A randomized pairwise likelihood method for complex statistical inferences

Gildas Mazo, Dimitris Karlis, Andrea Rau

To cite this version:

Gildas Mazo, Dimitris Karlis, Andrea Rau. A randomized pairwise likelihood method for complex statistical inferences. 2023. hal-03126620v4

HAL Id: hal-03126620
https://hal.inrae.fr/hal-03126620v4
Preprint submitted on 25 Apr 2023 (v4), last revised 13 Sep 2023 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A randomized pairwise likelihood method for complex statistical inferences

Gildas Mazo ${ }^{1}$, Dimitris Karlis ${ }^{2}$, and Andrea Rau ${ }^{3,4}$
${ }^{1}$ MaIAGE, INRAE, Université Paris Saclay, 78350 Jouy-en-Josas, France
${ }^{2}$ Athens University of Economics and Business
${ }^{3}$ Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
${ }^{4}$ BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, 80200 Estrées-Mons, France

Abstract

Pairwise likelihood methods are commonly used for inference in parametric statistical models in cases where the full likelihood is too complex to be used, such as multivariate count data. Although pairwise likelihood methods represent a useful solution to perform inference for intractable likelihoods, several computational challenges remain. The pairwise likelihood function still requires the computation of a sum over all pairs of variables and all observations, which may be prohibitive in high dimensions. Moreover, it may be difficult to calculate confidence intervals of the resulting estimators, as they involve summing all pairs of pairs and all of the four-dimensional marginals. To alleviate these issues, we consider a randomized pairwise likelihood approach, where only summands randomly sampled across observations and pairs are used for the estimation. In addition to the usual tradeoff between statistical and computational efficiency, it is shown that, under a condition on the sampling parameter, this two-way random sampling mechanism makes the individual bivariate likelihood scores become asymptotically independent, allowing more computationally efficient confidence intervals to be constructed. The proposed approach is illustrated in tandem with copula-based models for multivariate count data in simulations, and in real data from a transcriptome study.

Keywords: composite likelihood; randomization; confidence intervals; mutivariate count data; computational challenges

1 Introduction

Multivariate models are valuable to explore and estimate interrelationships among variables in large and complex datasets, such as high-throughput count data collected in molecular biology. However, the corresponding likelihoods are often complex, costly to evaluate, or even intractable. Instead of the full likelihood, one can maximize a composite likelihood (Lindsay, 1988), which is a product of lower-dimensional likelihoods. If bivariate marginals are used then the composite likelihood is called the pairwise likelihood. In many models, the retained information is sufficient to estimate the parameters of interest, although at the expense of a loss of efficiency of the resulting estimator, which is nonetheless guaranteed to be asymptotically normal under mild conditions (Varin et al., 2011; Varin and Vidoni, 2005). We note that variational methods do not have this guarantee in general (Blei et al., 2017)

Pairwise likelihood methods have been successfully used in many applications (Varin et al., 2011). Many variants have been derived to accommodate specific models, data or tasks, notably for multivariate binary data (le Cessie and Van Houwelingen, 1994; Kuk and Nott, 2000), as well as spatial and image data. An early approach for spatial models used conditionally specified likelihoods for spatial image data (Besag, 1975). More recently, pairwise likelihoods were used for binary or indicator data in space (Heagerty and Lele, 1998), for spatial-clustered data (Bai et al., 2014), and with random field models for image data (Nott and Rydén, 1999). Several authors have further proposed ways to improve the efficiency of composite likelihood methods (Ferrari et al., 2016), primarily by adding weights to the component likelihoods (see, e.g. Joe and Lee, 2009). It appears, however, that finding and estimating the optimal weights in general is a very difficult problem which may not have a solution (Lindsay et al., 2011). In the following, we shall focus on the
pairwise likelihood, the most popular version of composite likelihoods.
In high dimensions, applying the pairwise likelihood method may be cumbersome. With d variables, the number of pairs is of order d^{2}. To get confidence intervals, one needs to compute a double sum over pairs of pairs of order d^{4} and all of the four-dimensional marginals. To address these computational issues, several research directions have been proposed. For instance, instead of taking all of the pairs, one can consider a small subset (Huang and Ferrari, 2021; Papageorgiou and Moustaki, 2019), although selecting a good subset is a difficult problem. For spatial data, a simple approximation to the likelihood can be obtained by using only sufficiently close points (Vecchia, 1988), although such an approach can be improved by also considering some distant pairs (Stein et al., 2004) or using a spatial blocking strategy (Eidsvik et al., 2014). In the case of spatiotemporal data, Bai et al. (2012) proposed selecting pairs representing spatial, temporal and spatiotemporal effects, while Bevilacqua et al. (2012) proposed a weighted approach with a corresponding information criteria for model selection. In Huang and Ferrari (2021), pair selection was performed by regularization to identify informative pairs of variables. However, like all methods that select a subset of pairs, some of them are necessarily dropped. This implicitly assumes that all model parameters can be estimated from only a subset of pairs. In the context of conditional random fields, a stochastic combination of low-dimensional conditional likelihoods was proposed in Dillon and Lebanon (2010).

To alleviate the computational issues of the pairwise likelihood method, we consider a randomized pairwise likelihood approach. Only summands randomly sampled across observations and pairs are used for the estimation of the parameters. One draws, for each sample size n, i.i.d. Bernoulli weights $W_{n i}^{(a)}, i=1, \ldots, n, a \in\{\{1,2\}, \ldots,\{d-1, d\}\}$, with parameter π_{n}; all summands for which $W_{n i}^{(a)}=0$ are discarded. A fundamental point is
that we allow the sampling parameter π_{n} to decrease with n. The sampling parameter controls the tradeoff between the computational complexity and the statistical efficiency. An intuitive way to see this is to notice that the average number of summands needed to compute the randomized pairwise likelihood is equal to $n \pi_{n} d(d-1) / 2$. However, there is an additional reason why π_{n} permits a reduction of the computational cost. By letting $\pi_{n} \rightarrow 0$, the bivariate log density gradients become asymptotically independent, leading to the disappearance of the term of computational complexity d^{4} in the estimator's asymptotic variance. In practice, this suggests that one may be able to approximate confidence intervals at a much lower cost than in the standard pairwise likelihood method.

The remainder of the paper proceeds as follows: Section 2 reviews the pairwise likelihood method. Section 3 introduces the randomized pairwise likelihood method. Section 4 focuses on the exchangeable Gaussian model, for which explicit calculations are possible. Section 5 applies the randomized pairwise likelihood to copula models. Section 6 presents simulation experiments for multivariate count data. Section 7 presents an application to transcriptome data. Concluding remarks may be found in Section 8. The proofs and additional simulations can be found in the Supplementary Material.

2 Maximum pairwise likelihood inference

Pairwise likelihood methods replace the full likelihood by a product of marginal likelihoods and hence permit the estimation of the unknown parameters without the need to specify the complete joint density (or probability mass) function of the model. The theory is presented in a rigorous way in Section 2.1. In particular, the conditions for consistency, that is, the ability to estimate the full distribution from its bivariate marginals alone, are
made explicit. Computational problems are discussed in more detail in Section 2.2.

2.1 Definition, assumptions and asymptotic properties

Let $X_{i}:=\left(X_{i 1}, \ldots, X_{i d}\right), i=1, \ldots, n$, be independent random vectors with a common density f_{0} with respect to some "base measure"-typically the Lebesgue measure or the counting measure - on the Euclidean space \mathbf{R}^{d}. The density f_{0} is assumed to be square integrable and lie in an identifiable parametric family $\left\{f(\bullet ; \theta), \theta=\left(\theta_{1}, \ldots, \theta_{q}\right) \in \Theta\right\}$ for some open subset Θ of \mathbf{R}^{q}. Let θ_{0} denote the element of Θ such that $f_{0}(\bullet)=f\left(\bullet ; \theta_{0}\right)$. Let \mathcal{A} be the set of all pairs of variables. Its cardinal is $d(d-1) / 2$. The pairs in \mathcal{A} are ordered in the lexicographical order. Denote by $f_{a}(\cdot, \cdot ; \theta)$ the marginal density corresponding to the pair a and write $\ell_{a}(\cdot, \cdot ; \theta)$ for $\log f_{a}(\cdot, \cdot ; \theta)$. Whenever it exists, denote by $\dot{\ell}_{a}(\cdot, \cdot ; \theta)$ the gradient of $\ell_{a}(\cdot, \cdot ; \theta)$ with respect to θ. Whenever a function is encountered with a bullet symbol, it means that the argument it replaces is a vector with three components or more. Otherwise, there are as many dot symbols as there are components. If $a=\left\{j, j^{\prime}\right\}$ is a pair then $\left(X_{i j}, X_{i j^{\prime}}\right)$ is also denoted by $X_{i}^{(a)}$.

