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A Additional simulations

A.1 Exchangeable Gaussian model

A.1.1 Comparison with the pairwise and the full likelihood methods

We simulate a set of d-dimensional vectors Yi, i = 1, . . . , n from an exchangeable multivari-

ate Gaussian distribution with mean vector µ and covariance matrix Σ, where all means µ

are considered to be known and set to 0, and all variances and correlations are fixed to 1 and

ρ, respectively. In this case, the only parameter to be estimated is thus ρ; in different sim-

ulation settings, the true value of ρ was set to be equal to one of {−0.1, 0, 0.1, 0.2, ..., 0.9}.

We consider n = 100, 1000, and 5000 observations, and the dimension was set to d = 4.

To evaluate the efficiency of the randomized pairwise likelihood, we considered the

sampling parameter values π = 0.5 and π = 0.2, and compared the results to those obtained

from the full maximum likelihood, and the pairwise likelihood using all pairs of variables

and all observations; simulations were repeated 50,000 times. Efficiency was calculated as

the ratio of the variance of parameter estimates across simulated datasets in the pairwise

likelihood and randomized pairwise likelihood methods with respect to the full maximum

likelihood approach. For all values of ρ considered, all methods considered successfully

recover the true value of ρ, although as expected, the variance of estimators increases

from the full maximum likelihood to the pairwise likelihood, and further increases in the

randomized pairwise likelihood as the sampling parameter π decreases (see Figures S1–S3).

In comparing the efficiency of estimators in the pairwise approaches with that of the full

maximum likelihood, we remark that the efficiency of the pairwise likelihood is as reported

in Cox and Reid (2004) for d = 4; in addition, as expected, the loss of efficiency for the

randomized pairwise likelihood is consistent with the theoretical results with respect to the
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Figure S1: Boxplots of parameter estimates for n = 500 across 50,000 simulated datasets
using the full maximum likelihood (FML), composite pairwise likelihood (CL), and ran-
domized pairwise composite likelihood (RCL) approaches with π = 0.5 and 0.2 for
ρ = {−0.1 . . . , 0.9}.
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Figure S2: Boxplots of parameter estimates for n = 1000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likelihood (CL),
and randomized pairwise composite likelihood (RCL) approaches with π = 0.5 and 0.2 for
ρ = {−0.1 . . . , 0.9}.
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Figure S3: Boxplots of parameter estimates for n = 5000 across 50,000 simulated
datasets using the full maximum likelihood (FML), composite pairwise likelihood (CL),
and randomized pairwise composite likelihood (RCL) approaches with π = 0.5 and 0.2 for
ρ = {−0.1 . . . , 0.9}.
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sampling fraction for each value of π.

A.1.2 Coverage for the approximate confidence intervals

In order to examine the asymptotic properties described, we also performed simulations to

evaluate the coverage probabilities for the asymptotic confidence intervals. We still use the

exchangeable Gaussian model model with known means and variances and we estimate the

common correlation parameter ρ using randomized pairwise likelihood. Based on Theorem

3 and the derivations of Proposition 4, when n is large, we have that, approximately,
√
nπ(ρ̂ − ρ) ∼ N(0, V (ρ̂)), where ρ̂ is the randomized pairwise likelihood estimate, d is

the dimension and V (ρ̂) = 2(1 − ρ̂2)4/(d(d − 1)(ρ̂6 − ρ̂4 − ρ̂2 + 1)). One can create an

asymptotically 100(1 − α)% confidence interval as ρ̂ ± Z1−α/2
√
V (ρ̂)/nπ where Za is the

a−quantile of the standard normal distribution.

We simulated 50,000 samples of dimension d = 4 for values of ρ ∈ {−0.1, 0.2, . . . , 0.9},

n ∈ {500, 1000, 5000, 10000} and corresponding values of π to yield subsample sizes nπ

of 100 and 200. For each sample we created the asymptotic confidence interval described

above, and we estimated as coverage probability the proportion of times the true value was

inside the interval (using α = 0.05). The results are depicted in Figures S4 and S5. We

can see that, as theoretical results suggest, when the sample size increases, the asymptotic

coverage gets closer to the nominal level verifying the potential of the asymptotic results for

inference. This also highlights the potential of randomized pairwise likelihood for inference.

We repeated the simulations in the previous section for datasets with d ∈ {3, 8, 15, 20, 50}

to investigate the impact of increasing dimensionality on coverage. Results averaged over

1000 replications are shown in Table S1.
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Figure S4: Asymptotic coverage for the exchangeable Gaussian model example, with
α = 5%, averaged over 50,000 replications. The values represent the proportion of times
the asymptotic interval contains the true value used to simulate the data, with ρ versus
asymptotic coverage by sample size n.
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Figure S5: Asymptotic coverage for the exchangeable Gaussian model example, with
α = 5%, averaged over 50,000 replications. The values represent the proportion of times
the asymptotic interval contains the true value used to simulate the data, for ρ versus
asymptotic coverage by subsample size nπ.
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d = 3 d = 8 d = 15 d = 20 d = 50

n = 5000

ρ = 0 0.934 0.953 0.952 0.954 0.946
ρ = 0.25 0.937 0.958 0.949 0.934 0.858
ρ = 0.5 0.932 0.940 0.939 0.934 0.864
ρ = 0.75 0.936 0.945 0.942 0.944 0.909

n = 10000

ρ = 0 0.930 0.960 0.948 0.951 0.957
ρ = 0.25 0.954 0.941 0.935 0.937 0.864
ρ = 0.5 0.929 0.940 0.929 0.941 0.855
ρ = 0.75 0.937 0.944 0.930 0.951 0.895

