the signed measure \/nm, (P, — P;).
We shall use the concept of a bracketing number van de Geer (2000); van der Vaart and

Wellner (1996); Pollard (1984). If G is a class of real-valued functions on some Euclidean
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space equipped with a probability measure P and ¢ is a positive real number, then the
bracketing number of G, denoted by N(d,G, P), is the smallest number N of brackets
l97,9Y], 5 =1,...,N, such that (i) Pgy — Pgy <4, j=1,...,N, and (i) for all g in G,
there is j € {1,..., N} such that gjL <g< gj . Recall that two asymptotic frameworks are
considered: m, = 7 is constant and 7, — 0 as n — oo.

The following lemmas establish a uniform law of large numbers and a central limit
theorem expressed in terms of the new empirical processes. These results are the building
blocks on the top of which the proofs of the theorems rest. Measurability issues are ignored.

See van der Vaart and Wellner (1996); van der Vaart (1998) for a way of addressing this.

Lemma D.1. Let m € M(Gy,...,Ga) with L =1. If m, > 0 is constant or if m, — 0 such

that nm,, — oo then |P,,m — Prm)| 50 asn— .

Lemma D.2. Letm € M(G,...,Ga) with L = 1. Assume furthermore that N (6, G,, P) <

oo foralld >0 and alla=1,...,A. Ifm, > 0 is constant or if m, — 0 such that nm, — oo
then
sup | Pynm — Prm)| 50, n— oo
meM(Gi,...,Ga)
Lemma D.3. Let m € M(Gy,...,Ga). If m, = 7 is constant then GL,m converges in

distribution to a centered Gaussian vector with variance-covariance matrix

A
(1—-m) (Z Ega<X1>ga(X1>T>

+7 (ZZE% X1)gp(X1) T — Ega(Xl)Egb(Xl)T> :

a=1 b=1



If m, — 0 such that

Boal e <_22:1 gZ«Xl)?) — .

for all k > 0 and all I,I' = 1,...,L, then G}, ,m converges in distribution to a centered

Gaussian random vector with variance-covariance matrix

A

ZEga(Xl)ga(Xl)T' (S2)

a=1

Proof of Theorem 1

One can follow almost word for word the proofs of Theorem 2 and Theorem 3. The
appropriate changes are easily made: it suffices to switch to the appropriate asymptotic

frameworks in Lemma D.2 and Lemma D.3.

Proof of Theorem 2

Since OMEPL is o MRPLE, there is a compact subset A C © that contains 6y such that
LEPL(QMRPL) > TRPL(9) for all §# € A. Denote LFY(A) = 3, La(6), 6 € ©. Then LF* is
uniquely maximized at 6y € A and E LEPE(9) = LFL(0), 6 € ©. Since 0y € A, certainly

LEPE(ONRPL) > sup LEPH(6) > LEF(6).
0eA

Theorem 5.7 in van der Vaart (1998) asserts that if the conditions

(i) Ve >0, sup LFM(0) < LTY(6,)
0EN:|0—00|>c

15



(ii) sup [LEPH(0) — LPH(0)] 5 0
fecA

hold, then YMRPL 0y as n — 0.

Let us check (i). Since f(-,fy) belongs to Lo(R%), it follows that LFY(6;) < oo. By
Assumption 1, the function L*¥ : A — [—00,00) is continuous on A. Since the set
{0 € A:|0— 0 > e} is compact, the supremum of L is reached. But this supremum
must be less than LFY(6), because, by Assumption 2, the point 6 is the unique maximizer.
Condition (i) is fulfilled.