The pairwise log-likelihood function is given by

$$
\begin{equation*}
L_{n}^{\mathrm{PL}}(\theta)=\frac{1}{n} \sum_{a \in \mathcal{A}} \sum_{i=1}^{n} \ell_{a}\left(X_{i}^{(a)} ; \theta\right), \quad \theta \in \Theta . \tag{1}
\end{equation*}
$$

The population version of the pairwise log-likelihood function is $\sum_{a} L_{a}(\theta)$, where $L_{a}(\theta)$ stands for $\mathrm{E} \ell_{a}\left(X_{1}^{(a)} ; \theta\right)$. As usual, the goal is to estimate the maximizer of the population pairwise log-likelihood by maximizing the pairwise log-likelihood function. From the viewpoint of M-estimation theory, the population pairwise likelihood is the objective criterion function, the maximizer of which is the parameter of interest. In this case the objec-
tive criterion is the sum of "bivariate" Kullback-Leibler information criteria. Maximizing the pairwise likelihood function can also be seen as minimizing the full Kullback-Leibler information under some information constraints (Wang and Wu, 2014).

We call the maximum pairwise likelihood estimator (MPLE) every element $\hat{\theta}_{n}^{\mathrm{MPL}}$ of Θ that satisfies $L_{n}^{\mathrm{PL}}\left(\hat{\theta}_{n}^{\mathrm{MPL}}\right) \geq L_{n}^{\mathrm{PL}}(\theta)$ for all θ in some compact subset of Θ. Maximization over compact subsets ensures the existence of MPLEs under minimal smoothness assumptions. Whenever we refer to MPLEs, it is implicitly understood that the compact subset over which θ is estimated contains θ_{0}.

Assumption 1. The first, second and third derivatives of $\ell_{a}\left(X_{1}^{(a)} ; \theta\right)$ with respect to the components of θ exist and are square integrable. Moreover, there exist square integrable functions $\Psi_{a}, a \in \mathcal{A}$, such that $\sup _{\theta \in \Theta}\left|\partial^{3} \ell_{a}\left(X_{1}^{(a)} ; \theta\right) /\left(\partial \theta_{i_{1}} \partial \theta_{i_{2}} \partial \theta_{i_{3}}\right)\right| \leq \Psi_{a}\left(X_{1}^{(a)}\right)$, for all $1 \leq$ $i_{1} \leq i_{2} \leq i_{3} \leq q$. Finally, if \mathfrak{m}_{a} stands for the base measure of which $f_{a}(\cdot, \cdot ; \theta)$ is the density then $\int f_{a}(\cdot, \cdot ; \theta) \mathrm{d} \mathfrak{m}_{a}$ and $\int\left(\partial / \partial \theta_{i_{1}}\right) f_{a}(\cdot, \cdot ; \theta) \mathrm{d} \mathfrak{m}_{a}$ can be differentiated under the integral sign.

Assumption 1 is standard. It is mild enough to encompass many models and yet enable simple proofs. Under Assumption 1, the pairwise log-likelihood function is differentiable and hence MPLEs always exist. Assumption 1 could be weakened but at the expense of much more complicated proofs, and thus we keep this assumption.

When $d=2$, MPLEs and maximum likelihood estimators coincide. In this case, Assumption 1 suffices to get the consistency and the asymptotic normality of these estimators. In general, however, we cannot expect MPLEs to be consistent without further assumptions, because a family of multivariate distributions cannot always be described by its pairs. There is, therefore, no reason for the map $\theta \mapsto \sum_{a} L_{a}(\theta)$ to admit a unique maximizer, and we need to impose this as a condition.

Assumption 2. The maximizer of $\theta \mapsto \sum_{a} L_{a}(\theta)$ is unique.
It is easy to see that each L_{a} is maximized at θ_{0} and hence so is the mapping $\sum_{a} L_{a}(\theta)$. Thus, we deduce from Assumption 2 that θ_{0} is the only maximizer of $\sum_{a} L_{a}(\theta)$.

Remark 1. Even if θ_{0} is the only maximizer of $\sum_{a} L_{a}(\theta)$, it does not mean that θ_{0} is the only maximizer of L_{a}. Let $d=3$ and let $\left(X_{11}, X_{12}, X_{13}\right)$ be a Gaussian random vector with mean $\mu_{01}, \mu_{02}, \mu_{03}$, variances equal to one and correlation parameter ρ_{0}, so that $\theta_{0}=$ $\left(\mu_{01}, \mu_{02}, \mu_{03}, \rho_{0}\right)$. Then not only is L_{12} maximized at θ_{0}, but also at $\left(\mu_{01}, \mu_{02}, \mu, \rho_{0}\right)$ for any μ.

Assumption 2 is critical to ensure the consistency of pairwise likelihood methods. Sufficient conditions can be found in Proposition 1 below.

Proposition 1. If, for every $a \in \mathcal{A}$, there is a function v_{a} on Θ into a Euclidean space and a family of bivariate densities $\left\{\tilde{f}_{a}\left(\cdot, \cdot ; \vartheta_{a}\right), \vartheta_{a} \in\right.$ range $\left.v_{a}\right\}$ such that (i) the family $\left\{\tilde{f}_{a}\left(\cdot, \cdot ; \not \vartheta_{a}\right), \vartheta_{a} \in\right.$ range $\left.v_{a}\right\}$ is identifiable (ii) the distributions $\tilde{f}_{a}\left(\cdot, \cdot ; v_{a}(\theta)\right)=f_{a}(\cdot, \cdot ; ; \theta)$ coincide for all θ, and (iii) the mapping $V(\theta):=\left(v_{a}(\theta)\right)_{a \in \mathcal{A}}$ is one-to-one, then Assumption 2 holds.

These conditions will be useful to check Assumption 2 for the copula models of Section 5.
Assumptions 1 and 2 together imply that the MPLE is asymptotically normal, that is, we have that $\sqrt{n}\left(\hat{\theta}_{n}^{\mathrm{MPL}}-\theta_{0}\right)$ converges in distribution to a centered Gaussian random vector with some variance-covariance matrix, called the asymptotic variance-covariance matrix - or simply the asymptotic variance - of the estimator, given by $S^{-1}(C+S) S^{-1}=$ $S^{-1} C S^{-1}+S^{-1}$, where $S=\sum_{a \in \mathcal{A}} \mathrm{E} \dot{\ell}_{a} \dot{\ell}_{a}^{\top}$, and $C=\sum_{a \neq b \in \mathcal{A}} \mathrm{E} \dot{\ell}_{a} \dot{\ell}_{b}^{\top}$ is the between-scores correlation matrix. Here $\mathrm{E} \dot{\ell}_{a} \dot{\ell}_{b}^{\top}$ is a shorthand for $\mathrm{E} \dot{\ell}_{a}\left(X_{1}^{(a)} ; \theta_{0}\right) \dot{\ell}_{b}\left(X_{1}^{(b)} ; \theta_{0}\right)^{\top}$. This result is
standard and known since at least Lindsay (1988) but, as it turns out, it is difficult to find in the literature precise conditions under which this result is true.

To improve efficiency, weights could be added to the pairwise log-likelihood (Lindsay, 1988; Joe and Lee, 2009; Lindsay et al., 2011), leading to the maximization of

$$
\begin{equation*}
L_{n}^{\mathrm{WPL}}(\theta)=\frac{1}{n} \sum_{a \in \mathcal{A}} w_{a} \sum_{i=1}^{n} \ell_{a}\left(X_{i}^{(a)} ; \theta\right) \tag{2}
\end{equation*}
$$

for some weights $w_{a} \geq 0$. In this case, Assumption 2 must be changed to "The maximizer of $\theta \mapsto \sum_{a} w_{a} L_{a}(\theta)$ is unique" and Proposition 1 still holds.

The problem of choosing the optimal weights is difficult. In the one-dimensional case, that is, when the parameter is a scalar, a formula for the optimal weights exists but it requires the computation of the between-scores correlation matrix C. This can be computationally challenging, as we shall see next. In the more realistic multivariate case, according to Lindsay (1988), a solution may not exist, and if it existed it would be difficult to compute.

2.2 Computational issues in higher dimensions

When the number of variables is large, the pairwise likelihood method may be burdensome to apply. Indeed, the computation of the pairwise log-likelihood requires up to $O\left(n d^{2}\right)$ evaluations of a potentially complex function. Perhaps less apparent but not less important in applications is the computation of confidence intervals for the parameters. These are also difficult to get because the between-scores correlation matrix C is a double sum over pairs of order up to $O\left(d^{4}\right)$. Moreover, computing confidence intervals requires dealing with distributions in four dimensions, which were assumed to be quite complex in the first place.

