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Abstract

Pairwise likelihood methods are commonly used for inference in parametric sta-
tistical models in cases where the full likelihood is too complex to be used, such
as multivariate count data. Although pairwise likelihood methods represent a use-
ful solution to perform inference for intractable likelihoods, several computational
challenges remain. The pairwise likelihood function still requires the computation
of a sum over all pairs of variables and all observations, which may be prohibitive
in high dimensions. Moreover, it may be difficult to calculate confidence intervals
of the resulting estimators, as they involve summing all pairs of pairs and all of
the four-dimensional marginals. To alleviate these issues, we consider a randomized
pairwise likelihood approach, where only summands randomly sampled across ob-
servations and pairs are used for the estimation. In addition to the usual tradeoff
between statistical and computational efficiency, it is shown that, under a condition
on the sampling parameter, this two-way random sampling mechanism makes the
individual bivariate likelihood scores become asymptotically independent, allowing
more computationally efficient confidence intervals to be constructed. The proposed
approach is illustrated in tandem with copula-based models for multivariate count
data in simulations, and in real data from a transcriptome study.

Keywords: composite likelihood; randomization; confidence intervals; mutivariate count
data; computational challenges
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1 Introduction

Multivariate models are valuable to explore and estimate interrelationships among variables

in large and complex datasets, such as high-throughput count data collected in molecular bi-

ology. However, the corresponding likelihoods are often complex, costly to evaluate, or even

intractable. Instead of the full likelihood, one can maximize a composite likelihood (Lind-

say, 1988), which is a product of lower-dimensional likelihoods. If bivariate marginals are

used then the composite likelihood is called the pairwise likelihood. In many models, the

retained information is sufficient to estimate the parameters of interest, although at the

expense of a loss of efficiency of the resulting estimator, which is nonetheless guaranteed

to be asymptotically normal under mild conditions (Varin et al., 2011; Varin and Vidoni,

2005). We note that variational methods do not have this guarantee in general (Blei et al.,

2017).

Pairwise likelihood methods have been successfully used in many applications (Varin

et al., 2011). Many variants have been derived to accommodate specific models, data or

tasks, notably for multivariate binary data (le Cessie and Van Houwelingen, 1994; Kuk

and Nott, 2000), as well as spatial and image data. An early approach for spatial models

used conditionally specified likelihoods for spatial image data (Besag, 1975). More recently,

pairwise likelihoods were used for binary or indicator data in space (Heagerty and Lele,

1998), for spatial-clustered data (Bai et al., 2014), and with random field models for image

data (Nott and Rydén, 1999). Several authors have further proposed ways to improve

the efficiency of composite likelihood methods (Ferrari et al., 2016), primarily by adding

weights to the component likelihoods (see, e.g. Joe and Lee, 2009). It appears, however,

that finding and estimating the optimal weights in general is a very difficult problem which

may not have a solution (Lindsay et al., 2011). In the following, we shall focus on the

2



pairwise likelihood, the most popular version of composite likelihoods.

In high dimensions, applying the pairwise likelihood method may be cumbersome. With

d variables, the number of pairs is of order d2. To get confidence intervals, one needs to com-

pute a double sum over pairs of pairs of order d4 and all of the four-dimensional marginals.

To address these computational issues, several research directions have been proposed. For

instance, instead of taking all of the pairs, one can consider a small subset (Huang and

Ferrari, 2021; Papageorgiou and Moustaki, 2019), although selecting a good subset is a dif-

ficult problem. For spatial data, a simple approximation to the likelihood can be obtained

by using only sufficiently close points (Vecchia, 1988), although such an approach can be

improved by also considering some distant pairs (Stein et al., 2004) or using a spatial block-

ing strategy (Eidsvik et al., 2014). In the case of spatiotemporal data, Bai et al. (2012)

proposed selecting pairs representing spatial, temporal and spatiotemporal effects, while

Bevilacqua et al. (2012) proposed a weighted approach with a corresponding information

criteria for model selection. In Huang and Ferrari (2021), pair selection was performed

by regularization to identify informative pairs of variables. However, like all methods that

select a subset of pairs, some of them are necessarily dropped. This implicitly assumes that

all model parameters can be estimated from only a subset of pairs. In the context of con-

ditional random fields, a stochastic combination of low-dimensional conditional likelihoods

was proposed in Dillon and Lebanon (2010).

To alleviate the computational issues of the pairwise likelihood method, we consider

a randomized pairwise likelihood approach. Only summands randomly sampled across

observations and pairs are used for the estimation of the parameters. One draws, for each

sample size n, i.i.d. Bernoulli weights W
(a)
ni , i = 1, . . . , n, a ∈ {{1, 2}, . . . , {d− 1, d}}, with

parameter πn; all summands for which W
(a)
ni = 0 are discarded. A fundamental point is
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that we allow the sampling parameter πn to decrease with n. The sampling parameter

controls the tradeoff between the computational complexity and the statistical efficiency.

An intuitive way to see this is to notice that the average number of summands needed to

compute the randomized pairwise likelihood is equal to nπnd(d − 1)/2. However, there is

an additional reason why πn permits a reduction of the computational cost. By letting

πn → 0, the bivariate log density gradients become asymptotically independent, leading to

the disappearance of the term of computational complexity d4 in the estimator’s asymptotic

variance. In practice, this suggests that one may be able to approximate confidence intervals

at a much lower cost than in the standard pairwise likelihood method.

The remainder of the paper proceeds as follows: Section 2 reviews the pairwise likelihood

method. Section 3 introduces the randomized pairwise likelihood method. Section 4 focuses

on the exchangeable Gaussian model, for which explicit calculations are possible. Section 5

applies the randomized pairwise likelihood to copula models. Section 6 presents simulation

experiments for multivariate count data. Section 7 presents an application to transcriptome

data. Concluding remarks may be found in Section 8. The proofs and additional simulations

can be found in the Supplementary Material.

2 Maximum pairwise likelihood inference

Pairwise likelihood methods replace the full likelihood by a product of marginal likelihoods

and hence permit the estimation of the unknown parameters without the need to specify

the complete joint density (or probability mass) function of the model. The theory is

presented in a rigorous way in Section 2.1. In particular, the conditions for consistency,

that is, the ability to estimate the full distribution from its bivariate marginals alone, are
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made explicit. Computational problems are discussed in more detail in Section 2.2.