Let us check (ii). Using the notation introduced at the beginning of this section, we

can write

sup [ L, (0) — L™ (0)]

n (a)

1 Z (Wi log fo(X;;6) — Elog fa(X1;9)) ‘

n s
acA  i=1 n

< sup | Ppnm — Pim|
meM(Ga,acA)

where G, = {log f.(;0), 0 € A}, a € A. By Lemma D.2, the condition (ii) will hold
if we can show that the bracketing numbers N(§,G,, P), 6 > 0, are finite. But it is
well known that classes indexed by a compact subset of an Euclidean space have finite
bracketing numbers; see for instance Lemma 3.10 in van de Geer (2000) for a proof. Hence

condition (ii) is fulfilled as well.
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Proof of Theorem 3

Recall the notation introduced at the beginning of this section and let m(z,w,f) =
> wes Wala(z;0). As in the proof of Theorem 2 let LF*(0) = Y, L,(6). Denote the gradient
of m with respect to # by Vm. Denote the Hessian matrix of L*Y at 6y by V2LPY(6,). If

we can show
ST (OMFPY — 00) = — [V2LPM(60)] ' G Vm(-, -, 60) + op(1), (S3)

then Lemma D.3 will imply that /nm, (0MRPE — g,) converges in distribution to a centered

Gaussian random vector with variance-covariance matrix

VL 60)] | (1= m) S Bl 4w (Z Eluly —El, EébT) [VELPE(00)]
a a,b

if 7, is a constant, and ) EEQKQT if m, — 0. The asymptotic variance-covariance matrices
above are those announced by Theorem 1 and Theorem 3, respectively, because Assump-
tion 1 implies E/, = 0 and V2LPY(0y) = — 3., E 4,0 .

So we need to show (S3). The map L is two times continuously differentiable at 6
with gradient VLYY (0y) = PVm(-,1,6,) and negative definite Hessian matrix V2L () =
PV2m(-,1,0,). Let A be the interior of A, that is, its biggest open subset. For every n,

LEPL(G71) > sup LIV (6)
SN

and OMRPL s consistent for 6, by Theorem 2. Therefore equation (S3) follows from Theo-

rem 3.2.16 of (van der Vaart and Wellner, 1996, p. 300), which itself is a generalization of

17



an idea of Pollard (1984, 1985), provided that

Vit ([ ZEPH (60 + hu) = L7 (60 + Bo) | = [LEP"(60) = L7(60)] )

BTG, V(s 60) + op (nh |+ vl +

)

for all random sequences h,, = op(1). Denoting

om(-,-,0)
29,

9*m(-,-,0)

vilm('7'79) = M’

) v2 (7'70):

iip T ete,

and using the notation introduced at the beginning of this section, one can see that this

condition boils down to

1 A~
5 Z h’llh G* vl2112 Z h“h h G* v?11213 ( » 5 h)
11,42 Z1 12,13

= op (Bl + VAmlhl? + =) . (0

where £ is a point between 6y and 6y + h. Above we have dropped the subscripts n of h
and h. In view of Assumption 1 and (4), Lemma D.3 implies G* WV2,m(-, - 00) = Op(1)

whether 7, is a constant or m, — 0. Remember that the third derivatives are bounded

by the functions ¥,, put ¥(z,w) := Y, w,¥,(x) so that |V}, . m(z,w, h)| < U(z,w),

7/11223

which entails
1G5, Vi ism(e, -, D) < G, W+ 23/nm, PU(-, 1) = Op(y/ny,),
because G}, ¥ = Op(1) by Lemma D.3. Thus, in both cases m, — 0 and 7,, constant, the

18



left hand side in (S4) is Op <H}NLH2 (1 + HiNle/mrn)) The proof is complete.

E Proofs of the propositions

Proof of Proposition 1

We begin with a lemma.
Lemma E.1. Let w, > 0 for all a € A. If the two statements

(1) Oy is a mazimizer of L, for every a € A

(11) O # 0 implies that there exists a pair a such that L,(6) # La(0")
are true then the maximizer of 0 — Y w,L,(0) is unique.