To reduce the computational burden, a natural approach consists of choosing a small subset of pairs and computing the pairwise log-likelihood based on that subset alone. This method can be seen as a particular case of the weighted pairwise likelihood method, in which some weights are set to zero and the others equal to one. The performance of the estimator depends on the chosen subset. Choosing a good subset is a difficult problem. (See the Introduction for some references.) Moreover, it should be noted that subset selection methods are not always applicable. Removing a pair can invalidate the method, as the conditions for consistency are no longer met. As an example, consider a trivariate Gaussian distribution with three free correlation parameters. Removing any pair leads to the impossibility of estimating the corresponding correlation parameter.

3 The randomized pairwise likelihood method

We introduce a new estimator of θ_{0} based on a randomized version of the pairwise loglikelihood function and thus cheaper to compute. Interestingly, confidence intervals can be computed with no more than $O\left(d^{2}\right)$ computations.

3.1 Definition and first results

The randomized pairwise likelihood method consists of taking at random only some of the pairs a and observations i in (1) to carry out the summation. Formally, the randomized pairwise log-likelihood function is defined as

$$
\begin{equation*}
L_{n}^{\mathrm{RPL}}(\theta)=\frac{1}{n \pi_{n}} \sum_{i=1}^{n} \sum_{a \in \mathcal{A}} W_{n i}^{(a)} \ell_{a}\left(X_{i}^{(a)} ; \theta\right) \tag{3}
\end{equation*}
$$

where, for each $n, W_{n i}^{(a)}, i=1, \ldots, n, a \in \mathcal{A}$, are independent Bernoulli random variables with parameter $0<\pi_{n} \leq 1$. They are assumed to be independent of X_{1}, \ldots, X_{n}. The unknown parameter $\theta_{0}=\left(\theta_{01}, \ldots, \theta_{0 q}\right)$ is estimated by maximizing the function in (3). In practice, one first draws the Bernoulli weights, which allows certain terms to be excluded from the pairwise log-likelihood function, and then maximizes the sum of the remaining terms. If $\pi_{n}=1$ then $\operatorname{Pr}\left(W_{n i}^{(a)}=1\right)=1$ and hence the functions (3) and (1) coincide.

Definition 1. Every element $\hat{\theta}_{n}^{M R P L}$ of Θ that satisfies $L_{n}^{R P L}\left(\hat{\theta}_{n}^{M R P L}\right) \geq L_{n}^{R P L}(\theta)$ for all θ in some compact subset of Θ is called a maximum randomized pairwise likelihood estimator (MRPLE).

As before, it is implicitly understood that the compact subset has been taken large enough to contain θ_{0}. The parameter π_{n} controls the computational cost. For clarity, suppose that \mathcal{A} is the set of all pairs. Since there are n observations and $d(d-1) / 2$ pairs, the expected number of terms in the randomized pairwise log-likelihood function is $n d(d-1) \pi_{n} / 2$. For instance, if $\pi_{n}=1 / 6, d=3$ and $n=10000$ then one needs to sum 5000 terms on average to compute the randomized pairwise likelihood, and 30000 to compute the standard pairwise likelihood method.

The difference between the criterion functions (2) and (3) is that in the former, the weights do not depend on i and, hence, when a pair is dropped out, one removes all of the observations corresponding to it. With the randomized pairwise log-likelihood function, at least some partial observations will be included for any given pair and hence all parameters can be estimated, even in unstructured models. The probability that all pairs pick out at least one observation is $\left[1-\left(1-\pi_{n}\right)^{n}\right]^{d(d-1) / 2}$. For instance, with $\pi_{n}=9 / 10, n=50$ and $d=10$, this probability is about 0.793 ; with $n=100$ it is already 0.999 .

We now turn to asymptotic properties. In general we let the parameter π_{n} vary with
n. (The reason will be explained later.) For the time being, however, suppose that π_{n} is equal to some $\pi \in(0,1]$ for all n.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Assume that π_{n} is a constant sequence, that is, $\pi_{n}=\pi \in(0,1]$ for all n. If $\hat{\theta}_{n}^{M R P L}$ is a MRPLE such that $L_{n}^{R P L}\left(\hat{\theta}_{n}^{M R P L}\right) \geq$ $L_{n}^{R P L}(\theta)$ for all $\theta \in \Lambda$, where Λ is a compact subset of Θ and θ_{0} is an interior point of Λ, then $\sqrt{n}\left(\hat{\theta}_{n}^{M R P L}-\theta_{0}\right)$ converges in distribution to a Gaussian random vector with mean zero and variance-covariance matrix $S^{-1} C S^{-1}+\pi^{-1} S^{-1}$.

Remark 2. Without the last sentence of Assumption 1, asymptotic normality still holds but with a different variance-covariance matrix.

Theorem 1 implies $\hat{\theta}_{n}^{\mathrm{MRPL}} \rightarrow \theta_{0}$ in probability. Choosing $\pi=1$ allows us to recover the results of Section 2.

Remark 3. If, in formula (3), the weights $W_{n i}^{(a)}$ were not chosen randomly but according to availability of the data-that is, zero if the data are missing and one otherwise - then it was shown in Molenberghs et al. (2011) that, under the "Missing Completely At Random" (aka MCAR) framework (Rubin, 1976), the gradient of the expectation of (3) would be equal to zero and hence consistent inference should result under appropriate conditions.

3.2 Statistical versus computational efficiency

The randomized pairwise likelihood method sacrifices statistical efficiency (measured by asymptotic variance) for computational efficiency (measured by the expected number of times the function $\ell_{a}\left(X_{i}^{(a)} ; \theta\right)$ needs to be evaluated to compute the randomized pairwise \log-likelihood). If one chooses, say, $\pi=1 / k, k \geq 1$, then the expected number of needed
evaluations will be divided by k, and hence the maximization of the randomized pairwise log-likelihood, and thus the computation of the estimate $\hat{\theta}_{n}^{\mathrm{MRPL}}$ will be greatly facilitated.

The price to pay, however, is that the asymptotic variance-covariance matrix of the estimator will be multiplied by some inflation factor. To emphasize the dependence on π, denote temporarily by $\hat{\theta}_{n}^{\mathrm{MRPL}}(\pi)$ the MRPLE based on π. For simplicity, assume that $\hat{\theta}_{n}^{\mathrm{MRPL}}(\pi)$ is a scalar and denote by $V(\pi)$ its asymptotic variance. The factor by which the MRPLE's asymptotic variance will be multiplied, should one consider $\hat{\theta}_{n}^{\mathrm{MRPL}}\left(\pi^{\prime}\right)$ instead of $\hat{\theta}_{n}^{\mathrm{MRPL}}(\pi)$, is refered to as the inflation factor from π to π^{\prime}. By definition, the inflation factor is given by

$$
\operatorname{IF}\left(\pi^{\prime} \mid \pi\right):=\frac{V\left(\pi^{\prime}\right)}{V(\pi)}=\frac{\pi S^{-1} C S^{-1}}{\pi S^{-1} C S^{-1}+S^{-1}}+\frac{S^{-1}}{\pi S^{-1} C S^{-1}+S^{-1}} \frac{\pi}{\pi^{\prime}}
$$

For instance, if one sets $\pi^{\prime}=\pi / k, k>1$, thus dividing the number of evaluations by k, then the asymptotic variance of the estimator will be multiplied by $\operatorname{IF}\left(k^{-1} \pi \mid \pi\right)$.

We say that the inflation factor is subhomogeneous of order -1 , or simply subhomogeneous, if $\operatorname{IF}\left(k^{-1} \pi \mid \pi\right) \leq k \operatorname{IF}(\pi \mid \pi)=k$ for every π. If the inequality is replaced by an equality, we say that the inflation factor is homogeneous of order -1 , or simply homogeneous. Arguably, the compromise between statistical and computational efficiency is acceptable when the inflation factor is subhomogeneous. In this case, dividing the number of evaluations by k yields an inflation of the variance by a factor less than k.

Proposition 2. The inflation factor is subhomogeneous if and only if the matrix $S^{-1} C S^{-1}$ is nonnegative definite.

From Proposition 2, a satisfactory compromise occurs when $S^{-1} C S^{-1}$ is nonnegative definite, that is, when the scores $\dot{\ell}_{a}, \dot{\ell}_{b}, a \neq b$, tend to be positively correlated. In the real
world, are the scores positively correlated? Intuitively, it can be argued that this is to be expected if the variables tend to be positively correlated. More often than not, this should be the case. To see this, note that in the multivariate Gaussian model of dimension d with a common correlation parameter, the common correlation cannot be less than $-1 /(d-1)$, which is essentially zero as soon as the number of variables is more than a few.