2.1 Definition, assumptions and asymptotic properties

Let Xi := (Xi1, . . . , Xid), i = 1, . . . , n, be independent random vectors with a common

density f0 with respect to some “base measure”—typically the Lebesgue measure or the

counting measure—on the Euclidean space Rd. The density f0 is assumed to be square

integrable and lie in an identifiable parametric family {f(•; θ), θ = (θ1, . . . , θq) ∈ Θ} for

some open subset Θ of Rq. Let θ0 denote the element of Θ such that f0(•) = f(•; θ0). Let

A be the set of all pairs of variables. Its cardinal is d(d− 1)/2. The pairs in A are ordered

in the lexicographical order. Denote by fa(·, ·; θ) the marginal density corresponding to

the pair a and write `a(·, ·; θ) for log fa(·, ·; θ). Whenever it exists, denote by ˙̀
a(·, ·; θ) the

gradient of `a(·, ·; θ) with respect to θ. Whenever a function is encountered with a bullet

symbol, it means that the argument it replaces is a vector with three components or more.

Otherwise, there are as many dot symbols as there are components. If a = {j, j′} is a pair

then (Xij, Xij′) is also denoted by X
(a)
i .

The pairwise log-likelihood function is given by

LPL
n (θ) =

1

n

∑
a∈A

n∑
i=1

`a(X
(a)
i ; θ), θ ∈ Θ. (1)

The population version of the pairwise log-likelihood function is
∑

a La(θ), where La(θ)

stands for E `a(X
(a)
1 ; θ). As usual, the goal is to estimate the maximizer of the population

pairwise log-likelihood by maximizing the pairwise log-likelihood function. From the view-

point of M-estimation theory, the population pairwise likelihood is the objective criterion

function, the maximizer of which is the parameter of interest. In this case the objec-
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tive criterion is the sum of “bivariate” Kullback-Leibler information criteria. Maximizing

the pairwise likelihood function can also be seen as minimizing the full Kullback-Leibler

information under some information constraints (Wang and Wu, 2014).

We call the maximum pairwise likelihood estimator (MPLE) every element θ̂MPL
n of Θ

that satisfies LPL
n (θ̂MPL

n ) ≥ LPL
n (θ) for all θ in some compact subset of Θ. Maximization over

compact subsets ensures the existence of MPLEs under minimal smoothness assumptions.

Whenever we refer to MPLEs, it is implicitly understood that the compact subset over

which θ is estimated contains θ0.

Assumption 1. The first, second and third derivatives of `a(X
(a)
1 ; θ) with respect to the

components of θ exist and are square integrable. Moreover, there exist square integrable

functions Ψa, a ∈ A, such that sup
θ∈Θ
|∂3`a(X

(a)
1 ; θ)/(∂θi1∂θi2∂θi3)| ≤ Ψa(X

(a)
1 ), for all 1 ≤

i1 ≤ i2 ≤ i3 ≤ q. Finally, if ma stands for the base measure of which fa(·, ·; θ) is the density

then
∫
fa(·, ·; θ) dma and

∫
(∂/∂θi1)fa(·, ·; θ) dma can be differentiated under the integral sign.

Assumption 1 is standard. It is mild enough to encompass many models and yet enable

simple proofs. Under Assumption 1, the pairwise log-likelihood function is differentiable

and hence MPLEs always exist. Assumption 1 could be weakened but at the expense of

much more complicated proofs, and thus we keep this assumption.

When d = 2, MPLEs and maximum likelihood estimators coincide. In this case, As-

sumption 1 suffices to get the consistency and the asymptotic normality of these estimators.

In general, however, we cannot expect MPLEs to be consistent without further assump-

tions, because a family of multivariate distributions cannot always be described by its pairs.

There is, therefore, no reason for the map θ 7→
∑

a La(θ) to admit a unique maximizer,

and we need to impose this as a condition.
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Assumption 2. The maximizer of θ 7→
∑

a La(θ) is unique.

It is easy to see that each La is maximized at θ0 and hence so is the mapping
∑

a La(θ).

Thus, we deduce from Assumption 2 that θ0 is the only maximizer of
∑

a La(θ).

Remark 1. Even if θ0 is the only maximizer of
∑

a La(θ), it does not mean that θ0 is

the only maximizer of La. Let d = 3 and let (X11, X12, X13) be a Gaussian random vector

with mean µ01, µ02, µ03, variances equal to one and correlation parameter ρ0, so that θ0 =

(µ01, µ02, µ03, ρ0). Then not only is L12 maximized at θ0, but also at (µ01, µ02, µ, ρ0) for any

µ.

Assumption 2 is critical to ensure the consistency of pairwise likelihood methods. Suf-

ficient conditions can be found in Proposition 1 below.

Proposition 1. If, for every a ∈ A, there is a function va on Θ into a Euclidean space

and a family of bivariate densities {f̃a(·, ·;ϑa), ϑa ∈ range va} such that (i) the family

{f̃a(·, ·;ϑa), ϑa ∈ range va} is identifiable (ii) the distributions f̃a(·, ·; va(θ)) = fa(·, ·; θ) co-

incide for all θ, and (iii) the mapping V (θ) := (va(θ))a∈A is one-to-one, then Assumption 2

holds.

These conditions will be useful to check Assumption 2 for the copula models of Section 5.

Assumptions 1 and 2 together imply that the MPLE is asymptotically normal, that

is, we have that
√
n(θ̂MPL

n − θ0) converges in distribution to a centered Gaussian random

vector with some variance-covariance matrix, called the asymptotic variance-covariance

matrix—or simply the asymptotic variance—of the estimator, given by S−1(C + S)S−1 =

S−1CS−1 + S−1, where S =
∑

a∈A E ˙̀
a

˙̀>
a , and C =

∑
a6=b∈A E ˙̀

a
˙̀>
b is the between-scores

correlation matrix. Here E ˙̀
a

˙̀>
b is a shorthand for E ˙̀

a(X
(a)
1 ; θ0) ˙̀

b(X
(b)
1 ; θ0)>. This result is
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standard and known since at least Lindsay (1988) but, as it turns out, it is difficult to find

in the literature precise conditions under which this result is true.

To improve efficiency, weights could be added to the pairwise log-likelihood (Lindsay,

1988; Joe and Lee, 2009; Lindsay et al., 2011), leading to the maximization of

LWPL
n (θ) =

1

n

∑
a∈A

wa

n∑
i=1

`a(X
(a)
i ; θ), (2)

for some weights wa ≥ 0. In this case, Assumption 2 must be changed to “The maximizer

of θ 7→
∑

awaLa(θ) is unique” and Proposition 1 still holds.