Proof. If ) was another maximizer of ) | w,L, then there is a € A such that w,L,(6]) <
waL4(6p). But then Y w,L,(6)) <>, waLa(f), which is a contradiction. O

It is straightforward to show that Lemma E.1 (i) is true. It remains to ensure that
Lemma E.1 (ii) is true as well. Take a = {7, 7} € A, choose 6,0 € © and assume L,(0) =
L.(#"). By (ii) of the Proposition, Elog f,(X1;, X1;;va(f)) = Elog fu(X1;, X1;;va()) and
hence, by (i), v4(0) = v,(#'). Since the pair a was arbitrary, (iii) implies § = ¢’. The proof

is complete.

Proof of Proposition 7

It suffices to check (i), (ii) and (iii) in Proposition 1. Let a = {i,j}. Put v,(0) =

Va(tiy pg, p) = (14, f45, wa(p)) so that rangev, = ©; x ©; x rangew,. The condition (ii) in
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Proposition 1 is checked because Fy(z;, 25 0) = Co(F, (7:), Fpu;(75); p) = Co(F, (24), F(75);wa(p)) =:

Fo(x;, x;;v4(0)). These distribution functions define a family indexed by rangew,. This
family is identifiable: if (us, p15, 0), (1, 115, 0') € rangewv, and é’a(FHi(xi),Fuj(xj);g)) =
CN’a(FM;(x,-),FM}(xj);Q’) then letting z; — oo yields that y; = p} and by the same to-
ken p; = p) and hence ¢ = ¢’. Thus the condition (i) in Proposition 1 is true. Finally,
choose 0 = (pu1,...,pa,p) and 0" = (p},...,plp') in ©. If V() = V(#') then clearly
1 = py . pa = w1y and we(p) = w,e(p’) for all @ € A. But then p = p' because the

mapping W is one-to-one. Thus the last condition (iii) in Proposition 1 is checked.

Proof of Proposition 2

Notice that V(7)) /V(7) < 7/n" if and only if

7S1CS™! T | St o 7S~tCS!
rS-1CS-1+S5-1 — 7/ 7S-108-1+5-1)  x \xS-1CS-1+5-1)"°

Since S7!CS~! + 57! is the asymptotic variance-covariance matrix of Theorem 1 with

7 = 1, it must be positive definite, and hence the last inequality is simplified according to

the sign of S™1C'S™1.

Proof of Proposition 3

In this case the functions ®, in Theorem 3 are bounded by a constant, say C. Let A be

the cardinal of A. The left hand side of (4) is bounded by

1 —NT,K
7T_nC4 exXp ( ACQ ) s
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which goes to zero because . 'e~™ — 0 and exp([AC? — nm2k]/[AC?m,]) < 1 as soon as

nmlk > AC?.

Proof of Proposition 4
Assumption 1: Clearly, for all z € R?,

. <‘ Ol (x;0) ‘ | 0*Lo(7;0)

062

ToliD) < e+ lalP)

Y

00

for some positive and continuous function ¢ defined on (—1/(d — 1) +¢,1 —€). This set

can be extended to the compact set [—1/(d — 1) + €¢/2,1 — €/2] and hence
E®q(X1500)° < C(1+ ||=]|*)* (S5)

for some constant C'. (Remember that 6 is the true parameter.) Since E(1+ | X}[|?)? < oo,
the first statements in Assumption 1 have been checked. Also, it is clear that the derivatives
can be passed under the integral sign. Assumption 1 has been checked.
Assumption 2: We have

log(1 — 6?) 1 00

+

0
5 - 1_0° 1_0° + constant

La(0) =

and hence 0L, (0)00 = 0 iff —03 + 0,6% — 0 + 6y = 0. This polynomial in 6 has only one real
root (the two other are complex) and hence the maximizer of ) L,(0) = d(d —1)L12(0)/2

is unique.
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Proof of Proposition 5

In view of (S5) and since the the left hand side in (4) is an increasing function of ®,, a € A,

it suffices to show that

o\ 4 Nk
E (1 + | X4 | ) exp (—W>

2\4 nmnk I 1
x /Rd(l + ||z]|*)* exp (_W) exp <—§x b x) dz
2
< 1 214 __ nmpk | d
< [l e (~ T - ) da