Table S1: Average coverage (over 1000 replications) for dimension d = {3, 8, 15, 20, 50} for
sample sizes n = 5000 or 10,000, ρ ∈ {0, 0.25, 0.5, 0.75}, and sampling probability π = 0.01,
with α = 5%.
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A.2 Choice of the sampling parameter π

To illustrate the use of the heuristic for the choice of π proposed in Section 3.4, we generated

a synthetic dataset X of size n = 1000 and dimension d = 10 from unit Poisson marginals

and a Gaussian copula with unstructured correlation structure (corresponding to 45 distinct

copula parameters). True copula parameters were set by generating an arbitrary positive

definite covariance, and an initial value of parameters θ(0) was obtained using marginal

estimates and pairwise Pearson correlations. For 10 independent replications and π =

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}, we then followed the suggested

procedure:

1. Generate simulated data X̃ from Poisson marginals and a Gaussian copula parame-

terized by θ(0);

2. Estimate θ̃MRPL
n,π and S̃ from X̃;

3. Calculate the vector S̃1/2
√
nπ(θ̃MRPL

n,π − θ(0)) and perform a hypothesis test of unit

variance for a normal distribution.

Figure S6 illustrates p-values corresponding to the hypothesis test of unit variance

across different values of the sampling parameter π. As expected, sampling parameter

values that are too small or too large given the sample size n tend to lead to rejections of

the null hypothesis at a significance threshold of 5%, indicating an inappropriate choice of

π. Intermediate values of the sampling parameter lead to larger p-values, suggesting that

such values of π are well-chosen.
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Figure S6: Illustration of the behavior of the proposed simulation-based heuristic to evalu-
ate the choice of π. P -values from a hypothesis test of unit variance for a normal distribution
are represented as a function of π, with individual points representing values for the 10
independent replications. The blue line corresponds to a loess regression, and the dotted
horizontal line corresponds to a significance threshol of 5%.
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B Additional Table

Phor Male Pre-Lay Arrest Post-Lay Young Emerg Non-rep Laying Lab
Mean 2.3e-07 6.1e-07 2.1e-07 8.7e-07 1.3e-07 8.3e-07 1.6e-07 1.7e-07 6.4e-07 1.8e-07
Phor 1.4e-06 1.2e-06 1.4e-06 1.3e-06 1.4e-06 1.3e-06 2.5e-07 1.1e-06 1.4e-06
Male 1.4e-06 3.3e-06 9.8e-07 1.7e-06 1.0e-06 1.2e-06 2.8e-06 1.1e-06
Pre-Lay 1.9e-06 1.2e-06 1.6e-06 1.1e-06 2.2e-07 8.8e-07 7.7e-07
Arrest 3.0e-06 2.4e-06 1.6e-06 1.4e-04 4.6e-05 3.4e-06
Post-Lay 2.1e-06 2.0e-07 1.9e-06 1.4e-06 2.0e-07
Young 2.6e-06 2.7e-06 2.4e-06 1.3e-06
Emerg 1.6e-06 2.4e-06 1.4e-06
Non-rep 1.1e-04 1.6e-06
Laying 1.9e-06

Table S2: Estimated standard errors for Poisson means (top row) and Gaussian copula
parameters (bottom) for the Varroa life cycle transcriptome data, using the randomized
pairwise likelihood (π = 0.01) approach.
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C Additional Figures
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Figure S7: Performance of the randomized pairwise likelihood in the one-factor multivariate
Poisson simulations with d = 30 over 500 replications. (A) boxplot of the absolute relative
errors for the marginal parameters (left) and the factorized correlations (middle), and the
corresponding computational times in seconds (right). (B) Averaged variance estimates
across parameters (points) for different values of π. The solid line connecting the points
corresponds to the theoretical prediction for π = 0.1, 0.3 knowing the variance at π =
0.5. The dotted line corresponds to the theoretical prediction under the assumption of a
homogeneous inflation factor, knowing the variance at π = 0.5.
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Figure S8: Performance of the randomized pairwise likelihood in the blockwise exchange-
able multivariate Poisson simulations with d = 30 over 500 replications. (A) boxplot of
the averaged centered estimates for the mean parameters (left) and the copula parameters
(middle), and the corresponding computational times in seconds (right). (B) Averaged
variance estimates across parameters (points) for different values of π. The solid line con-
necting the points corresponds to the theoretical prediction for π = 0.1, 0.3 knowing the
variance at π = 0.5. The dotted line corresponds to the theoretical prediction under the
assumption of a homogeneous inflation factor, knowing the variance at π = 0.5.
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Figure S9: Estimated parameter values of the correlation parameters for the RNA-seq data
for varying values of the sampling parameter π.
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Figure S10: Computational time (in seconds) for π = {0.01, 0.05, 1} for the RNA-seq data.
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Figure S11: Average standard error of marginal mean (left) and copula (right) parameter
estimates from the randomized pairwise likelihood approach for varying values of π.
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Figure S12: (A) Comparison of estimated marginal (left) and copula (right) parameter
values for π = 0.01 versus π = 1 for the RNA-seq data. (B) Comparison of estimated
marginal (left) and copula (right) parameter values for two independent runs of π = 0.01
for the RNA-seq data. Dashed lines indicate the identity.