The problem of choosing the optimal weights is difficult. In the one-dimensional case,

that is, when the parameter is a scalar, a formula for the optimal weights exists but it

requires the computation of the between-scores correlation matrix C. This can be com-

putationally challenging, as we shall see next. In the more realistic multivariate case,

according to Lindsay (1988), a solution may not exist, and if it existed it would be difficult

to compute.

2.2 Computational issues in higher dimensions

When the number of variables is large, the pairwise likelihood method may be burdensome

to apply. Indeed, the computation of the pairwise log-likelihood requires up to O(nd2)

evaluations of a potentially complex function. Perhaps less apparent but not less important

in applications is the computation of confidence intervals for the parameters. These are

also difficult to get because the between-scores correlation matrix C is a double sum over

pairs of order up to O(d4). Moreover, computing confidence intervals requires dealing with

distributions in four dimensions, which were assumed to be quite complex in the first place.
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To reduce the computational burden, a natural approach consists of choosing a small

subset of pairs and computing the pairwise log-likelihood based on that subset alone. This

method can be seen as a particular case of the weighted pairwise likelihood method, in

which some weights are set to zero and the others equal to one. The performance of the

estimator depends on the chosen subset. Choosing a good subset is a difficult problem.

(See the Introduction for some references.) Moreover, it should be noted that subset

selection methods are not always applicable. Removing a pair can invalidate the method,

as the conditions for consistency are no longer met. As an example, consider a trivariate

Gaussian distribution with three free correlation parameters. Removing any pair leads to

the impossibility of estimating the corresponding correlation parameter.

3 The randomized pairwise likelihood method

We introduce a new estimator of θ0 based on a randomized version of the pairwise log-

likelihood function and thus cheaper to compute. Interestingly, confidence intervals can be

computed with no more than O(d2) computations.

3.1 Definition and first results

The randomized pairwise likelihood method consists of taking at random only some of the

pairs a and observations i in (1) to carry out the summation. Formally, the randomized

pairwise log-likelihood function is defined as

LRPL
n (θ) =

1

nπn

n∑
i=1

∑
a∈A

W
(a)
ni `a(X

(a)
i ; θ), (3)
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where, for each n, W
(a)
ni , i = 1, . . . , n, a ∈ A, are independent Bernoulli random variables

with parameter 0 < πn ≤ 1. They are assumed to be independent of X1, . . . , Xn. The

unknown parameter θ0 = (θ01, . . . , θ0q) is estimated by maximizing the function in (3). In

practice, one first draws the Bernoulli weights, which allows certain terms to be excluded

from the pairwise log-likelihood function, and then maximizes the sum of the remaining

terms. If πn = 1 then Pr(W
(a)
ni = 1) = 1 and hence the functions (3) and (1) coincide.

Definition 1. Every element θ̂MRPL
n of Θ that satisfies LRPL

n (θ̂MRPL
n ) ≥ LRPL

n (θ) for all θ

in some compact subset of Θ is called a maximum randomized pairwise likelihood estimator

(MRPLE).

As before, it is implicitly understood that the compact subset has been taken large

enough to contain θ0. The parameter πn controls the computational cost. For clarity,

suppose that A is the set of all pairs. Since there are n observations and d(d − 1)/2

pairs, the expected number of terms in the randomized pairwise log-likelihood function is

nd(d− 1)πn/2. For instance, if πn = 1/6, d = 3 and n = 10000 then one needs to sum 5000

terms on average to compute the randomized pairwise likelihood, and 30000 to compute

the standard pairwise likelihood method.

The difference between the criterion functions (2) and (3) is that in the former, the

weights do not depend on i and, hence, when a pair is dropped out, one removes all of the

observations corresponding to it. With the randomized pairwise log-likelihood function, at

least some partial observations will be included for any given pair and hence all parameters

can be estimated, even in unstructured models. The probability that all pairs pick out at

least one observation is [1 − (1 − πn)n]d(d−1)/2. For instance, with πn = 9/10, n = 50 and

d = 10, this probability is about 0.793; with n = 100 it is already 0.999.

We now turn to asymptotic properties. In general we let the parameter πn vary with
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n. (The reason will be explained later.) For the time being, however, suppose that πn is

equal to some π ∈ (0, 1] for all n.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Assume that πn is a constant se-

quence, that is, πn = π ∈ (0, 1] for all n. If θ̂MRPL
n is a MRPLE such that LRPL

n (θ̂MRPL
n ) ≥

LRPL
n (θ) for all θ ∈ Λ, where Λ is a compact subset of Θ and θ0 is an interior point of Λ,

then
√
n
(
θ̂MRPL
n − θ0

)
converges in distribution to a Gaussian random vector with mean

zero and variance-covariance matrix S−1CS−1 + π−1S−1.

Remark 2. Without the last sentence of Assumption 1, asymptotic normality still holds

but with a different variance-covariance matrix.

Theorem 1 implies θ̂MRPL
n → θ0 in probability. Choosing π = 1 allows us to recover the

results of Section 2.

Remark 3. If, in formula (3), the weights W
(a)
ni were not chosen randomly but according to

availability of the data—that is, zero if the data are missing and one otherwise—then it was

shown in Molenberghs et al. (2011) that, under the “Missing Completely At Random” (aka

MCAR) framework (Rubin, 1976), the gradient of the expectation of (3) would be equal to

zero and hence consistent inference should result under appropriate conditions.

3.2 Statistical versus computational efficiency

The randomized pairwise likelihood method sacrifices statistical efficiency (measured by

asymptotic variance) for computational efficiency (measured by the expected number of

times the function `a(X
(a)
i ; θ) needs to be evaluated to compute the randomized pairwise

log-likelihood). If one chooses, say, π = 1/k, k ≥ 1, then the expected number of needed
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evaluations will be divided by k, and hence the maximization of the randomized pairwise

log-likelihood, and thus the computation of the estimate θ̂MRPL
n will be greatly facilitated.