[e’s) 2
_ L 2yddet . nmk T d
/0 (1+7r*)*r* exp 077 Dom r

is of order o(,) for all £ > 0. The inequality above is true because $5' — 1/(4Amax)! is

positive definite. The last equality holds by a change of variables Blumenson (1960). Since
(1 +72)*r%1 is a polynomial in r, the last integral is a sum of integrals of the form given
in Lemma G.2 and hence, by Corollary G.1, it is of order O(exp(—[nm,x]"? /(8 Amax V 1)))
whenever nm, — oco. Substituting 7, = n~® with 0 < a < 1/4 and letting n go to infinity

completes the proof.

Proof of Proposition 6

When d,, goes to infinity, the proof of Theorem 2, which consisted of checking the conditions
of van der Vaart’s Theorem 5.7 (van der Vaart, 1998, p. 45), is no longer valid. To account
for the growth of d,,, one possible avenue is to extend van der Vaart’s Theorem 5.7 and its

proof. This is done in the next lemma.

22



Lemma E.2. [f there is a positive sequence p, such that

|L7(0) — LP(00))

(i) Ye > 0,3X > 0,Vn > 1, sup < =)\,
[0—00|>€ Pn
R S O
0<6<1 Pn

P
then |OMEPL — 05| = 0 as n — .

As in the proof of Theorem 2, L(6) stands for Y, L,(0); the quantity LE"(6) is the
randomized pairwise likelihood evaluated at 6.

The proof of the Lemma is found in Section F. For now, let us notice the role played
by the sequence p,. If one chooses a sequence p, that goes to infinity too fast, then the
condition (i) is going to be difficult to satisfy. On the opposite, if one chooses a sequence
pn, that goes to infinity too slowly, then it is the condition (ii) that is going to be difficult

to satisfy. We therefore must find the correct rate for p,, if there is one at all.

Checking the first condition

Let us see what sequences p,, satisfy condition (i). Some standard calculations show that

|LYL(0) — LP(60,)| (1 (1 - 82> 000 — 00)>

Dn 28\ 1 g2 1—62

d—l 0> =62 00— 6y)
21— 602) 1-62

- O g, ),

IN

where here F(6,6) = [60* + 200, + 1]/[(1 — 0*)(1 — 62)] > 1, for all 0 < 6,6, < 1. Tt then

clear that to enforce condition (i) we must choose p, so that p, = O(d?).
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Checking the second condition

To see what sequences p,, satisfy condition (ii), we follow the track in the proof of Lemma D.2
with G, = {€a2)(-,-16),0 <0 < 1} and A = d,(d,, — 1)/2. The same chain of arguments

yields

U, d,(d, — 1)§
5, dnldn—1)
Pn 2pn

Y

2pn Dn npy 4 Tn

d(d,—1) L, 1 W'
(dn = 1)0 | Lng Z( ’g(Xn—Eg(Xl))s

where
1 Wvgaz) U U
Un,g:ﬁz W7 g9; (Xi) = Eg; (X1) |,

(a)
Lng==Y ( =gy (X) — Eg}(X1)> -

T

At the moment the sole difference with the proof of Lemma D.2 is that all the classes G, are
identical and A has been put to d,(d,, — 1)/2. But now the reasoning differs, since the fact
that the classes are identical implies that there are at most N 9) possible brackets [gJL, ng]
and at most as many as distinct U, 4 or L, 4. Since N(; ) is fixed, if each of the IV(; 9) possible
Up,g/Pn and L, ,/p, would vanish in probability and if limsup d,(d, — 1)/[2p,] < oo, the
the proof would be complete. Since it was shown that p,, = O(d?), we must choose p,, of the
order of d2. Therefore, it remains to show that U, ,/d? and L, ,/d? vanish in probability.