17



Figure S13: Clustered heatmap of the estimated copula parameters and per-sample inter-
cepts (log-scale) for the Varroa life cycle transcriptome data, using the randomized pairwise
likelihood (π = 1). Categorizations of life cycle groups according to reproductive status
are included as a column annotation.
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D Estimation of the asymptotic variance-covariance

matrix S−1 in Theorem 3

If θ̂MRPL
n is a MRPLE obtained from the sample Xi = (Xi1, . . . , Xid), i = 1, . . . , n, and

sampling parameter π, then the matrix S defined in Section 2 by

S =
∑
a∈A

E ˙̀
a(X

(a)
1 ; θ0) ˙̀

a(X
(a)
1 ; θ0)>

is estimated by

Ŝ :=
∑
a∈A

1

n

n∑
i=1

˙̀
a(X

(a)
i ; θ̂MRPL

n ) ˙̀
a(X

(a)
i ; θ̂MRPL

n )>.

The matrix Ŝ−1 of Theorem 3 is obtained by numericall inverting the matrix Ŝ. Compo-

nentwise, an asymptotic confidence interval of level 95% for θ0 is then given as θ̂MRPL
n ±

1.96

√
Ŝ−1/(nπ).

E Proofs of the theorems

In the proofs, it will be convenient to consider the bivariate functions fa(X
(a)
i ; θ) as functions

taking as an argument the whole vector Xi so that fa(X
(a)
i ; θ) will be denoted by fa(Xi; θ).

To take advantage of empirical process techniques, we shall build empirical processes related

to our problem.

Let Ga, a = 1, 2, . . . , A, be classes of functions ga : Rd → RL satisfying E ga(X1)2 <∞

componentwise. Let M(G1, . . . ,GA) be the set of functions m of the form m(x,w) =∑A
a=1waga(x), x ∈ Rd, w = (w1, . . . , wA) ∈ [0,∞)A, ga ∈ Ga, a = 1, . . . , A. Let Xi,

i = 1, . . . , n, be i.i.d. random vectors in Rd with law P . For each n, let W
(a)
ni , i = 1, . . . , n,

19



a = 1, . . . , A, be i.i.d. Bernoulli random variables with parameter 0 < πn ≤ 1. For each

n, X1, . . . , Xn and W
(1)
n1 ,W

(2)
n1 , . . . ,W

(A)
nn are independent. For i = 1, . . . , n, let Wni be the

vector with components W
(a)
ni , a = 1, . . . , A. For a probability measure P and a function f ,

Pf denotes
∫
f dP . Let Pnn be the average of Dirac measures at the points (Xi,Wni/πn),

i = 1, . . . , n; thus if m ∈M(G1, . . . ,GA) then

Pnnm =

∫
m dPnn =

1

n

n∑
i=1

m

(
Xi,

Wni

πn

)
=

1

n

n∑
i=1

A∑
a=1

W
(a)
ni

πn
ga(Xi).

Let P ∗n be the probability distribution of (X1,Wn1/πn); thus

P ∗nm = E m

(
X1,

Wn1

πn

)
=

A∑
a=1

E
W

(a)
n1

πn
ga(X1) =

A∑
a=1

E ga(X1) = Pm(·, 1).

Notice that it does not depend on n. Denote by G∗nn the signed measure
√
nπn(Pnn− P ∗n).

We shall use the concept of a bracketing number van de Geer (2000); van der Vaart and

Wellner (1996); Pollard (1984). If G is a class of real-valued functions on some Euclidean

space equipped with a probability measure P and δ is a positive real number, then the

bracketing number of G, denoted by N(δ,G, P ), is the smallest number N of brackets

[gLj , g
U
j ], j = 1, . . . , N , such that (i) PgU

j − PgL
j ≤ δ, j = 1, . . . , N , and (ii) for all g in G,

there is j ∈ {1, . . . , N} such that gL
j ≤ g ≤ gU

j . Recall that two asymptotic frameworks are

considered: πn = π is constant and πn → 0 as n→∞.

The following lemmas establish a uniform law of large numbers and a central limit

theorem expressed in terms of the new empirical processes. These results are the building

blocks on the top of which the proofs of the theorems rest. Measurability issues are ignored.

See van der Vaart and Wellner (1996); van der Vaart (1998) for a way of addressing this.
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Lemma E.1. Let m ∈M(G1, . . . ,GA) with L = 1. If πn > 0 is constant or if πn → 0 such

that nπn →∞ then |Pnnm− P ∗nm|
P→ 0 as n→∞.

Lemma E.2. Let m ∈M(G1, . . . ,GA) with L = 1. Assume furthermore that N(δ,Ga, P ) <

∞ for all δ > 0 and all a = 1, . . . , A. If πn > 0 is constant or if πn → 0 such that nπn →∞

then

sup
m∈M(G1,...,GA)

|Pnnm− P ∗nm|
P→ 0, n→∞.

Lemma E.3. Let m ∈ M(G1, . . . ,GA). If πn = π is constant then G∗nnm converges in

distribution to a centered Gaussian vector with variance-covariance matrix

(1− π)

(
A∑
a=1

E ga(X1)ga(X1)>

)

+ π

(
A∑
a=1

A∑
b=1

E ga(X1)gb(X1)> − E ga(X1) E gb(X1)>

)
.