The price to pay, however, is that the asymptotic variance-covariance matrix of the

estimator will be multiplied by some inflation factor. To emphasize the dependence on

π, denote temporarily by θ̂MRPL
n (π) the MRPLE based on π. For simplicity, assume that

θ̂MRPL
n (π) is a scalar and denote by V (π) its asymptotic variance. The factor by which the

MRPLE’s asymptotic variance will be multiplied, should one consider θ̂MRPL
n (π′) instead

of θ̂MRPL
n (π), is refered to as the inflation factor from π to π′. By definition, the inflation

factor is given by

IF(π′|π) :=
V (π′)

V (π)
=

πS−1CS−1

πS−1CS−1 + S−1
+

S−1

πS−1CS−1 + S−1

π

π′
.

For instance, if one sets π′ = π/k, k > 1, thus dividing the number of evaluations by k,

then the asymptotic variance of the estimator will be multiplied by IF(k−1π|π).

We say that the inflation factor is subhomogeneous of order -1, or simply subhomo-

geneous, if IF(k−1π|π) ≤ k IF(π|π) = k for every π. If the inequality is replaced by an

equality, we say that the inflation factor is homogeneous of order -1, or simply homo-

geneous. Arguably, the compromise between statistical and computational efficiency is

acceptable when the inflation factor is subhomogeneous. In this case, dividing the number

of evaluations by k yields an inflation of the variance by a factor less than k.

Proposition 2. The inflation factor is subhomogeneous if and only if the matrix S−1CS−1

is nonnegative definite.

From Proposition 2, a satisfactory compromise occurs when S−1CS−1 is nonnegative

definite, that is, when the scores ˙̀
a, ˙̀

b, a 6= b, tend to be positively correlated. In the real
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world, are the scores positively correlated? Intuitively, it can be argued that this is to be

expected if the variables tend to be positively correlated. More often than not, this should

be the case. To see this, note that in the multivariate Gaussian model of dimension d with

a common correlation parameter, the common correlation cannot be less than −1/(d− 1),

which is essentially zero as soon as the number of variables is more than a few.

3.3 Consequences of letting the sampling parameter vanish

The MRPLE depends on the sampling parameter π. If π is too small, there would be

too little of the data and we would expect poor performance. Thus it is of interest to

understand how small π can be. Also, intriguingly, multiplying
√
n(θ̂MRPL

n − θ0) by
√
π

in Theorem 1 yields the asymptotic variance πS−1CS−1 + S−1, suggesting that, by letting

π = πn → 0 as n → ∞, we may simply get S−1: this would allow one to get rid of the

costly matrix C.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let θ̂MRPL
n be a MRPLE. If πn → 0

such that nπn →∞, then θ̂MRPL
n → θ0 in probability as n→∞.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Let θ̂MRPL
n be a MRPLE such that

LRPL
n (θ̂MRPL

n ) ≥ LRPL
n (θ) for all θ ∈ Λ, where Λ is a compact subset of Θ and θ0 is an

interior point of Λ. If πn → 0 such that, for all κ > 0 and all a ∈ A,

1

πn
E Φa(X

(a)
1 ; θ0)4 exp

(
−nπnκ∑

a∈AΦa(X
(a)
1 ; θ0)2

)
→ 0, (4)

where Φa(X
(a)
1 ; θ) is the maximum of |∂`a(X(a)

1 ; θ)/∂θi1|, |∂2`a(X
(a)
1 ; θ)/(∂θi1∂θi2)| and Ψa(X

(a)
1 )

over all possible indices 1 ≤ i1, i2 ≤ q, then, as n→∞,
√
nπn(θ̂MRPL

n − θ0) converges to a
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centered Gaussian distribution with variance-covariance matrix given by S−1.

Subject to conditions on n and πn (discussed in more detail next), Theorem 3 predicts

that a reasonable approximation of the MRPLE’s variance is given by S−1/(nπn). In

comparison with the previous formula S−1CS−1/n+S−1/(nπ), the term S−1CS−1/n, which

is the only term that involves the correlations between the scores, has disappeared. This

can be exploited to build approximate confidence intervals without the need to estimate

the onerous matrix C.

Let us come back to the conditions on n and πn. First, notice that Theorems 2 and 3 are

consistent with each other, because the condition (4) implies nπn → ∞. To benefit from

the approximation suggested by Theorem 3, the sampling parameter πn must be small, but

not too small; the meaning of “not too small” is captured by the condition (4), which in

particular implies that nπn must be large enough. The quantity nπn may be regarded as

the “effective sample size”.

Translating the condition (4) into a more transparent condition on πn is not always easy.

A simple case is that of smooth models with a compact support, because the derivatives

are bounded.

Proposition 3. Suppose that, in Assumption 1, the first and second derivatives and the

functions Ψa are bounded in absolute value by some constant. If πn → 0 such that nπ2
n →

∞, then (4) is satisfied.

Under the conditions of Proposition 3, choosing πn = n−α, 0 < α < 1/2, makes

n(1−α)/2(θ̂MRPL
n − θ0) go to a Gaussian limit. The sampling parameter πn can decrease

almost as fast as 1/
√
n. Another example that satisfies (4) is given in Section 4.
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3.4 Choice of the sampling parameter π

In practice, the choice of the sampling parameter π is difficult; to benefit from the compu-

tational advantages obtained from randomization, any sensible method to choose π must

be computationally inexpensive. We first remark that, based on Theorem 3, the random

vector S1/2
√
nπ(θ̂MRPL

n − θ0) approximately follows a N(0, Iq) distribution for well-chosen

values of π. This suggests that the components of S1/2
√
nπ(θ̂MRPL

n − θ0) approximately

constitute a sample of independent and identically random variables with a common unit

variance. To evaluate the choice of π, we propose a heuristic based on a formal test of this

hypothesis. As the true value of θ0 is unknown, we propose the following simulation-based

procedure for a given value of π: (1) obtain an initial estimate θ(0) (e.g., via an initialization

strategy as in Sections 6 or 7); (2) simulate a new dataset X̃ of the same size as X under

f(•; θ(0)); (3) obtain a parameter estimate θ̃MRPL
n,π from X̃ as well as an estimate S̃ of the

matrix S (as shown in Appendix D); and (4) perform a hypothesis test of unit variance

for a normal distribution using the vector S̃1/2
√
nπ(θ̃MRPL

n,π − θ(0)). For p-values less than

a desired significance threshold (say 5%), the corresponding value of π would be increased

(or decreased) and the steps above repeated; otherwise, the current value of π would be

retained as a reasonable choice. We demonstrate the use of this strategy in simulation

experiments in the Appendix A.2.