To do that, let us show in general that for every g such that E g(X;)? < oo,

nd,(d, — 1) Tn

()
. Z (Wm 9(X;) — EQ(X1)> 5 0.

2,a
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By the same arguments as in the proof of Lemma D.1, we have, for every ¢ > 0,

(a)
> (W 9(X;) — Eg<X1>) > )

Tn

2
P (ndn(dn - 1)

1r |5, (Sh9(0x) - Bg(x1) )|
<
- nd?(d, — 1)2e?
_AQ-m) Y, Eg(Xl) L AB (X, (0(X) — Bg(X)))’
nmpd2(d, — 1)2%€? nd?(d, — 1)2e?
2(1 = m)Eg(X1)*?  Varg(X)
mrndn(aln —1)e2 ne2

1 1
=0 (ma) 1o )

The upper bound vanishes, regardless of the rate of d,,.

F Proofs of the lemmas in Sections D and E

Proof of Lemma D.1

We have

n

1
|Pyam — Pim| = |—
n

A a)
> ( Ega<X1>)‘

i=1 a=1

Let € > 0. Chebychev’s inequality yields

1
p<_
n

2

i ) [ 5. (a0 - Banx))

n2e?

(a)
> (Wﬂ—jga(xi) - Ega<X1>>
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Since the random variables 32 (7 "W 9 g,(X;) — Egu(X})), i = 1,...,n, are iid. and

centered, the upper bound is equal to

Var 2, (W5 g4(X0) /7 — B gu(X1) )

2

(1 B ﬂ—n) Za Ega(X1)2 + E (Za ga(Xl) — Ega(Xl))2

N, €2 ne2

I

which goes to zero whether 7, is constant or m,, — 0 because nm, — oo either way.

Proof of Lemma D.2
We shall follow the track of the proof of Lemma 3.1 in (van de Geer, 2000, p. 26). We have

n A (a)
s B, (x0) — Bau(X)

n

sup | Phnm — Pim| = sup
meM(Gi,....Ga) 91€01,..,94€594

i=1 a=1

Let 0 > 0. Denote N, = N(0,G,, P). For every a = 1,..., A, there are brackets [gy ;, g5],

j=1,...,N,, such that (i) [gs; —gr,;dP < ¢ forall j € {1,...,N,} and (ii) for every

Ja € Ga, there is j(a) € {1,..., N,} such that gaj(a) <. < g}l{j(a). This implies

Ly (Wl
ST RESTRESS (W—gmm - ng;,j(axxn)
1 W(a)
< — ne u )(Z _E . X
on i,a ( Tn g ( ) 9 ( 1))
Y
: E ( T ggj(a)(XZ) Egg’j(@)(Xl)> + A0 =: U”u‘h ----- ga t Ad.
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In the above inequality, the random variable U, 4, . ,, depends on the elements g, that
have been chosen in the classes G,, but only through the brackets brought about by the
choice of the elements g,. Since the total number of brackets is finite, so is the number

of those random variables U, 4, (In fact, at most Ny x --- x N, distinct U, 4,

..... ga- ) gA

can show up in the inequality.) By Lemma D.1, each one of them vanishes in probability,
regardless of the behavior of the sequence m,. The same chain of arguments applies for

the random variables L, 4, ... Therefore, since § was arbitrary, the supremum over all

Y,
possible g1 € Gi,...,ga € G4 of the term lying between —Ad0+L,, 4, . 4, and U, 4, 4, + A0

also vanishes in probability. The proof is complete.