If πn → 0 such that

E gal(X1)4 exp

(
− nπnκ∑A

a=1 gal′(X1)2

)
= o(πn) (S1)

for all κ > 0 and all l, l′ = 1, . . . , L, then G∗nnm converges in distribution to a centered

Gaussian random vector with variance-covariance matrix

A∑
a=1

E ga(X1)ga(X1)>. (S2)

21



Proof of Theorem 1

One can follow almost word for word the proofs of Theorem 2 and Theorem 3. The

appropriate changes are easily made: it suffices to switch to the appropriate asymptotic

frameworks in Lemma E.2 and Lemma E.3.

Proof of Theorem 2

Since θ̂MRPL
n is a MRPLE, there is a compact subset Λ ⊂ Θ that contains θ0 such that

LRPL
n (θ̂MRPL

n ) ≥ LRPL
n (θ) for all θ ∈ Λ. Denote LPL(θ) =

∑
a La(θ), θ ∈ Θ. Then LPL is

uniquely maximized at θ0 ∈ Λ and ELRPL
n (θ) = LPL(θ), θ ∈ Θ. Since θ0 ∈ Λ, certainly

LRPL
n (θ̂MRPL

n ) ≥ sup
θ∈Λ

LRPL
n (θ) ≥ LRPL

n (θ0).

Theorem 5.7 in van der Vaart (1998) asserts that if the conditions

(i) ∀ε > 0, sup
θ∈Λ:|θ−θ0|≥ε

LPL(θ) < LPL(θ0)

(ii) sup
θ∈Λ
|LRPL

n (θ)− LPL(θ)| P→ 0

hold, then θ̂MRPL P→ θ0 as n→∞.

Let us check (i). Since f(·, θ0) belongs to L2(Rd), it follows that LPL(θ0) < ∞. By

Assumption 1, the function LPL : Λ −→ [−∞,∞) is continuous on Λ. Since the set

{θ ∈ Λ : |θ − θ0| ≥ ε} is compact, the supremum of LPL is reached. But this supremum

must be less than LPL(θ0), because, by Assumption 2, the point θ0 is the unique maximizer.

Condition (i) is fulfilled.
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Let us check (ii). Using the notation introduced at the beginning of this section, we

can write

sup
θ∈Λ
|LRPL

n (θ)− LPL(θ)|

= sup
θ∈Λ

∣∣∣∣∣∑
a∈A

1

n

n∑
i=1

(
W

(a)
ni

πn
log fa(Xi; θ)− E log fa(X1; θ)

)∣∣∣∣∣
≤ sup

m∈M(Ga,a∈A)

|Pnnm− P ∗nm| ,

where Ga = {log fa(·; θ), θ ∈ Λ}, a ∈ A. By Lemma E.2, the condition (ii) will hold if we can

show that the bracketing numbers N(δ,Ga, P ), δ > 0, are finite. But it is well known that

classes indexed by a compact subset of an Euclidean space have finite bracketing numbers;

see for instance Lemma 3.10 in van de Geer (2000) for a proof. Hence condition (ii) is

fulfilled as well.

Proof of Theorem 3

Recall the notation introduced at the beginning of this section and let m(x,w, θ) =∑
a∈Awa`a(x; θ). As in the proof of Theorem 2 let LPL(θ) =

∑
a La(θ). Denote the gradient

of m with respect to θ by ∇m. Denote the Hessian matrix of LPL at θ0 by ∇2LPL(θ0). If

we can show

√
nπn(θ̂MRPL − θ0) = −

[
∇2LPL(θ0)

]−1
G∗nn∇m(·, ·, θ0) + oP (1), (S3)
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then Lemma E.3 will imply that
√
nπn(θ̂MRPL− θ0) converges in distribution to a centered

Gaussian random vector with variance-covariance matrix

[
∇2LPL(θ0)

]−1

[
(1− π)

∑
a

E ˙̀
a

˙̀>
a + π

(∑
a,b

E ˙̀
a

˙̀>
b − E ˙̀

a E ˙̀>
b

)] [
∇2LPL(θ0)

]−1
,

if πn is a constant, and
∑

a E ˙̀
a

˙̀>
a if πn → 0. The asymptotic variance-covariance matrices

above are those announced by Theorem 1 and Theorem 3, respectively, because Assump-

tion 1 implies E ˙̀
a = 0 and ∇2LPL(θ0) = −

∑
a E ˙̀

a
˙̀>
a .

So we need to show (S3). The map LPL is two times continuously differentiable at θ0

with gradient ∇LPL(θ0) = P∇m(·, 1, θ0) and negative definite Hessian matrix ∇2LPL(θ0) =

P∇2m(·, 1, θ0). Let Λ̊ be the interior of Λ, that is, its biggest open subset. For every n,

LRPL
n (θ̂MRPL

n ) ≥ sup
θ∈Λ̊

LRPL
n (θ)

and θ̂MRPL
n is consistent for θ0 by Theorem 2. Therefore equation (S3) follows from Theo-

rem 3.2.16 of (van der Vaart and Wellner, 1996, p. 300), which itself is a generalization of

an idea of Pollard (1984, 1985), provided that

√
nπn

([
LRPL
n (θ0 + h̃n)− LPL(θ0 + h̃n)

]
−
[
LRPL
n (θ0)− LPL(θ0)