4 Standard Gaussian model examples

The standard Gaussian model facilitates our understanding of the randomized pairwise

likelihood method because explicit calculations are feasible. The density of this model at

x ∈ Rd is proportional to f(x; θ) ∝ |Σθ|−1/2 exp
(
−1

2
x>Σ−1

θ x
)
, where θ = (θ1, . . . , θq) ∈ Θ ⊂
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(−1, 1)q, 1 ≤ q ≤ d(d − 1)/2, is the parameter vector determining the correlation matrix

Σθ, so that each of its entries is a function of θ, denoted by va(θ) (as in Proposition 1). In

other words, fa(·, ·; θ) depends on θ only through va(θ). The case q = 1 with va(θ) = θ1

for every a ∈ A corresponds to the exchangeable correlation structure (Cox and Reid,

2004). The case q = d(d − 1)/2 with θ = (θ(1,2), . . . , θ(d−1,d)) and v(j,j′)(θ) = θ(j,j′) for all

j < j′; j, j′ = 1, . . . , d, corresponds to the “free” correlation structure. We assume that Σθ

is positive definite. For instance, if q = 1, the biggest subset of (−1, 1)d on which Σθ is

positive definite is Θ = (−1/(d− 1), 1).

4.1 A class of asymptotically normal estimators

Let πn = n−α, α > 0, and let θ̂MRPL
n (α) be a MRPLE. In this setting MRPLEs depend

on α because they are maximizers of the randomized pairwise likelihood, which depends

on πn through the weights. Clearly, α < 1; otherwise the estimator has no chance to be

consistent. Hence a class of estimators {θ̂MRPL
n (α), 0 < α < 1} has been defined and we

may wonder whether all members of this class are asymptotically normal.

Proposition 4. If {f(•; θ), θ ∈ Θ} is the standard Gaussian model with an exchangeable

correlation structure then Assumptions 1 and 2 hold.

Proposition 4 is trivial. In the proof, the assumptions are checked directly.

Proposition 5. If {f(•; θ), θ ∈ Θ} is the standard Gaussian model with an exchangeable

correlation structure and πn = n−α, 0 < α ≤ 1/4, then (4) is satisfied.

Proposition 5 gives the precise rate at which the estimators go to a limit distribution.

Corollary 1 below is an immediate consequence.
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Corollary 1. If {f(•; θ), θ ∈ Θ} is the standard Gaussian model with an exchangeable

correlation structure and θ̂MRPL
n (α) is a MRPLE with 0 < α ≤ 1/4 then n(1−α)/2(θ̂MRPL

n (α)−

θ0) → N(0, 2/[d(d − 1) E ˙̀2
12]), as n → ∞, where E ˙̀2

12 = E[∂`12(X11, X12, θ)/∂θ]
2
θ=θ0

=

(θ6
0 − θ4

0 − θ2
0 + 1)/(1− θ2

0)4.

The parameter α controls the compromise between the computational cost and the

statistical efficiency of the estimator. If α is large then the computational burden will be

reduced but there will be a loss of statistical efficiency. If α is small the reverse is true.

In any case, πn cannot go to zero too fast. Compare the admissible range of values for α

in Corollary 1 with the range 0 < α ≤ 1/2 found in Proposition 3. In Proposition 3 the

sampling parameter was allowed to go to zero faster because the assumed model had lighter

(in fact, bounded) tails than the Gaussian model. The formulas for the cross-correlations

are given by the equations (1− θ2
0)4 E ˙̀

12
˙̀
13 = θ2

0(1− θ2
0)2 − 4θ2

0(1− θ2
0) + 2θ2

0(1 + θ2
0)(1−

θ2
0)+6θ2

0(1+θ2
0)−2θ2

0(1+θ2
0)(4+2θ0)+θ0(1+θ2

0)2(1+2θ0) and (1−θ2
0)4(E ˙̀

12( ˙̀
13− ˙̀

34)) =

(1 + θ2
0)θ0(1− θ0)(1 + θ2

0 − 4θ0) + 2θ2
0(1− θ2

0).

4.2 Comparison to the subset selection method

Remember that the subset selection method consists of choosing a subset of pairs B ⊂ A,

and makes the inference rest on those pairs, taking all of the observations. On the contrary,

the randomized pairwise likelihood method draws at random both observations and pairs,

and makes the inference rest on those “(observation, pair)” couples for which both the

observation and the pair have been selected.

Next, the two methods are compared for the exchangeable standard Gaussian model.

For simplicity, put Lij,kl = E ˙̀
ij

˙̀
kl, Lij = E ˙̀2

ij, |B| = B ≤ A = |A|. To make the methods

comparable, set π = B/A, so that, on average, both the randomized pairwise likelihood
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and the pairwise likelihood based on the set of pairs B have the same computational

cost, measured by the number of times the density of a bivariate Gaussian distribution

is evaluated. As in Section 3.2, let V (π) = V (B/A) = L−2
12 A

−2[α(L12,13 − L12,34) + A(A −

1)L12,34] + L−1
12 B

−1 be the asymptotic variance of the MRPLE, where here α = 6
(
d
3

)
is the

number of couples of pairs that share an index, among all possible couples of pairs. When

A→∞, note that V (B/A) ∼ L−2
12 L12,34 + L−1

12 B
−1.

The performance of the subset selection method depends on the number of couples of

pairs that share an index among all couples of pairs in B. Denote this number by β. Denote

by Wβ(B) = Wβ(Aπ) the asymptotic variance of the estimator obtained from the subset

selection method. According to Theorem 1, for B ≥ 2, we have

Wβ(B) =

(∑
a∈B

La

)−1 ∑
a6=b∈B

La,b

(∑
a∈B

La

)−1

+

(∑
a∈B

La

)−1

= L−2
12 B

−2[βL12,13 + (B(B − 1)− β)L12,34] + L−1
12 B

−1.

It can be checked numerically from the formulas at the end of Section 4.1 that L12,13−

L12,34 ≥ 0 and hence the best possible subset selection method is obtained when β = 0,

leading to W0(B) = L−2
12 L12,34 +(1−L−1

12 L12,34)L−1
12 B

−1. The worst possible subset selection

method is obtained when β = B(B − 1), leading to WB(B−1)(B) = L−2
12 L12,13 + (1 −

L−1
12 L12,13)L−1

12 B
−1. Note that setting β = 0 or β = B(B − 1) may or may not be possible,

depending on the choice of B.