Proof of Lemma D.3

Case m, = m constant. We have

where

A (a)
Wm' .
n=z( E ga<xi>—Ega<Xl>),

a=1

are independent, identically distributed and centered random vectors. Therefore, by the

central limit theorem, G}, m goes to a centered Gaussian random vector with variance-

covariance matrix (1 — ) E Y, ga(X1)ga(X1) T + 73, ,(Egagy —EgaEgy ).
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Case m, — 0. We have

Ly (z _ mEgaocl))

\/WZ ni _7Tn ga( +\/ﬁ( Zga Ega X1)>,

where the second term is of order /7,Op(1) and hence vanishes in probability as n — oc.
It remains to show that the first term goes to a Gaussian distribution. By Lindeberg-
Feller’s central limit theorem (see e.g. (van der Vaart, 1998, p. 20)), this is true under two

conditions:

— 2,

ST W — 7a)ga(X0)

o] o0

where above 1{-} denotes the indicator function. Since the random vectors EQ(W&) -

1{ \/n_mz ) — 1) ga( X))

Tn)9a(X;), @ = 1,..., A, are independent and identically distributed, the condition (C1)

boils down to

Wi Var <Z(W7(ff) — Wn)ga(X1)> — 3.

a

Thanks to the independence between {WV, 1 ,a=1,...,A} and Xy, the [th row and ['th
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column of the variance-covariance matrix

Var (Z(Wé‘i’ - wn>ga<X1>>

a

=FE|E [Z(Wé? — Wn)ga(Xl)] [Z(WTEL{) - Wn)ga(Xl)] ‘X1

a a

is given by

E Y gu(Xn)garr (X0 BV = m) (W = )

a,a’

=Em,(1—-m,) Z Jar(X1)gar (X1).

Thus, the left-hand side in the condition (C1) is (1 —m,) E>", 94(X1)ga(X1)" and we have
shown that it goes to X =E Y g.(X1)ga(X1) "
Let us now show that the condition (C2) holds. Choosing the Euclidean norm, the

condition boils down to

2

B.lx. ]| —o,

where B,, = 1 {Hza(Wﬁ) — Tn)ga(X1)

> €, /mrn}. The inner expectation is bounded by

A we _z\
A—1 nl ~ 'n 2
2 E E E <— 7T—n> gal(Xl) Bn X1

a=1 (=1
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By Cauchy-Schwartz’s inequality and the independence between X; and W

.1, the expec-

tation above is less than

Wécll) — Tn ' 4
E(T) \/gal(Xl) E(BH|X1>

Straightforward calculations show that the first factor is equivalent to 1/,/7,. Let us bound

;

SO - mg(X)|| >

the second one. We have

a 2

E(Ba|X1) = P ( S W = m)ga(X1)|| > ey,

€y/nm,
VL

>

STW = m)ga(Xy)

L

2N, €2 )
< E 2ex — .
N P < Lza 4(1 - 7Tn)2|gal(X1)|2

The last inequality is an application of Hoeffding’s inequality, see e.g (van de Geer, 2000,
p. 33). Gluing the pieces together, the left-hand side in condition (C2) is bounded above
by

- A
a=1 1=1 \ I'=1 L Za’zl 4(1 - 7T'n)2|ga’l’ (X1)|2

9A-1/2 i i i D @ exp ( 2nne” ) .

The condition in Lemma D.3 implies that the expectation above goes to zero. The proof

is complete.
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Proof of Lemma E.2

From (i), |OMBPL — g implies (1/p,,)(LPL(OMBPLY — [PL(f,)) < —X and hence

R PL(jy \ _ 7PL(QMRPL
P<|071;/1RPL_90| > e> <p <L (6o) — L(0, ) > )\) .

Pn

The proof will be complete if we can show that in the probability on the right, the random
variable in the left-hand side of the inequality vanishes in probability as n — co. Thus, let

us write

LPL(éO) _ LPL(QATI\L/IRPL) LPL(@Q) _ LSPL(QO)

Pn Pn
LRPL(@(]) _ JRPL (éMRPL)

Pn
LRPL(éMRPL) _ LPL(éMRPL)

Pn

The first and the last terms in the right-hand side of the above inequality vanish in prob-
ability by (ii). The term in the middle is nonpositive by definition. Therefore, since the

left-hand side is nonnegative, it must vanish in probability as well. The proof is complete.