])
= h̃>nG

∗
nn∇m(·, ·, θ0) + oP

(
‖h̃n‖+

√
nπn‖h̃n‖2 +

1
√
nπn

)
,

for all random sequences h̃n = oP (1). Denoting

∇i1m(·, ·, θ) =
∂m(·, ·, θ)
∂θi1

, ∇2
i1i2
m(·, ·, θ) =

∂2m(·, ·, θ)
∂θi1∂θi2

, etc,

24



and using the notation introduced at the beginning of this section, one can see that this

condition boils down to

1

2

∑
i1,i2

h̃i1h̃i2G
∗
nn∇2

i1i2
m(·, ·, θ0) +

1

6

∑
i1,i2,i3

h̃i1h̃i2h̃i3G
∗
nn∇3

i1i2i3
m(·, ·, ĥ)

= oP

(
‖h̃‖+

√
nπn‖h̃‖2 +

1
√
nπn

)
, (S4)

where ĥ is a point between θ0 and θ0 + h̃. Above we have dropped the subscripts n of h̃

and ĥ. In view of Assumption 1 and (4), Lemma E.3 implies G∗nn∇2
i1i2
m(·, ·, θ0) = OP (1)

whether πn is a constant or πn → 0. Remember that the third derivatives are bounded

by the functions Ψa, put Ψ(x,w) :=
∑

a∈AwaΨa(x) so that |∇3
i1i2i3

m(x,w, ĥ)| ≤ Ψ(x,w),

which entails

|G∗nn∇3
i1i2i3

m(·, ·, ĥ)| ≤ G∗nnΨ + 2
√
nπnPΨ(·, 1) = OP (

√
nπn),

because G∗nnΨ = OP (1) by Lemma E.3. Thus, in both cases πn → 0 and πn constant, the

left hand side in (S4) is OP

(
‖h̃‖2

(
1 + ‖h̃‖√nπn

))
. The proof is complete.

F Proofs of the propositions

Proof of Proposition 1

We begin with a lemma.

Lemma F.1. Let wa > 0 for all a ∈ A. If the two statements

(i) θ0 is a maximizer of La for every a ∈ A
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(ii) θ 6= θ′ implies that there exists a pair a such that La(θ) 6= La(θ
′)

are true then the maximizer of θ 7→
∑

awaLa(θ) is unique.

Proof. If θ′0 was another maximizer of
∑

awaLa then there is a ∈ A such that waLa(θ
′
0) <

waLa(θ0). But then
∑

awaLa(θ
′
0) <

∑
awaLa(θ0), which is a contradiction.

It is straightforward to show that Lemma F.1 (i) is true. It remains to ensure that

Lemma F.1 (ii) is true as well. Take a = {i, j} ∈ A, choose θ, θ′ ∈ Θ and assume La(θ) =

La(θ
′). By (ii) of the Proposition, E log f̃a(X1i, X1j; va(θ)) = E log f̃a(X1i, X1j; va(θ

′)) and

hence, by (i), va(θ) = va(θ
′). Since the pair a was arbitrary, (iii) implies θ = θ′. The proof

is complete.

Proof of Proposition 7

It suffices to check (i), (ii) and (iii) in Proposition 1. Let a = {i, j}. Put va(θ) =

va(µi, µj, ρ) = (µi, µj, wa(ρ)) so that range va = Θi × Θj × rangewa. The condition (ii) in

Proposition 1 is checked because Fa(xi, xj; θ) = Ca(Fµi(xi), Fµj(xj); ρ) = C̃a(Fµi(xi), Fµj(xj);wa(ρ)) =:

Fa(xi, xj; va(θ)). These distribution functions define a family indexed by range va. This

family is identifiable: if (µi, µj, %), (µ′i, µ
′
j, %
′) ∈ range va and C̃a(Fµi(xi), Fµj(xj); %)) =

C̃a(Fµ′i(xi), Fµ′j(xj); %
′) then letting xi → ∞ yields that µj = µ′j and by the same to-

ken µi = µ′i and hence % = %′. Thus the condition (i) in Proposition 1 is true. Finally,

choose θ = (µ1, . . . , µd, ρ) and θ′ = (µ′1, . . . , µ
′
d, ρ
′) in Θ. If V (θ) = V (θ′) then clearly

µ1 = µ′1, . . . , µd = µ′d and wa(ρ) = wa(ρ
′) for all a ∈ A. But then ρ = ρ′ because the

mapping W is one-to-one. Thus the last condition (iii) in Proposition 1 is checked.
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Proof of Proposition 2

Notice that V (π′)/V (π) ≤ π/π′ if and only if

πS−1CS−1

πS−1CS−1 + S−1
≤ π

π′

(
1− S−1

πS−1CS−1 + S−1

)
=
π

π′

(
πS−1CS−1

πS−1CS−1 + S−1

)
.

Since S−1CS−1 + S−1 is the asymptotic variance-covariance matrix of Theorem 1 with

π = 1, it must be positive definite, and hence the last inequality is simplified according to

the sign of S−1CS−1.

Proof of Proposition 3

In this case the functions Φa in Theorem 3 are bounded by a constant, say C. Let A be

the cardinal of A. The left hand side of (4) is bounded by

1

πn
C4 exp

(
−nπnκ
AC2

)
,

which goes to zero because π−1
n e−π

−1
n → 0 and exp([AC2 − nπ2

nκ]/[AC2πn]) ≤ 1 as soon as

nπ2
nκ ≥ AC2.