Figure 1 displays the values of V (B/A) and Wβ(B), β = 0, B(B− 1), for B = 2, . . . , 30

in the case d = 50. The curve for V (B/A) is contained in the strip delimited by the curves

W0(B) (bottom, best possible subset selection method) and WB(B−1) (top, worst possible

subset selection method). The curve for V (B/A) closely follows that for the best possible

18



5 10 15 20 25 30

0.
00

0.
04

0.
08

number of selected pairs B

es
tim

at
or

's
 a

sy
m

pt
ot

ic
 v

ar
ia

nc
e

RPL method
SS methods
lower limits

Figure 1: Asymptotic variances V (π) = V (B/A), W0(B) and WB(B−1)(B) for the random-
ized pairwise likelihood (RPL) method and the subset selection (SS) methods in the cases
β = 0 and β = B(B − 1), respectively, in the exchangeable standard Gaussian model with
d = 50 and θ0 = 0.7. The lower limits correspond to the limit values of Wβ(B), as B tends
to infinity, for the cases β = B(B − 1) (above) and β = 0 (below). The latter limit is also
that of V (B/A) as A and B tend to infinity.

subset selection method.

4.3 An excursion to the infinite dimensional case

Recall that the correlation matrix Σθ is determined by the parameter vector θ = (θ1, . . . , θq).

In this section, the dimension increases as the sample size goes to infinity, that is, we let

d = dn go to infinity as n goes to infinity. The number of parameters q is arbitrary but

fixed. For every a ∈ A, we assume that va(θ) = θi for some i = 1, . . . , q, or va(θ) = 0. For

each i = 1, . . . , q, let Ni denote the number of entries in the upper triangular part of Σθ

that are equal to θi. Denote by Nmin and Nmax the minimum and maximum of the numbers
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Ni, respectively. Each Ni is allowed to grow to infinity. In other words, the correlation

matrix is partitioned into q + 1 homogeneous blocks allowed to grow to infinity. Let A+

denote the set of all those a ∈ A that satisfy va(θ) = θi for some i = 1, . . . , q.

Proposition 6. If dn → ∞, πn → 0, Nmax/(nπnN
2
min) → 0, N2

max/(nN
2
min) → 0 and

|A+| = O(Nmin), then ‖θ̂MRPL
n − θ0‖

P→ 0 as n→∞.

Proposition 6 says that if the largest block is not too large with respect to the smallest

block, then consistency holds even if the dimension goes to infinity. For instance, if all the

blocks have the same size, we have that Nmin = Nmax and |A+| are all of order d2
n, and the

conditions become 1/(nπnd
2
n) → 0. Here, the dimension is a blessing, not a curse. In this

example, considering more and more variables means adding more and more pairs to the

pairwise likelihood, and each of those pairs brings some information about θ0.

5 Copula models for multivariate count data

The problem of defining relevant models in high dimensions for discrete data has been

addressed by various approaches (Chatelain et al., 2009; Karlis and Meligkotsidou, 2005;

Berkhout and Plug, 2004; Karlis and Meligkotsidou, 2007; Chiquet et al., 2018, 2019).

An interesting approach uses copulas (Nelsen, 2006), allowing one to easily control

the model marginals (Zhao and Joe, 2005; Nikoloulopoulos, 2013). However, inference

raises computational problems, which may be mitigated by using the randomized pairwise

likelihood. Let m1, . . . ,md+1 be natural integers with sum equal to q. Let {Fi(·;µi), µi ∈

Θi ⊂ Rmi}, i = 1, . . . , d, be families of univariate distribution functions. For every µi ∈ Θi,

the distribution function Fi(·;µi) is also denoted by Fµi . Let {C(•; ρ), ρ ∈ Θcop ⊂ Rmd+1}

be a family of copulas defined on [0, 1]d. For each θ := (µ1, . . . , µd, ρ) ∈ Θ := Θ1×· · ·×Θd×
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Θcop, the function defined by F (x1, . . . , xd; θ) = C(Fµ1(x1), . . . , Fµd(xd); ρ), x1, . . . , xd ∈ R,

is a well-defined distribution function on Rd with marginals Fµ1 , . . . , Fµd . It is easy to show

that if the univariate distribution function families and the copula family are identifiable

then the resulting family of multivariate distribution functions is identifiable, too. From

Sklar’s theorem (Sklar, 1959), the copula is unique if the marginal distribution functions

are continuous. In the discrete case, the copula is not unique in general but it still permits

the construction of valid parametric statistical models.

When the data are discrete, the probability mass function associated with the model

C(Fµ1(x1), . . . , Fµd(xd); ρ) is given by
∑

(v1,...,vd) sgn(v1, . . . , vd)C(Fµ1(v1), . . . , Fµd(vd); ρ),

where the sum is over all (v1, . . . , vd) ∈ {x1−1, x1}×. . .×{xd−1, xd}, and sgn(v1, . . . , vd) = 1

if there is an even number of components vj satisfying vj = xj−1, and sgn(v1, . . . , vd) = −1

if there is an odd number of components vj satisfying vj = xj − 1 (Panagiotelis et al.,

2012). This sum, which has 2d terms, becomes intractable as the dimension increases.

To perform the inference, it is computationally advantageous to use the pairwise likeli-

hood. The functions `a appearing in the pairwise likelihood formula (1) are expressed in

terms of the copula and the marginals: for every a = (i, j), it holds `a(xi, xj;µi, µjρ) =

log[Ca(Fµi(xi), Fµj(xj); ρ)−Ca(Fµi(xi), Fµj(xj−1); ρ)−Ca(Fµi(xi−1), Fµj(xj); ρ)+Ca(Fµi(xi−

1), Fµj(xj − 1); ρ)], where Ca(ui, uj; ρ) := C(1, . . . , ui, . . . , uj, . . . , 1; ρ) (all arguments have

been replaced by ones but at the ith and jth positions) is the bivariate copula corresponding

to the pair a, so that Ca(Fµi(xi), Fµj(xj); ρ) = Fa(xi, xj; θ), where here Fa(·, ·; θ) denotes the

bivariate distribution function corresponding to the pair a. Randomization of the pairwise

likelihood pushes further the computational gain because not all of the nd(d− 1)/2 bivari-

ate probability mass functions need to be evaluated and because tractable approximate

confidence intervals can be calculated when πn is small.
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Recall that Assumption 2 is critical to the success of pairwise likelihood methods. It is

satisfied if the conditions in Proposition 7 hold.