G Bound on an integral

Lemma G.1. If f is a function defined by

—alogx n A
z? (B + yat)z?’

flx) =
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x>0, A>0,a>0,08>0,~v >0, then there is x* € (0,00) such that f(zx) > f(z*) for all
z and —a(l — 2log x*)(B + yx**)? — Mya* = 2\B. Moreover, f(z*) — 0 as A — oc.

Proof. We have f'(z) > 0 iff
—a(l —2logz)(B + va*)? — Myt > 2)8. (S6)
Note that if # < e!/2 then f’(x) < 0. Otherwise, (S6) is equivalent to

2 (@1 () + 2() — M) + @3(z) > 273, (S7)

where ¢1(z) = —ay?(1 — 2logx)z?, po(r) = —2aB7(1 — 2logw) and ps3(z) = —aB?(1 —
2log x). The functions 1, , and 3 are increasing and nonnegative on [e'/2, 00). Thus the
function in the left-hand side of (S7) is continuous and increasing and is equal to —\ye?

at el/2

. Therefore, it reaches 2\3 at a unique point z* > e'/2; this point satisfies (S7) and
hence (S6) with “=" instead of “>". It follows that the function f is decreasing on (0, z*),
reaches its global minimum at x* and is increasing on (z*,00). It remains to show that

f(z*) — 0 as A — co. We have

o —alogx” A
fa*) = 2 (8 + ya*t)z*?
and from (S7) we know that 2* — oco. This implies that the limit is as required. O

Lemma G.2. Let w be such that 2w = [e=*/*dx. If

& A x?
I\ = o — — d
0= [Tt e |~ ]
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oc>0,A>0, a>0, then for every 0 < v <1, there are ny > 0 and \g > 0 such that

IN) < | n%exp |— A AL + ex _77_2 ex AN A
S e +ynt 2 s Pl +nt (14 n?)?
for allm > ng and A > X.

Proof. Choose 0 < v <1 and put f(z) := (1 +~yx?)~' — (1 + 2?)72. There is 19 > 0 such
that f'(x) < 0 for all x > ny. Now choose i > 19. Then

o A x?
B ::/ x% exp [— — } dx
. (1+22)2 202
x

00 A 2
<exp [Af(n)] / 2 exp [— - ] dz.
. 1+ ~yz* 202

Let v > 0. The integrand above is bounded by exp[—z?/(2v?)] iff —2alog(z)/x? +2A\/[(1+
yzt)z? > 1/v?2—1/02. In the above inequality, the function in the left is bounded below by
some constant that goes to zero as A goes to infinity. (See Lemma G.1.) Taking v? = 202
ensures that the inequality is true for all z as soon as A is greater than some number \g.

Therefore,

B<e Ao A /Ooe B
=PI T , e Pl

<ex A — A ex —77—2
SR PR TRl R WP
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for all n > ny and A > X¢. Finally,

n \ 72
A = @ _ — —
/0 x% exp [ 1522 202} dx

N A K 7
S?] exp —m ; exXp _T‘Q dx

< pa A oV 2w
exp |—
and, since I(\) = A + B, the proof is complete. O

Corollary G.1. The integral I(\) defined in Lemma G.2 satisfies

)\1/3

Proof. In Lemma G.2, we may take n = A\, a > 0, because both 1 and \ are allowed to go
to infinity. If, furthermore, a < 1/4, then the first factor in the upper bound go to zero. If
v =1 and a > 1/6 then the second factor goes to a nonnegative constant, say K. Now,

with vy =1 and a = 1/6,

<Aa/6exp{ 4 }"@ +exp [_&“Dexp[ W’]

14+ N8B 2 4072 402V 2
)\1/3 )\1/3 0_\/% )\1/3 )\1/3
= A5 exp — - + exp —
402V 2 A28 41 2 402V 2 402

The limit is zero if 462 < 2 and one if 402 > 2. Therefore the limit of 7(\) exp[A\'/3/(402V2)]

is at most K. The proof is complete. O]
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