Proof of Proposition 4

Assumption 1: Clearly, for all x ∈ R2,

max

(∣∣∣∣∂`a(x; θ)

∂θ

∣∣∣∣ , ∣∣∣∣∂2`a(x; θ)

∂θ2

∣∣∣∣ , ∣∣∣∣∂3`a(x; θ)

∂θ3

∣∣∣∣ ,) ≤ ϕ(θ)(1 + ‖x‖2),
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for some positive and continuous function ϕ defined on (−1/(d − 1) + ε, 1 − ε). This set

can be extended to the compact set [−1/(d− 1) + ε/2, 1− ε/2] and hence

E Φa(X1; θ0)2 ≤ C(1 + ‖x‖2)2 (S5)

for some constant C. (Remember that θ0 is the true parameter.) Since E(1+‖X1‖2)2 <∞,

the first statements in Assumption 1 have been checked. Also, it is clear that the derivatives

can be passed under the integral sign. Assumption 1 has been checked.

Assumption 2: We have

La(θ) = − log(1− θ2)

2
− 1

1− θ2
+

θθ0

1− θ2
+ constant

and hence ∂La(θ)∂θ = 0 iff −θ3 + θ0θ
2− θ+ θ0 = 0. This polynomial in θ has only one real

root (the two other are complex) and hence the maximizer of
∑

a La(θ) = d(d− 1)L12(θ)/2

is unique.
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Proof of Proposition 5

In view of (S5) and since the the left hand side in (4) is an increasing function of Φa, a ∈ A,

it suffices to show that

E
(
1 + ‖X1‖2

)4
exp

(
− nπnκ

(1 + ‖X1‖2)2

)
∝
∫
Rd

(1 + ‖x‖2)4 exp

(
− nπnκ

(1 + ‖x‖2)2

)
exp

(
−1

2
x>Σ−1

θ0
x

)
dx

≤
∫
Rd

(1 + ‖x‖2)4 exp

(
− nπnκ

(1 + ‖x‖2)2
− ‖x‖

2

4λmax

)
dx

=

∫ ∞
0

(1 + r2)4rd−1 exp

(
− nπnκ

(1 + r2)2
− r2

4λmax

)
dr

is of order o(πn) for all κ > 0. The inequality above is true because Σ−1
θ0
− 1/(4λmax)I is

positive definite. The last equality holds by a change of variables Blumenson (1960). Since

(1 + r2)4rd−1 is a polynomial in r, the last integral is a sum of integrals of the form given

in Lemma H.2 and hence, by Corollary H.1, it is of order O(exp(−[nπnκ]1/3/(8λmax ∨ 1)))

whenever nπn →∞. Substituting πn = n−α with 0 < α ≤ 1/4 and letting n go to infinity

completes the proof.

Proof of Proposition 6

When dn goes to infinity, the proof of Theorem 2, which consisted of checking the conditions

of van der Vaart’s Theorem 5.7 (van der Vaart, 1998, p. 45), is no longer valid. To account

for the growth of dn, one possible avenue is to extend van der Vaart’s Theorem 5.7 and its

proof. This is done in the next lemma. As in the proof of Theorem 2, LPL(θ) stands for∑
a La(θ); the quantity LRPL

n (θ) is the randomized pairwise likelihood evaluated at θ.
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Lemma F.2. If there is a positive sequence pn →∞ such that

(i) ∀ε > 0,∃λ > 0,∀n ≥ 1, sup
‖θ−θ0‖≥ε

LPL(θ)− LPL(θ0)

pn
≤ −λ,

(ii) sup
θ∈Θ

|LRPL
n (θ)− LPL(θ)|

pn

P→ 0.

then ‖θ̂MRPL
n − θ0‖

P→ 0 as n→∞.

The proof of Lemma F.2 is to be found in Section G. For now, let us notice the role

played by the sequence pn. If one chooses a sequence pn that goes to infinity too fast,

then the condition (i) is going to be difficult to satisfy. On the opposite, if one chooses a

sequence pn that goes to infinity too slowly, then it is the condition (ii) that is going to be

difficult to satisfy. We therefore must find the correct rate for pn, if there is one at all.

Checking the first condition

As in Proposition 1, let va(θ) denote the parameters of the marginal density fa. We say

that LPL is pairwise strongly concave at θ0 if there is λ > 0 such that for all a and all θ, it

holds that La(va(θ))− La(va(θ0)) ≤ −λ‖va(θ)− va(θ0)‖2
2.

Lemma 1. If the function LPL is pairwise strongly concave at θ0 then

1

pn
(LPL(θ)− LPL(θ0)) ≤ −λmin{d− 1, Nmin}

pn
‖θ − θ0‖2

2.
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Proof. We have

1

pn
(LPL(θ)− LPL(θ0))

=
1

pn

∑
j<j′

[L(j,j′)(v(j,j′)(θ))− L(j,j′)(v(j,j′)(θ0))]

≤ − λ

pn

∑
j<j′

‖v(j,j′)(θ)− v(j,j′)(θ0)‖2
2

= − λ

pn

∑
j<j′

‖µj − µ0j‖2
2 + ‖µj′ − µ0j′‖2

2 + |w(j,j′)(θ)− w(j,j′)(θ0)|2

= −λ(d− 1)

pn

(
d∑
j=1

‖µj − µ0j‖2
2

)
− λ

pn

q∑
i=1

|θi − θ0i|2Ni

≤ −λ(d− 1)

pn

(
d∑
j=1

‖µj − µ0j‖2
2

)
− λNmin

pn

q∑
i=1

|θi − θ0i|2

≤ −λmin{d− 1, Nmin}
pn

‖θ − θ0‖2
2.