3.3 Consequences of letting the sampling parameter vanish

The MRPLE depends on the sampling parameter π. If π is too small, there would be too little of the data and we would expect poor performance. Thus it is of interest to understand how small π can be. Also, intriguingly, multiplying $\sqrt{n}\left(\hat{\theta}_{n}^{\mathrm{MRPL}}-\theta_{0}\right)$ by $\sqrt{\pi}$ in Theorem 1 yields the asymptotic variance $\pi S^{-1} C S^{-1}+S^{-1}$, suggesting that, by letting $\pi=\pi_{n} \rightarrow 0$ as $n \rightarrow \infty$, we may simply get S^{-1} : this would allow one to get rid of the costly matrix C.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let $\hat{\theta}_{n}^{M R P L}$ be a MRPLE. If $\pi_{n} \rightarrow 0$ such that $n \pi_{n} \rightarrow \infty$, then $\hat{\theta}_{n}^{M R P L} \rightarrow \theta_{0}$ in probability as $n \rightarrow \infty$.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let $\hat{\theta}_{n}^{M R P L}$ be a MRPLE such that $L_{n}^{R P L}\left(\hat{\theta}_{n}^{M R P L}\right) \geq L_{n}^{R P L}(\theta)$ for all $\theta \in \Lambda$, where Λ is a compact subset of Θ and θ_{0} is an interior point of Λ. If $\pi_{n} \rightarrow 0$ such that, for all $\kappa>0$ and all $a \in \mathcal{A}$,

$$
\begin{equation*}
\frac{1}{\pi_{n}} \mathrm{E} \Phi_{a}\left(X_{1}^{(a)} ; \theta_{0}\right)^{4} \exp \left(\frac{-n \pi_{n} \kappa}{\sum_{a \in \mathcal{A}} \Phi_{a}\left(X_{1}^{(a)} ; \theta_{0}\right)^{2}}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

where $\Phi_{a}\left(X_{1}^{(a)} ; \theta\right)$ is the maximum of $\left|\partial \ell_{a}\left(X_{1}^{(a)} ; \theta\right) / \partial \theta_{i_{1}}\right|,\left|\partial^{2} \ell_{a}\left(X_{1}^{(a)} ; \theta\right) /\left(\partial \theta_{i_{1}} \partial \theta_{i_{2}}\right)\right|$ and $\Psi_{a}\left(X_{1}^{(a)}\right)$ over all possible indices $1 \leq i_{1}, i_{2} \leq q$, then, as $n \rightarrow \infty, \sqrt{n \pi_{n}}\left(\hat{\theta}_{n}^{M R P L}-\theta_{0}\right)$ converges to a
centered Gaussian distribution with variance-covariance matrix given by S^{-1}.

Subject to conditions on n and π_{n} (discussed in more detail next), Theorem 3 predicts that a reasonable approximation of the MRPLE's variance is given by $S^{-1} /\left(n \pi_{n}\right)$. In comparison with the previous formula $S^{-1} C S^{-1} / n+S^{-1} /(n \pi)$, the term $S^{-1} C S^{-1} / n$, which is the only term that involves the correlations between the scores, has disappeared. This can be exploited to build approximate confidence intervals without the need to estimate the onerous matrix C.

Let us come back to the conditions on n and π_{n}. First, notice that Theorems 2 and 3 are consistent with each other, because the condition (4) implies $n \pi_{n} \rightarrow \infty$. To benefit from the approximation suggested by Theorem 3 , the sampling parameter π_{n} must be small, but not too small; the meaning of "not too small" is captured by the condition (4), which in particular implies that $n \pi_{n}$ must be large enough. The quantity $n \pi_{n}$ may be regarded as the "effective sample size".

Translating the condition (4) into a more transparent condition on π_{n} is not always easy. A simple case is that of smooth models with a compact support, because the derivatives are bounded.

Proposition 3. Suppose that, in Assumption 1, the first and second derivatives and the functions Ψ_{a} are bounded in absolute value by some constant. If $\pi_{n} \rightarrow 0$ such that $n \pi_{n}^{2} \rightarrow$ ∞, then (4) is satisfied.

Under the conditions of Proposition 3, choosing $\pi_{n}=n^{-\alpha}, 0<\alpha<1 / 2$, makes $n^{(1-\alpha) / 2}\left(\hat{\theta}_{n}^{\mathrm{MRPL}}-\theta_{0}\right)$ go to a Gaussian limit. The sampling parameter π_{n} can decrease almost as fast as $1 / \sqrt{n}$. Another example that satisfies (4) is given in Section 4.

3.4 Choice of the sampling parameter π

In practice, the choice of the sampling parameter π is difficult; to benefit from the computational advantages obtained from randomization, any sensible method to choose π must be computationally inexpensive. We first remark that, based on Theorem 3, the random vector $S^{1 / 2} \sqrt{n \pi}\left(\hat{\theta}_{n}^{M R P L}-\theta_{0}\right)$ approximately follows a $\mathrm{N}\left(0, I_{q}\right)$ distribution for well-chosen values of π. This suggests that the components of $S^{1 / 2} \sqrt{n \pi}\left(\hat{\theta}_{n}^{M R P L}-\theta_{0}\right)$ approximately constitute a sample of independent and identically random variables with a common unit variance. To evaluate the choice of π, we propose a heuristic based on a formal test of this hypothesis. As the true value of θ_{0} is unknown, we propose the following simulation-based procedure for a given value of π : (1) obtain an initial estimate $\theta^{(0)}$ (e.g., via an initialization strategy as in Sections 6 or 7); (2) simulate a new dataset \tilde{X} of the same size as X under $f\left(\bullet ; \theta^{(0)}\right) ;(3)$ obtain a parameter estimate $\tilde{\theta}_{n, \pi}^{\mathrm{MRPL}}$ from \tilde{X} as well as an estimate \tilde{S} of the matrix S (as shown in Appendix D); and (4) perform a hypothesis test of unit variance for a normal distribution using the vector $\tilde{S}^{1 / 2} \sqrt{n \pi}\left(\tilde{\theta}_{n, \pi}^{M R P L}-\theta^{(0)}\right)$. For p-values less than a desired significance threshold (say 5%), the corresponding value of π would be increased (or decreased) and the steps above repeated; otherwise, the current value of π would be retained as a reasonable choice. We demonstrate the use of this strategy in simulation experiments in the Appendix A.2.

4 Standard Gaussian model examples

The standard Gaussian model facilitates our understanding of the randomized pairwise likelihood method because explicit calculations are feasible. The density of this model at $x \in \mathbf{R}^{d}$ is proportional to $f(x ; \theta) \propto\left|\Sigma_{\theta}\right|^{-1 / 2} \exp \left(-\frac{1}{2} x^{\top} \Sigma_{\theta}^{-1} x\right)$, where $\theta=\left(\theta_{1}, \ldots, \theta_{q}\right) \in \Theta \subset$
$(-1,1)^{q}, 1 \leq q \leq d(d-1) / 2$, is the parameter vector determining the correlation matrix Σ_{θ}, so that each of its entries is a function of θ, denoted by $v_{a}(\theta)$ (as in Proposition 1). In other words, $f_{a}(\cdot, \cdot ; \theta)$ depends on θ only through $v_{a}(\theta)$. The case $q=1$ with $v_{a}(\theta)=\theta_{1}$ for every $a \in \mathcal{A}$ corresponds to the exchangeable correlation structure (Cox and Reid, 2004). The case $q=d(d-1) / 2$ with $\theta=\left(\theta_{(1,2)}, \ldots, \theta_{(d-1, d)}\right)$ and $v_{\left(j, j^{\prime}\right)}(\theta)=\theta_{\left(j, j^{\prime}\right)}$ for all $j<j^{\prime} ; j, j^{\prime}=1, \ldots, d$, corresponds to the "free" correlation structure. We assume that Σ_{θ} is positive definite. For instance, if $q=1$, the biggest subset of $(-1,1)^{d}$ on which Σ_{θ} is positive definite is $\Theta=(-1 /(d-1), 1)$.

4.1 A class of asymptotically normal estimators

Let $\pi_{n}=n^{-\alpha}, \alpha>0$, and let $\hat{\theta}_{n}^{\mathrm{MRPL}}(\alpha)$ be a MRPLE. In this setting MRPLEs depend on α because they are maximizers of the randomized pairwise likelihood, which depends on π_{n} through the weights. Clearly, $\alpha<1$; otherwise the estimator has no chance to be consistent. Hence a class of estimators $\left\{\hat{\theta}_{n}^{\mathrm{MRPL}}(\alpha), 0<\alpha<1\right\}$ has been defined and we may wonder whether all members of this class are asymptotically normal.

Proposition 4. If $\{f(\bullet ; \theta), \theta \in \Theta\}$ is the standard Gaussian model with an exchangeable correlation structure then Assumptions 1 and 2 hold.

Proposition 4 is trivial. In the proof, the assumptions are checked directly.

Proposition 5. If $\{f(\bullet ; \theta), \theta \in \Theta\}$ is the standard Gaussian model with an exchangeable correlation structure and $\pi_{n}=n^{-\alpha}, 0<\alpha \leq 1 / 4$, then (4) is satisfied.