Proposition 7. Suppose that the univariate distribution function families {Fi(·;µi), µi ∈

Θi ⊂ Rmi}, i = 1, . . . , d, are identifiable. If, for every a ∈ A, there is a function wa on Θcop

into some Euclidean space and a family of bivariate copulas {C̃a(·, ·; %), % ∈ rangewa} such

that (i) the family {C̃a(·, ·; %), % ∈ rangewa} is identifiable (ii) the copulas C̃a(·, ·;wa(ρ)) =

Ca(·, ·; ρ) coincide for all ρ ∈ Θcop, and (iii) the mapping W (ρ) := (wa(ρ))a∈A is one-to-one,

then Assumption 2 holds.

The conditions in Proposition 7 are verifiable for at least some classes of models. For

models based on the Gaussian copula, that is,

C(u1, . . . , ud; ρ) = Φd(Φ
−1
1 (u1), . . . ,Φ−1

1 (ud);R(ρ)), u1, . . . , ud ∈ (0, 1), (5)

where Φd(•;R(ρ)) is the distribution function of a standard d-variate Gaussian distribution

with correlation matrix R(ρ), it all depends on the structure of the correlation matrix.

Simple suitable structures are given in Examples 1 and 2.

Example 1. Let C be the Gaussian copula (5) with correlation matrix R(ρ), where R(ρ)

has 1s on its diagonal and ρ elsewhere, ρ ∈ (−1/(d − 1), 1) =: Θcop. Put wa(ρ) = ρ so

that rangewa = (−1/(d − 1), 1). The mapping W is one-to-one. Set C̃a(·, ·; %) to be a

bivariate Gaussian copula with correlation % ∈ (−1/(d − 1), 1). Then clearly the family

{C̃a(·, ·; %), % ∈ (−1/(d− 1), 1)} is identifiable and the copulas C̃a(·, ·;wa(ρ)) and Ca(·, ·; ρ)

coincide for all ρ ∈ Θcop. (Remember that Ca is the marginal of C corresponding to the

pair a.)
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Example 2. Let C be the Gaussian copula (5) with correlation matrix R(ρ), where R(ρ)

has 1s on its diagonal and ρij at its ith row and jth column, with ρ = (ρ12, . . . , ρd−1,d) ∈

(−1, 1)d(d−1)/2 such that R(ρ) is nonnegative definite. Let Θcop be this space. If a = {i, j}

then put wa(ρ) = ρij so that rangewa ⊂ (−1, 1). Let C̃a(·, ·; %) be the bivariate Gaussian

copula with correlation % ∈ (−1, 1). The family {C̃a(·, ·; %)} indexed by (−1, 1) is identifiable

and hence so is this family restricted to rangewa. Moreover, C̃a(·, ·; ρij) = Ca(·, ·; ρij) for

all ρij ∈ rangewa. The mapping W is one-to-one.

6 Numerical illustrations

In both Section 6.1 and Section 6.2, 500 synthetic datasets of size n and dimension d are

generated from a Gaussian copula and unit Poisson marginals. We used the copula R

package (Yan, 2007). In Section 6.1, n ∈ {100, 500, 1000} and d = 30. In Section 6.2,

n ∈ {500, 1000, 5000}, d = 3 or d = 10. A complementary set of simulations for the

Gaussian exchangeable case can be found in Section A.1 in the Supplementary Material.

6.1 Effect of the sampling parameter on the estimator’s perfo-

mance and computational gains

We investigated the trade-off between efficiency and computational time for the random-

ized pairwise likelihood approach with d = 30. We considered two different cases: (1) a

blockwise exchangeable correlation structure (for three blocks of dimension 10), correspond-

ing to a total of 6 distinct copula parameters; and (2) a factorized correlation structure,

where the element at the ith row and jth column of the copula correlation matrix R(ρ)

is given by R(ρ)ij = ρiρj, ρ = (ρ1, . . . , ρd), corresponding to a total of 30 distinct cop-
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ula parameters. For the blockwise exchangeable case, true copula parameters were set to

ρ = (0.75, 0.5, 0.25, 0.75, 0.5, 0.75) in lexicographical order. For the one-factor case, ρ was

set to 30 equally spaced values between 0.1 and 0.9. Mean parameters were initialized

using marginal means. Copula parameters for the blockwise exchangeable and one-factor

simulations were respectively initialized using blockwise-averaged Pearson correlations or

by optimizing the factorized correlations ρiρj by minimizing the Euclidean distance to

the Pearson correlation matrix. The randomized pairwise likelihood was applied with

π ∈ {0.1, 0.3, 0.5}.

Results for efficiency and computational time of the randomized pairwise likelihood in

the one-factor setting is shown in Figure 2. We remark that estimates are unbiased for all

values of n and π. The increase in variance as π decreases is not visible in the boxplots,

but it does exist and agrees with theoretical predictions, see Figure 2B. It is accompanied

by a decrease of computational time. We also computed the average absolute relative error

for the mean parameters and the factorized correlations in Supplementary Figure S7: it

increases as π and n decreases, although we note a greater impact in the effect of increasing

n as compared to increasing π. Results for the blockwise exchangeable setting are shown

in Supplementary Figure S8.

6.2 Coverage for the confidence intervals

We next sought to evaluate the asymptotic coverage of the confidence intervals constructed

for the MRPLE for multivariate count data. For the d = 3 case, unstructured copula

parameters were given by ρ12 = 0.3, ρ13 = 0.2 and ρ23 = 0. For the d = 10 case, we

used a factorized correlation structure with values set as in the previous section. To apply

the randomized pairwise likelihood estimation procedure, we first initialized parameter
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Figure 2: Performance of the randomized pairwise likelihood in the one-factor multivariate
Poisson simulations with d = 30 over 500 replications. (A) boxplot of the averaged centered
estimates for the marginal parameters (left) and the copula parameters (middle), and the
corresponding computational times in seconds (right). (B) Averaged variance estimates
across parameters (points) for different values of π. The solid line connecting the points
corresponds to the theoretical prediction for π = 0.1, 0.3 knowing the variance at π =
0.5. The dotted line corresponds to the theoretical prediction under the assumption of a
homogeneous inflation factor, knowing the variance at π = 0.5.

values using the marginal means of each variable and the Pearson correlation of each pair

of variables. Finally, we maximized the randomized pairwise likelihood with sampling

parameter π ∈ [0.01, 0.90]. Confidence intervals of level 95% based on the approximation
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S−1/(nπ) suggested by Theorem 3 were calculated for each parameter and each dataset.