According to Lemma 1, the sequence pn must satisfy the condition pn = O(min{d −

1, Nmin}). Assuming the marginals are known and hence ignoring the marginal parameters,

the condition is pn = O(Nmin).

It remains to show that LPL is pairwise strongly concave. But this is easily seen:
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momentarily denoting va(θ) by θa and va(θ0) by θ0a for every pair a, it holds

La(θa)− La(θ0a) =
1

2
log

(
1− θ2

0a

1− θ2
a

)
− θa(θa − θ0a)

1− θ2
a

≤ θ2
a − θ2

0a

2(1− θ2
0a)
− θa(θa − θ0a)

1− θ2
a

= −(θa − θ0a)
2

2
F (θa, θ0a),

where here F (θa, θ0a) = [θ2
a + 2θaθ0a + 1]/[(1− θ2

a)(1− θ2
0a)] ≥ 1, for all 0 ≤ θa, θ0a < 1. To

sum up, condition (i) of Lemma F.2 is satisfied for all sequences pn such that pn = O(Nmin).

Checking the second condition

Remember that in the proof of Theorem 2, we controled the quantity

sup
g(1,2)∈G(1,2),...,g(d−1,d)∈G(d−1,d)

∣∣∣∣∣ 1n
n∑
i=1

∑
a∈A

W
(a)
ni

πn
ga(Xi)− E ga(X1)

∣∣∣∣∣
for arbitrary classes Ga. When the dimension grows to infinity, the chances for this strategy

to succeed are slim. One needs to take into account the fact that some of the bivariate

functions ga coincide.

In our model, all of the classes Ga are the same: Ga = G(1,2) = {`(1,2)(·, ·; θ), 0 ≤ θ < 1}

for every a ∈ A. Moreover, all the entries va(θ) of Σθ are either one of the parameters

θ1, . . . , θq or 0. To each a ∈ A+ there corresponds an integer between 1 and q, denoted by

k(a), such that va(θ), the parameter of the marginal fa, is equal to θk(a). Notice that when

a 6∈ A+, the log density `a(X
(a)
i ; va(θ)) = `a(X

(a)
i ; 0) plays the role of a constant, and hence

does not show up in the sum defining the randomized pairwise likelihood. Therefore, we
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have

sup
θ1,...,θq

|LRPL
n (θ)− LPL(θ)|

pn
= sup

g1,...,gq∈G(1,2)

1

npn

∣∣∣∣∣∣
∑
i

q∑
k=1

∑
a:k(a)=k

W
(a)
ni

πn
gk(X

(a)
i )− E gk(X

(a)
1 )

∣∣∣∣∣∣ ,
where above the elements g1, . . . , gq are distinct.

We now proceed as in the proof of Lemma E.2 with A = dn(dn − 1)/2. Let δ > 0. Let

N = N(δ,G(1,2), P ) denote the bracketing number of the class G(1,2). There are brackets

[gL
j , g

U
j ], j = 1, . . . , N , such that (i)

∫
gU
j − gL

j dP < δ for all j ∈ {1, . . . , N} and (ii) for

every g ∈ G(1,2), there is j ∈ {1, . . . , N} such that gL
j ≤ g ≤ gU

j . For each k = 1, . . . , q,

choose gk ∈ G(1,2) and denote by [gL
j(k), g

U
j(k)] the pair of brackets such that gL

j(k) ≤ gk ≤ gU
j(k).

It holds that

−|A
+|δ
pn

+
Ln,g
pn
≤ 1

npn

∣∣∣∣∣∣
∑
i

q∑
k=1

∑
a:k(a)=k

W
(a)
ni

πn
gk(X

(a)
i )− E gk(X

(a)
1 )

∣∣∣∣∣∣ ≤ Un,g
pn

+
|A+|δ
pn

,

where the random variables

Un,g =
1

n

∑
i

q∑
k=1

∑
a:k(a)=k

(
W

(a)
n,i

πn
gU
j(k)(X

(a)
i )− E gU

j(k)(X
(a)
1 )

)
,

Ln,g =
1

n

∑
i

q∑
k=1

∑
a:k(a)=k

(
W

(a)
n,i

πn
gL
j(k)(X

(a)
i )− E gL

j(k)(X
(a)
1 )

)

depend on g = (g1, . . . , gq) only through the brackets that enclose them. There are, there-

fore, at most qN possible bracket combinations and at most as many distinct Un,g and

Ln,g. Since N and q are fixed constants, it is sufficient to show that each of the qN possible

Un,g/pn and Ln,g/pn vanish in probability and lim sup |A+|/pn < ∞. Since it was shown
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that pn = O(Nmin), we take pn = Nmin, leading to the condition |A+| = O(Nmin).