Proposition 5 gives the precise rate at which the estimators go to a limit distribution. Corollary 1 below is an immediate consequence.

Corollary 1. If $\{f(\bullet ; \theta), \theta \in \Theta\}$ is the standard Gaussian model with an exchangeable correlation structure and $\hat{\theta}_{n}^{M R P L}(\alpha)$ is a MRPLE with $0<\alpha \leq 1 / 4$ then $n^{(1-\alpha) / 2}\left(\hat{\theta}_{n}^{M R P L}(\alpha)-\right.$ $\left.\theta_{0}\right) \rightarrow N\left(0,2 /\left[d(d-1) \mathrm{E} \dot{\ell}_{12}^{2}\right]\right)$, as $n \rightarrow \infty$, where $\mathrm{E} \dot{\ell}_{12}^{2}=\mathrm{E}\left[\partial \ell_{12}\left(X_{11}, X_{12}, \theta\right) / \partial \theta\right]_{\theta=\theta_{0}}^{2}=$ $\left(\theta_{0}^{6}-\theta_{0}^{4}-\theta_{0}^{2}+1\right) /\left(1-\theta_{0}^{2}\right)^{4}$.

The parameter α controls the compromise between the computational cost and the statistical efficiency of the estimator. If α is large then the computational burden will be reduced but there will be a loss of statistical efficiency. If α is small the reverse is true. In any case, π_{n} cannot go to zero too fast. Compare the admissible range of values for α in Corollary 1 with the range $0<\alpha \leq 1 / 2$ found in Proposition 3. In Proposition 3 the sampling parameter was allowed to go to zero faster because the assumed model had lighter (in fact, bounded) tails than the Gaussian model. The formulas for the cross-correlations are given by the equations $\left(1-\theta_{0}^{2}\right)^{4} \mathrm{E} \dot{\ell}_{12} \dot{\ell}_{13}=\theta_{0}^{2}\left(1-\theta_{0}^{2}\right)^{2}-4 \theta_{0}^{2}\left(1-\theta_{0}^{2}\right)+2 \theta_{0}^{2}\left(1+\theta_{0}^{2}\right)(1-$ $\left.\theta_{0}^{2}\right)+6 \theta_{0}^{2}\left(1+\theta_{0}^{2}\right)-2 \theta_{0}^{2}\left(1+\theta_{0}^{2}\right)\left(4+2 \theta_{0}\right)+\theta_{0}\left(1+\theta_{0}^{2}\right)^{2}\left(1+2 \theta_{0}\right)$ and $\left(1-\theta_{0}^{2}\right)^{4}\left(\mathrm{E} \dot{\ell}_{12}\left(\dot{\ell}_{13}-\dot{\ell}_{34}\right)\right)=$ $\left(1+\theta_{0}^{2}\right) \theta_{0}\left(1-\theta_{0}\right)\left(1+\theta_{0}^{2}-4 \theta_{0}\right)+2 \theta_{0}^{2}\left(1-\theta_{0}^{2}\right)$.

4.2 Comparison to the subset selection method

Remember that the subset selection method consists of choosing a subset of pairs $\mathcal{B} \subset \mathcal{A}$, and makes the inference rest on those pairs, taking all of the observations. On the contrary, the randomized pairwise likelihood method draws at random both observations and pairs, and makes the inference rest on those "(observation, pair)" couples for which both the observation and the pair have been selected.

Next, the two methods are compared for the exchangeable standard Gaussian model. For simplicity, put $L_{i j, k l}=\mathrm{E} \dot{\ell}_{i j} \dot{\ell}_{k l}, L_{i j}=\mathrm{E} \dot{\ell}_{i j}^{2},|\mathcal{B}|=B \leq A=|\mathcal{A}|$. To make the methods comparable, set $\pi=B / A$, so that, on average, both the randomized pairwise likelihood
and the pairwise likelihood based on the set of pairs \mathcal{B} have the same computational cost, measured by the number of times the density of a bivariate Gaussian distribution is evaluated. As in Section 3.2, let $V(\pi)=V(B / A)=L_{12}^{-2} A^{-2}\left[\alpha\left(L_{12,13}-L_{12,34}\right)+A(A-\right.$ 1) $\left.L_{12,34}\right]+L_{12}^{-1} B^{-1}$ be the asymptotic variance of the MRPLE, where here $\alpha=6\binom{d}{3}$ is the number of couples of pairs that share an index, among all possible couples of pairs. When $A \rightarrow \infty$, note that $V(B / A) \sim L_{12}^{-2} L_{12,34}+L_{12}^{-1} B^{-1}$.

The performance of the subset selection method depends on the number of couples of pairs that share an index among all couples of pairs in \mathcal{B}. Denote this number by β. Denote by $W_{\beta}(B)=W_{\beta}(A \pi)$ the asymptotic variance of the estimator obtained from the subset selection method. According to Theorem 1 , for $B \geq 2$, we have

$$
\begin{aligned}
W_{\beta}(B) & =\left(\sum_{a \in \mathcal{B}} L_{a}\right)^{-1} \sum_{a \neq b \in \mathcal{B}} L_{a, b}\left(\sum_{a \in \mathcal{B}} L_{a}\right)^{-1}+\left(\sum_{a \in \mathcal{B}} L_{a}\right)^{-1} \\
& =L_{12}^{-2} B^{-2}\left[\beta L_{12,13}+(B(B-1)-\beta) L_{12,34}\right]+L_{12}^{-1} B^{-1}
\end{aligned}
$$

It can be checked numerically from the formulas at the end of Section 4.1 that $L_{12,13}$ $L_{12,34} \geq 0$ and hence the best possible subset selection method is obtained when $\beta=0$, leading to $W_{0}(B)=L_{12}^{-2} L_{12,34}+\left(1-L_{12}^{-1} L_{12,34}\right) L_{12}^{-1} B^{-1}$. The worst possible subset selection method is obtained when $\beta=B(B-1)$, leading to $W_{B(B-1)}(B)=L_{12}^{-2} L_{12,13}+(1-$ $\left.L_{12}^{-1} L_{12,13}\right) L_{12}^{-1} B^{-1}$. Note that setting $\beta=0$ or $\beta=B(B-1)$ may or may not be possible, depending on the choice of \mathcal{B}.

Figure 1 displays the values of $V(B / A)$ and $W_{\beta}(B), \beta=0, B(B-1)$, for $B=2, \ldots, 30$ in the case $d=50$. The curve for $V(B / A)$ is contained in the strip delimited by the curves $W_{0}(B)$ (bottom, best possible subset selection method) and $W_{B(B-1)}$ (top, worst possible subset selection method). The curve for $V(B / A)$ closely follows that for the best possible

Figure 1: Asymptotic variances $V(\pi)=V(B / A), W_{0}(B)$ and $W_{B(B-1)}(B)$ for the randomized pairwise likelihood (RPL) method and the subset selection (SS) methods in the cases $\beta=0$ and $\beta=B(B-1)$, respectively, in the exchangeable standard Gaussian model with $d=50$ and $\theta_{0}=0.7$. The lower limits correspond to the limit values of $W_{\beta}(B)$, as B tends to infinity, for the cases $\beta=B(B-1)$ (above) and $\beta=0$ (below). The latter limit is also that of $V(B / A)$ as A and B tend to infinity.
subset selection method.

4.3 An excursion to the infinite dimensional case

Recall that the correlation matrix Σ_{θ} is determined by the parameter vector $\theta=\left(\theta_{1}, \ldots, \theta_{q}\right)$. In this section, the dimension increases as the sample size goes to infinity, that is, we let $d=d_{n}$ go to infinity as n goes to infinity. The number of parameters q is arbitrary but fixed. For every $a \in \mathcal{A}$, we assume that $v_{a}(\theta)=\theta_{i}$ for some $i=1, \ldots, q$, or $v_{a}(\theta)=0$. For each $i=1, \ldots, q$, let N_{i} denote the number of entries in the upper triangular part of Σ_{θ} that are equal to θ_{i}. Denote by $N_{\min }$ and $N_{\max }$ the minimum and maximum of the numbers
N_{i}, respectively. Each N_{i} is allowed to grow to infinity. In other words, the correlation matrix is partitioned into $q+1$ homogeneous blocks allowed to grow to infinity. Let \mathcal{A}^{+} denote the set of all those $a \in \mathcal{A}$ that satisfy $v_{a}(\theta)=\theta_{i}$ for some $i=1, \ldots, q$.