(Estimates of S were obtained as in Appendix D.) Coverage of the confidence intervals

was computed as the proportion of replications for which the true parameter values were

within the 95% confidence intervals. Results, corresponding to the mean coverage for the

marginal and copula parameters, are presented in Figure 3.

In Figures 3A, C and D, the coverage gets closer to its 95% target as π decreases,

agreeing with asymptotic theory. Then, for n = 500 and n = 1000, the coverage drops at

π = 0.01. For such a small π, the product nπ, equal to 5 and 10 respectively, is too small

for any inference to be reliable. For n = 5000, corresponding to nπ = 50, there is no drop

at π = 0.01.

In Figure 3B, a different pattern appears. Coverage performance is best for moderate to

large values of π, seemingly contradicting the theory saying that for S−1/(nπ) to be a good

approximation of the MRPLE’s variance S−1CS−1/n+S−1/(nπ), π must be small enough.

A possible explanation for this seeming contradiction is that the term S−1CS−1 may be

negligible with respect to S−1. In this case S−1/(nπ) is always a good approximation,

whatever the value of π. The coverage performance degrades as π approaches zero, plausibly

because “the effective sample size” nπ gets too small.

7 Application on transcriptomic data

We illustrate the application of the randomized pairwise likelihood procedure on multivari-

ate count data from a study on the remodeling of the transcriptome over the life cycle of

Varroa destructor, a parasitic mite that represents a significant threat to the western hon-

eybee. Full details about the experimental design and pre-processing of RNA sequencing
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Figure 3: Coverage results for d = 3 marginal (A) and copula (B) parameters, and coverage
results for d = 10 marginal (C) and copula (D) parameters.

(RNA-seq) data may be found in Mondet et al. (2018). Our goal is to evaluate overall

transcriptome-wide correlations among different Varroa life stages from a single colony

(R204) based on RNA-seq read counts for n=22,372 contigs in d=10 life cycle groups. In

RNA-seq data, counts of expression are strongly positively associated with both the se-

quencing effort of each RNA sample (Robinson and Oshlack, 2010) and gene length; an

offset accounting for these two factors are included in a Poisson generalized linear model
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Figure 4: Clustered heatmap of the estimated copula parameters and per-sample intercepts
(log-scale) for the Varroa life cycle transcriptome data, using the randomized pairwise like-
lihood (π = 0.01) approach. Categorizations of life cycle groups according to reproductive
status are included as a column annotation.

(GLM) defined for the marginal distributions of each sample. To model the dependencies

among life stages, these Poisson marginals were coupled with an unstructured Gaussian

copula. Poisson GLM intercepts and Gaussian copula correlations were respectively ini-

tialized using marginal estimates and pairwise Pearson correlations, and the Nelder-Mead

algorithm was used for optimization.

The randomized pairwise likelihood method was applied with π = 0.01, corresponding

to nπ = 224 and standard errors of order less than 10−4. (The matrix S was estimated
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from the data as in Appendix D.) Standard errors for all the parameter estimates are

given in Table S2. We evaluated the choice of π = 0.01 with the heuristic proposed in

Section 3.4 and five independent simulated datasets generated using the initial values of θ(0).

Corresponding p-values for the hypothesis test of unit variance for a normal distribution

(0.13, 0.18, 0.25, 0.36, 0.70) suggested that the choice of π = 0.01 is reasonable here given

the sample size. A significant gain in computational time was observed: the maximization

of the randomized pairwise likelihood with π = 0.01 took 25 minutes, compared with 8.5

hours for the standard pairwise likelihood.

Figure 4 provides a visualization of the estimated copula parameters between life cycle

groups and marginal Poisson GLM intercepts based on the full dataset. We note a strong

separation between the pre-reproductive/reproductive (phoretic, arresting, pre-laying, lay-

ing) versus post-reproductive (post-laying, emerging) phases. Non-reproductive females are

clustered with reproductive females, supporting the hypothesis that mechanisms underly-

ing reproductive failure occur before oogenesis in Varroa (Mondet et al., 2018). Lab-reared

mites clustered with post-reproductive colony-collected females, suggesting that laboratory

conditions do not provoke significant changes in the Varroa transcriptome. Two stages in

particular exhibit distinct transcriptomic profiles as compared to the others: males (for

which the largest estimated copula correlation of 0.56 is with post-lay females), and young

mites, which are known to be characterized by a markedly immature physiology. Finally,

the intercepts estimated for each marginal Poisson GLM provide intuition about the global

over- or under-expression observed in each sample; the transcriptome appears to be most

up-regulated in the transitions to (arrest and pre-lay) and from (post-lay) the reproductive

stages.

In practice, transcriptome-wide analyses of RNA-seq data typically rely on the use of
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variance stabilizing transformations (e.g., log) before using exploratory methods such as

principal components analysis, hierarchical clustering, or pairwise Pearson correlations; in

this application, we have instead explicitly modelled the multivariate count nature of these

transcriptome data via Poisson GLMs with appropriate offsets and a Gaussian copula to

model the dependency structure among life stages.

8 Conclusions

The computational burden of pairwise likelihood methods can be reduced by randomization.

Not only is the objective function easier to compute, but it also leads to easier computation

of the confidence intervals, provided that the sampling parameter π is small enough and we

have enough data. The proposed method, implemented in the rpl R package, opens the

door to designing affordable inference procedures in complex models such as copula-based

models for count data or latent variable models as alternatives to variational methods.

There is a downside to randomization, however. Since less data is used, the estimator’s

asymptotic variance increases. In some contexts the standard errors may still be small

enough (as in Section 7), but in others they may not. In the latter case, an avenue for

future research consists of optimizing several randomized pairwise likelihood in parallel and

averaging the results. We expect the final estimator to be more efficient, see also Hector

and Song (2020).

In the future, beyond the aforementioned points one could consider other sampling

schemes to exploit known information about the data (such as temporal or spatial auto-

correlation) or impose structural or sparsity constraints. For example, one could define a

threshold on the number of pairs sampled per observation or impose restrictions on the
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parameters—for instance, common correlations for some pairs. In addition, one could also

consider alternative estimation strategies such as maximization by parts to split the full

maximization problem into smaller ones.

SUPPLEMENTARY MATERIAL

Pdf file containing an additional simulation study, proofs and supplementary figures.
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