Proposition 6. If $d_{n} \rightarrow \infty, \pi_{n} \rightarrow 0, N_{\max } /\left(n \pi_{n} N_{\min }^{2}\right) \rightarrow 0, N_{\max }^{2} /\left(n N_{\min }^{2}\right) \rightarrow 0$ and $\left|\mathcal{A}^{+}\right|=O\left(N_{\text {min }}\right)$, then $\left\|\hat{\theta}_{n}^{M R P L}-\theta_{0}\right\| \xrightarrow{P} 0$ as $n \rightarrow \infty$.

Proposition 6 says that if the largest block is not too large with respect to the smallest block, then consistency holds even if the dimension goes to infinity. For instance, if all the blocks have the same size, we have that $N_{\min }=N_{\max }$ and $\left|\mathcal{A}^{+}\right|$are all of order d_{n}^{2}, and the conditions become $1 /\left(n \pi_{n} d_{n}^{2}\right) \rightarrow 0$. Here, the dimension is a blessing, not a curse. In this example, considering more and more variables means adding more and more pairs to the pairwise likelihood, and each of those pairs brings some information about θ_{0}.

5 Copula models for multivariate count data

The problem of defining relevant models in high dimensions for discrete data has been addressed by various approaches (Chatelain et al., 2009; Karlis and Meligkotsidou, 2005; Berkhout and Plug, 2004; Karlis and Meligkotsidou, 2007; Chiquet et al., 2018, 2019).

An interesting approach uses copulas (Nelsen, 2006), allowing one to easily control the model marginals (Zhao and Joe, 2005; Nikoloulopoulos, 2013). However, inference raises computational problems, which may be mitigated by using the randomized pairwise likelihood. Let m_{1}, \ldots, m_{d+1} be natural integers with sum equal to q. Let $\left\{F_{i}\left(\cdot ; \mu_{i}\right), \mu_{i} \in\right.$ $\left.\Theta_{i} \subset \mathbf{R}^{m_{i}}\right\}, i=1, \ldots, d$, be families of univariate distribution functions. For every $\mu_{i} \in \Theta_{i}$, the distribution function $F_{i}\left(\cdot ; \mu_{i}\right)$ is also denoted by $F_{\mu_{i}}$. Let $\left\{C(\bullet ; \rho), \rho \in \Theta^{\text {cop }} \subset \mathbf{R}^{m_{d+1}}\right\}$ be a family of copulas defined on $[0,1]^{d}$. For each $\theta:=\left(\mu_{1}, \ldots, \mu_{d}, \rho\right) \in \Theta:=\Theta_{1} \times \cdots \times \Theta_{d} \times$
Θ^{cop}, the function defined by $F\left(x_{1}, \ldots, x_{d} ; \theta\right)=C\left(F_{\mu_{1}}\left(x_{1}\right), \ldots, F_{\mu_{d}}\left(x_{d}\right) ; \rho\right), x_{1}, \ldots, x_{d} \in \mathbf{R}$, is a well-defined distribution function on \mathbf{R}^{d} with marginals $F_{\mu_{1}}, \ldots, F_{\mu_{d}}$. It is easy to show that if the univariate distribution function families and the copula family are identifiable then the resulting family of multivariate distribution functions is identifiable, too. From Sklar's theorem (Sklar, 1959), the copula is unique if the marginal distribution functions are continuous. In the discrete case, the copula is not unique in general but it still permits the construction of valid parametric statistical models.

When the data are discrete, the probability mass function associated with the model $C\left(F_{\mu_{1}}\left(x_{1}\right), \ldots, F_{\mu_{d}}\left(x_{d}\right) ; \rho\right)$ is given by $\sum_{\left(v_{1}, \ldots, v_{d}\right)} \operatorname{sgn}\left(v_{1}, \ldots, v_{d}\right) C\left(F_{\mu_{1}}\left(v_{1}\right), \ldots, F_{\mu_{d}}\left(v_{d}\right) ; \rho\right)$, where the sum is over all $\left(v_{1}, \ldots, v_{d}\right) \in\left\{x_{1}-1, x_{1}\right\} \times \ldots \times\left\{x_{d}-1, x_{d}\right\}$, and $\operatorname{sgn}\left(v_{1}, \ldots, v_{d}\right)=1$ if there is an even number of components v_{j} satisfying $v_{j}=x_{j}-1$, and $\operatorname{sgn}\left(v_{1}, \ldots, v_{d}\right)=-1$ if there is an odd number of components v_{j} satisfying $v_{j}=x_{j}-1$ (Panagiotelis et al., 2012). This sum, which has 2^{d} terms, becomes intractable as the dimension increases. To perform the inference, it is computationally advantageous to use the pairwise likelihood. The functions ℓ_{a} appearing in the pairwise likelihood formula (1) are expressed in terms of the copula and the marginals: for every $a=(i, j)$, it holds $\ell_{a}\left(x_{i}, x_{j} ; \mu_{i}, \mu_{j} \rho\right)=$ $\log \left[C_{a}\left(F_{\mu_{i}}\left(x_{i}\right), F_{\mu_{j}}\left(x_{j}\right) ; \rho\right)-C_{a}\left(F_{\mu_{i}}\left(x_{i}\right), F_{\mu_{j}}\left(x_{j}-1\right) ; \rho\right)-C_{a}\left(F_{\mu_{i}}\left(x_{i}-1\right), F_{\mu_{j}}\left(x_{j}\right) ; \rho\right)+C_{a}\left(F_{\mu_{i}}\left(x_{i}-\right.\right.\right.$ 1), $\left.\left.F_{\mu_{j}}\left(x_{j}-1\right) ; \rho\right)\right]$, where $C_{a}\left(u_{i}, u_{j} ; \rho\right):=C\left(1, \ldots, u_{i}, \ldots, u_{j}, \ldots, 1 ; \rho\right)$ (all arguments have been replaced by ones but at the i th and j th positions) is the bivariate copula corresponding to the pair a, so that $C_{a}\left(F_{\mu_{i}}\left(x_{i}\right), F_{\mu_{j}}\left(x_{j}\right) ; \rho\right)=F_{a}\left(x_{i}, x_{j} ; \theta\right)$, where here $F_{a}(\cdot, \cdot ; \theta)$ denotes the bivariate distribution function corresponding to the pair a. Randomization of the pairwise likelihood pushes further the computational gain because not all of the $n d(d-1) / 2$ bivariate probability mass functions need to be evaluated and because tractable approximate confidence intervals can be calculated when π_{n} is small.

Recall that Assumption 2 is critical to the success of pairwise likelihood methods. It is satisfied if the conditions in Proposition 7 hold.

Proposition 7. Suppose that the univariate distribution function families $\left\{F_{i}\left(\cdot ; \mu_{i}\right), \mu_{i} \in\right.$ $\left.\Theta_{i} \subset \mathbf{R}^{m_{i}}\right\}, i=1, \ldots, d$, are identifiable. If, for every $a \in \mathcal{A}$, there is a function w_{a} on $\Theta^{c o p}$ into some Euclidean space and a family of bivariate copulas $\left\{\tilde{C}_{a}(\cdot, \cdot ; \varrho), \varrho \in\right.$ range $\left.w_{a}\right\}$ such that (i) the family $\left\{\tilde{C}_{a}(\cdot, \cdot ; \varrho), \varrho \in \operatorname{range} w_{a}\right\}$ is identifiable (ii) the copulas $\tilde{C}_{a}\left(\cdot, \cdot ; w_{a}(\rho)\right)=$ $C_{a}(\cdot, \cdot ; \rho)$ coincide for all $\rho \in \Theta^{\text {cop }}$, and (iii) the mapping $W(\rho):=\left(w_{a}(\rho)\right)_{a \in \mathcal{A}}$ is one-to-one, then Assumption 2 holds.

The conditions in Proposition 7 are verifiable for at least some classes of models. For models based on the Gaussian copula, that is,

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{d} ; \rho\right)=\Phi_{d}\left(\Phi_{1}^{-1}\left(u_{1}\right), \ldots, \Phi_{1}^{-1}\left(u_{d}\right) ; R(\rho)\right), \quad u_{1}, \ldots, u_{d} \in(0,1) \tag{5}
\end{equation*}
$$

where $\Phi_{d}(\bullet ; R(\rho))$ is the distribution function of a standard d-variate Gaussian distribution with correlation matrix $R(\rho)$, it all depends on the structure of the correlation matrix. Simple suitable structures are given in Examples 1 and 2.

Example 1. Let C be the Gaussian copula (5) with correlation matrix $R(\rho)$, where $R(\rho)$ has $1 s$ on its diagonal and ρ elsewhere, $\rho \in(-1 /(d-1), 1)=: \Theta^{c o p}$. Put $w_{a}(\rho)=\rho$ so that range $w_{a}=(-1 /(d-1), 1)$. The mapping W is one-to-one. Set $\tilde{C}_{a}(\cdot, \cdot ; \varrho)$ to be a bivariate Gaussian copula with correlation $\varrho \in(-1 /(d-1), 1)$. Then clearly the family $\left\{\tilde{C}_{a}(\cdot, \cdot ; \varrho), \varrho \in(-1 /(d-1), 1)\right\}$ is identifiable and the copulas $\tilde{C}_{a}\left(\cdot, \cdot ; w_{a}(\rho)\right)$ and $C_{a}(\cdot, \cdot ; \rho)$ coincide for all $\rho \in \Theta^{\text {cop }}$. (Remember that C_{a} is the marginal of C corresponding to the pair a.)

Example 2. Let C be the Gaussian copula (5) with correlation matrix $R(\rho)$, where $R(\rho)$ has $1 s$ on its diagonal and $\rho_{i j}$ at its ith row and j th column, with $\rho=\left(\rho_{12}, \ldots, \rho_{d-1, d}\right) \in$ $(-1,1)^{d(d-1) / 2}$ such that $R(\rho)$ is nonnegative definite. Let $\Theta^{\text {cop }}$ be this space. If $a=\{i, j\}$ then put $w_{a}(\rho)=\rho_{i j}$ so that range $w_{a} \subset(-1,1)$. Let $\tilde{C}_{a}(\cdot, \cdot ; \varrho)$ be the bivariate Gaussian copula with correlation $\varrho \in(-1,1)$. The family $\left\{\tilde{C}_{a}(\cdot, \cdot ; \varrho)\right\}$ indexed by $(-1,1)$ is identifiable and hence so is this family restricted to range w_{a}. Moreover, $\tilde{C}_{a}\left(\cdot, \cdot ; \rho_{i j}\right)=C_{a}\left(\cdot, \cdot ; \rho_{i j}\right)$ for all $\rho_{i j} \in$ range w_{a}. The mapping W is one-to-one.

6 Numerical illustrations

In both Section 6.1 and Section 6.2, 500 synthetic datasets of size n and dimension d are generated from a Gaussian copula and unit Poisson marginals. We used the copula R package (Yan, 2007). In Section 6.1, $n \in\{100,500,1000\}$ and $d=30$. In Section 6.2, $n \in\{500,1000,5000\}, d=3$ or $d=10$. A complementary set of simulations for the Gaussian exchangeable case can be found in Section A. 1 in the Supplementary Material.

6.1 Effect of the sampling parameter on the estimator's perfomance and computational gains

We investigated the trade-off between efficiency and computational time for the randomized pairwise likelihood approach with $d=30$. We considered two different cases: (1) a blockwise exchangeable correlation structure (for three blocks of dimension 10), corresponding to a total of 6 distinct copula parameters; and (2) a factorized correlation structure, where the element at the i th row and j th column of the copula correlation matrix $R(\rho)$ is given by $R(\rho)_{i j}=\rho_{i} \rho_{j}, \rho=\left(\rho_{1}, \ldots, \rho_{d}\right)$, corresponding to a total of 30 distinct cop-
ula parameters. For the blockwise exchangeable case, true copula parameters were set to $\rho=(0.75,0.5,0.25,0.75,0.5,0.75)$ in lexicographical order. For the one-factor case, ρ was set to 30 equally spaced values between 0.1 and 0.9 . Mean parameters were initialized using marginal means. Copula parameters for the blockwise exchangeable and one-factor simulations were respectively initialized using blockwise-averaged Pearson correlations or by optimizing the factorized correlations $\rho_{i} \rho_{j}$ by minimizing the Euclidean distance to the Pearson correlation matrix. The randomized pairwise likelihood was applied with $\pi \in\{0.1,0.3,0.5\}$.

Results for efficiency and computational time of the randomized pairwise likelihood in the one-factor setting is shown in Figure 2. We remark that estimates are unbiased for all values of n and π. The increase in variance as π decreases is not visible in the boxplots, but it does exist and agrees with theoretical predictions, see Figure 2B. It is accompanied by a decrease of computational time. We also computed the average absolute relative error for the mean parameters and the factorized correlations in Supplementary Figure S7: it increases as π and n decreases, although we note a greater impact in the effect of increasing n as compared to increasing π. Results for the blockwise exchangeable setting are shown in Supplementary Figure S8.

6.2 Coverage for the confidence intervals

We next sought to evaluate the asymptotic coverage of the confidence intervals constructed for the MRPLE for multivariate count data. For the $d=3$ case, unstructured copula parameters were given by $\rho_{12}=0.3, \rho_{13}=0.2$ and $\rho_{23}=0$. For the $d=10$ case, we used a factorized correlation structure with values set as in the previous section. To apply the randomized pairwise likelihood estimation procedure, we first initialized parameter

Figure 2: Performance of the randomized pairwise likelihood in the one-factor multivariate Poisson simulations with $d=30$ over 500 replications. (A) boxplot of the averaged centered estimates for the marginal parameters (left) and the copula parameters (middle), and the corresponding computational times in seconds (right). (B) Averaged variance estimates across parameters (points) for different values of π. The solid line connecting the points corresponds to the theoretical prediction for $\pi=0.1,0.3$ knowing the variance at $\pi=$ 0.5 . The dotted line corresponds to the theoretical prediction under the assumption of a homogeneous inflation factor, knowing the variance at $\pi=0.5$.
values using the marginal means of each variable and the Pearson correlation of each pair of variables. Finally, we maximized the randomized pairwise likelihood with sampling parameter $\pi \in[0.01,0.90]$. Confidence intervals of level 95% based on the approximation
$S^{-1} /(n \pi)$ suggested by Theorem 3 were calculated for each parameter and each dataset. (Estimates of S were obtained as in Appendix D.) Coverage of the confidence intervals was computed as the proportion of replications for which the true parameter values were within the 95% confidence intervals. Results, corresponding to the mean coverage for the marginal and copula parameters, are presented in Figure 3.

In Figures 3A, C and D, the coverage gets closer to its 95% target as π decreases, agreeing with asymptotic theory. Then, for $n=500$ and $n=1000$, the coverage drops at $\pi=0.01$. For such a small π, the product $n \pi$, equal to 5 and 10 respectively, is too small for any inference to be reliable. For $n=5000$, corresponding to $n \pi=50$, there is no drop at $\pi=0.01$.

In Figure 3B, a different pattern appears. Coverage performance is best for moderate to large values of π, seemingly contradicting the theory saying that for $S^{-1} /(n \pi)$ to be a good approximation of the MRPLE's variance $S^{-1} C S^{-1} / n+S^{-1} /(n \pi), \pi$ must be small enough. A possible explanation for this seeming contradiction is that the term $S^{-1} C S^{-1}$ may be negligible with respect to S^{-1}. In this case $S^{-1} /(n \pi)$ is always a good approximation, whatever the value of π. The coverage performance degrades as π approaches zero, plausibly because "the effective sample size" $n \pi$ gets too small.

7 Application on transcriptomic data

We illustrate the application of the randomized pairwise likelihood procedure on multivariate count data from a study on the remodeling of the transcriptome over the life cycle of Varroa destructor, a parasitic mite that represents a significant threat to the western honeybee. Full details about the experimental design and pre-processing of RNA sequencing

Figure 3: Coverage results for $d=3$ marginal (A) and copula (B) parameters, and coverage results for $d=10$ marginal (C) and copula (D) parameters.
(RNA-seq) data may be found in Mondet et al. (2018). Our goal is to evaluate overall transcriptome-wide correlations among different Varroa life stages from a single colony (R204) based on RNA-seq read counts for $n=22,372$ contigs in $d=10$ life cycle groups. In RNA-seq data, counts of expression are strongly positively associated with both the sequencing effort of each RNA sample (Robinson and Oshlack, 2010) and gene length; an offset accounting for these two factors are included in a Poisson generalized linear model

Figure 4: Clustered heatmap of the estimated copula parameters and per-sample intercepts (log-scale) for the Varroa life cycle transcriptome data, using the randomized pairwise likelihood $(\pi=0.01)$ approach. Categorizations of life cycle groups according to reproductive status are included as a column annotation.
(GLM) defined for the marginal distributions of each sample. To model the dependencies among life stages, these Poisson marginals were coupled with an unstructured Gaussian copula. Poisson GLM intercepts and Gaussian copula correlations were respectively initialized using marginal estimates and pairwise Pearson correlations, and the Nelder-Mead algorithm was used for optimization.

The randomized pairwise likelihood method was applied with $\pi=0.01$, corresponding to $n \pi=224$ and standard errors of order less than 10^{-4}. (The matrix S was estimated
from the data as in Appendix D.) Standard errors for all the parameter estimates are given in Table S2. We evaluated the choice of $\pi=0.01$ with the heuristic proposed in Section 3.4 and five independent simulated datasets generated using the initial values of $\theta^{(0)}$. Corresponding p-values for the hypothesis test of unit variance for a normal distribution ($0.13,0.18,0.25,0.36,0.70$) suggested that the choice of $\pi=0.01$ is reasonable here given the sample size. A significant gain in computational time was observed: the maximization of the randomized pairwise likelihood with $\pi=0.01$ took 25 minutes, compared with 8.5 hours for the standard pairwise likelihood.

Figure 4 provides a visualization of the estimated copula parameters between life cycle groups and marginal Poisson GLM intercepts based on the full dataset. We note a strong separation between the pre-reproductive/reproductive (phoretic, arresting, pre-laying, laying) versus post-reproductive (post-laying, emerging) phases. Non-reproductive females are clustered with reproductive females, supporting the hypothesis that mechanisms underlying reproductive failure occur before oogenesis in Varroa (Mondet et al., 2018). Lab-reared mites clustered with post-reproductive colony-collected females, suggesting that laboratory conditions do not provoke significant changes in the Varroa transcriptome. Two stages in particular exhibit distinct transcriptomic profiles as compared to the others: males (for which the largest estimated copula correlation of 0.56 is with post-lay females), and young mites, which are known to be characterized by a markedly immature physiology. Finally, the intercepts estimated for each marginal Poisson GLM provide intuition about the global over- or under-expression observed in each sample; the transcriptome appears to be most up-regulated in the transitions to (arrest and pre-lay) and from (post-lay) the reproductive stages.

In practice, transcriptome-wide analyses of RNA-seq data typically rely on the use of
variance stabilizing transformations (e.g., log) before using exploratory methods such as principal components analysis, hierarchical clustering, or pairwise Pearson correlations; in this application, we have instead explicitly modelled the multivariate count nature of these transcriptome data via Poisson GLMs with appropriate offsets and a Gaussian copula to model the dependency structure among life stages.

8 Conclusions

The computational burden of pairwise likelihood methods can be reduced by randomization. Not only is the objective function easier to compute, but it also leads to easier computation of the confidence intervals, provided that the sampling parameter π is small enough and we have enough data. The proposed method, implemented in the rpl R package, opens the door to designing affordable inference procedures in complex models such as copula-based models for count data or latent variable models as alternatives to variational methods.

There is a downside to randomization, however. Since less data is used, the estimator's asymptotic variance increases. In some contexts the standard errors may still be small enough (as in Section 7), but in others they may not. In the latter case, an avenue for future research consists of optimizing several randomized pairwise likelihood in parallel and averaging the results. We expect the final estimator to be more efficient, see also Hector and Song (2020).

In the future, beyond the aforementioned points one could consider other sampling schemes to exploit known information about the data (such as temporal or spatial autocorrelation) or impose structural or sparsity constraints. For example, one could define a threshold on the number of pairs sampled per observation or impose restrictions on the
parameters-for instance, common correlations for some pairs. In addition, one could also consider alternative estimation strategies such as maximization by parts to split the full maximization problem into smaller ones.

SUPPLEMENTARY MATERIAL

Pdf file containing an additional simulation study, proofs and supplementary figures.

Acknowledgements

We thank reviewers and editors for valuable comments that helped to improve this work. We thank Mahendra Mariadassou for detailed comments on a first version of this manuscript and the Migale team of MaIAGE, INRAE, and Centre de Traitement de l'Information Génétique (CTIG) of the INRAE Animal Genetics department for providing us with computing clusters. This work was supported by the INRAE DIGIT-BIO metaprogramme grant DINAMIC.

References

Bai, Y., J. Kang, and P. X.-K. Song (2014). Efficient pairwise composite likelihood estimation for spatial-clustered data. Biometrics 70(3), 661-670.

Bai, Y., P. X.-K. Song, and T. Raghunathan (2012). Joint composite estimating functions in spatiotemporal models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) $74(5)$, 799-824.

Berkhout, P. and E. Plug (2004). A bivariate Poisson count data model using conditional probabilities. Statistica Neerlandica 58(3), 349-364.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society: Series D (The Statistician) 24(3), 179-195.

Bevilacqua, M., C. Gaetan, J. Mateu, and E. Porcu (2012). Estimating space and spacetime covariance functions for large data sets: a weighted composite likelihood approach. Journal of the American Statistical Association 107(497), 268-280.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association 112(518), 859-877.

Chatelain, F., S. Lambert-Lacroix, and J.-Y. Tourneret (2009). Pairwise likelihood estimation for multivariate mixed Poisson models generated by gamma intensities. Statistics and Computing 19(3), 283-301.

Chiquet, J., M. Mariadassou, and S. Robin (2018). Variational inference for probabilistic Poisson PCA. The Annals of Applied Statistics 12(4), 2674-2698.

Chiquet, J., S. Robin, and M. Mariadassou (2019). Variational inference for sparse network reconstruction from count data. In Proceedings of the 36th International Conference on Machine Learning, Volume 97, pp. 1162-1171.

Cox, D. and N. Reid (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika 91 (3), 729-737.

Dillon, J. V. and G. Lebanon (2010). Stochastic composite likelihood. Journal of Machine Learning Research 11, 2597-2633.

Eidsvik, J., B. A. Shaby, B. J. Reich, M. Wheeler, and J. Niemi (2014). Estimation and prediction in spatial models with block composite likelihoods. Journal of Computational and Graphical Statistics 23(2), 295-315.

Ferrari, D., G. Qian, and T. Hunter (2016). Parsimonious and efficient likelihood composition by Gibbs sampling. Journal of Computational and Graphical Statistics 25(3), 935-953.

Heagerty, P. J. and S. R. Lele (1998). A composite likelihood approach to binary spatial data. Journal of the American Statistical Association 93(443), 1099-1111.

Hector, E. C. and P. X.-K. Song (2020). A distributed and integrated method of moments for high-dimensional correlated data analysis. Journal of the American Statistical Association 116(534), 805-818.

Huang, Z. and D. Ferrari (2021). Fast construction of optimal composite likelihoods. Preprint (arXiv:2106.05219).

Joe, H. and Y. Lee (2009). On weighting of bivariate margins in pairwise likelihood. Journal of Multivariate Analysis 100(4), 670-685.

Karlis, D. and L. Meligkotsidou (2005). Multivariate Poisson regression with covariance structure. Statistics and Computing 15(4), 255-265.

Karlis, D. and L. Meligkotsidou (2007). Finite multivariate Poisson mixtures with applications. Journal of Statistical Planning and Inference 137, 1942-1960.

Kuk, A. Y. and D. J. Nott (2000). A pairwise likelihood approach to analyzing correlated binary data. Statistics \& Probability Letters 47(4), 329-335.
le Cessie, S. and J. Van Houwelingen (1994). Logistic regression for correlated binary data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 43(1), 95-108.

Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics 80 (1), 221-239.

Lindsay, B. G., G. Y. Yi, and J. Sun (2011). Issues and strategies in the selection of composite likelihoods. Statistica Sinica 21(1), 71-105.

Molenberghs, G., M. G. Kenward, G. Verbeke, and T. Birhanu (2011). Pseudo-likelihood estimation for incomplete data. Statistica Sinica 21(1), 187-206.

Mondet, F., A. Rau, C. Klopp, M. Rohmer, D. Severac, Y. Le Conte, and C. Alaux (2018). Transcriptome profiling of the honeybee parasite varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics 19 (328).

Nelsen, R. (2006). An introduction to copulas. Springer.
Nikoloulopoulos, A. K. (2013). Copula-based models for multivariate discrete response data. In Copulae in Mathematical and Quantitative Finance, pp. 231-249. Springer.

Nott, D. J. and T. Rydén (1999). Pairwise likelihood methods for inference in image models. Biometrika 86(3), 661-676.

Panagiotelis, A., C. Czado, and H. Joe (2012). Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association 107(499), 1063-1072.

Papageorgiou, I. and I. Moustaki (2019). Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables. Statistics and Computing 29, 351-365.

Robinson, M. and A. Oshlack (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11 (R25).

Rubin, D. B. (1976, December). Inference and missing data. Biometrika $63(3), 581-592$.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de Statistique de L'Université de Paris 8, 229-231.

Stein, M. L., Z. Chi, and L. J. Welty (2004). Approximating likelihoods for large spatial data sets. Journal of the Royal Statistical Society: Series B 66(2), 275-296.

Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. Statistica Sinica 21(1), 5-42.

Varin, C. and P. Vidoni (2005). A note on composite likelihood inference and model selection. Biometrika 92(3), 519-528.

Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society: Series B (Methodological) 50(2), 297-312.

Wang, X. and Y. Wu (2014). Theoretical properties of composite likelihoods. Open Journal of Statistics 4, 188-197.

Yan, J. (2007). Enjoy the joy of copulas: With a package copula. Journal of Statistical Software 21(4), 1-21.

Zhao, Y. and H. Joe (2005). Composite likelihood estimation in multivariate data analysis. Canadian Journal of Statistics 33(3), 335-356.