It remains to show that Un,g/Nmin and Ln,g/Nmin vanish in probability. Let us focus on

Un,g/Nmin; the reasoning for Ln,g/Nmin is similar. By the same arguments as in the proof

of Lemma E.1, we have, for every ε > 0,

P

 1

nNmin

∣∣∣∣∣∣
∑
i

q∑
k=1

∑
a:k(a)=k

(
W

(a)
n,i

πn
gj(k)(X

(a)
i )− E gj(k)(X

(a)
1 )

)∣∣∣∣∣∣ > ε



≤
Var

[∑
k

∑
a:k(a)=k

(
W

(a)
n,1

πn
gj(k)(X

(a)
1 )− E gj(k)(X

(a)
1 )

)]
nN2

minε
2

=
(1− πn)

∑
k

∑
a:k(a)=k E gj(k)(X

(a)
1 )2

nπnN2
minε

2
+

E
(∑

k

∑
a:k(a)=k(gj(k)(X

(a)
1 )− E gj(k)(X

(a)
1 ))

)2

nN2
minε

2
,

where above we have left the superscript “U”. Notice that for each k = 1, . . . , q, the bivari-

ate vectors X
(a)
1 are identically distributed for all a ∈ A such that k(a) = k. Therefore, with

every choice a1, . . . , aq ∈ A such that k(ak) = k, it holds that
∑q

k=1

∑
a:k(a)=k E gj(k)(X

(a)
1 )2 =∑q

k=1 Nk E gj(k)(X
(ak)
1 )2 ≤ Nmax

∑q
k=1 E gj(k)(X

(ak)
1 )2. Even though the dimension d is al-
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lowed to go to infinity, this sum remains constant. The same reasoning yields

E

∑
k

∑
a:k(a)=k

(gj(k)(X
(a)
1 )− E gj(k)(X

(a)
1 ))

2

= E

(∑
k

Nk(gj(k)(X
(ak)
1 )− E gj(k)(X

(ak)
1 ))

)2

≤ N2
max E

∑
k

(gj(k)(X
(ak)
1 )− E gj(k)(X

(ak)
1 ))2

+
∑
k,k′

NkNk′ E(gj(k)(X
(ak)
1 )− E gj(k)(X

(ak)
1 ))(gj(k′)(X

(ak′ )
1 )− E gj(k′)(X

(ak′ )
1 ))

≤ N2
max

(
E
∑
k

(gj(k)(X
(ak)
1 )− E gj(k)(X

(ak)
1 ))2

+
∑
k 6=k′

√
E(gj(k)(X

(ak)
1 )− E gj(k)(X

(ak)
1 ))2

√
E(gj(k′)(X

(ak′ )
1 )− E gj(k′)(X

(ak′ )
1 ))2

)
.

Thus, the conditions under which Un,g vanishes in probability are

Nmax

nπnN2
min

→ 0 and
N2

max

nN2
min

→ 0.

G Proofs of the lemmas in Sections E and F

Proof of Lemma E.1

We have

|Pnnm− P ∗nm| =

∣∣∣∣∣ 1n
n∑
i=1

A∑
a=1

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣∣ .
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Let ε > 0. Chebychev’s inequality yields

P

(∣∣∣∣∣ 1n∑
i

∑
a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣∣ > ε

)
≤

E

∣∣∣∣∑i

∑
a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)∣∣∣∣2
n2ε2

.

Since the random variables
∑

a(π
−1
n W

(a)
ni ga(Xi) − E ga(X1)), i = 1, . . . , n, are i.i.d. and

centered, the upper bound is equal to

Var
∑

a

(
W

(a)
n1 ga(X1)/πn − E ga(X1)

)
nε2

=
(1− πn)

∑
a E ga(X1)2

nπnε2
+

E (
∑

a ga(X1)− E ga(X1))2

nε2
,

which goes to zero whether πn is constant or πn → 0 because nπn →∞ either way.

Proof of Lemma E.2

We shall follow the track of the proof of Lemma 3.1 in (van de Geer, 2000, p. 26). We have

sup
m∈M(G1,...,GA)

|Pnnm− P ∗nm| = sup
g1∈G1,...,gA∈GA

∣∣∣∣∣ 1n
n∑
i=1

A∑
a=1

W
(a)
ni

πn
ga(Xi)− E ga(X1)

∣∣∣∣∣ .
Let δ > 0. Denote Na = N(δ,Ga, P ). For every a = 1, . . . , A, there are brackets [gL

a,j, g
U
a,j],

j = 1, . . . , Na, such that (i)
∫
gU
a,j − gL

a,j dP < δ for all j ∈ {1, . . . , Na} and (ii) for every

ga ∈ Ga, there is j(a) ∈ {1, . . . , Na} such that gL
a,j(a) ≤ ga ≤ gU

a,j(a). Choose ga ∈ Ga for each
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a. We have

− Aδ + Ln,g := −Aδ +
1

n

∑
i,a

(
W

(a)
ni

πn
gL
a,j(a)(Xi)− E gL

a,j(a)(X1)

)

≤ 1

n

∑
i,a

(
W

(a)
ni

πn
ga(Xi)− E ga(X1)

)

≤ 1

n

∑
i,a

(
W

(a)
ni

πn
gU
a,j(a)(Xi)− E gU

a,j(a)(X1)

)
+ Aδ =: Un,g + Aδ.

In the above inequality, the random variable Un,g depends on the elements ga that have

been chosen in the classes Ga, but only through g := {g∗a,j, j = 1, . . . , Na, a = 1, . . . , A, ∗ ∈

{U,L}}, the brackets “enclosing” the elements ga. Since the total number of brackets is

finite, so is the number of random variables Un,g. (In fact, at most N1+· · ·+NA distinct Un,g

can show up in the inequality.) By Lemma E.1, each one of them vanishes in probability,

regardless of the behavior of the sequence πn. The same chain of arguments applies for the

random variables Ln,g. Therefore, since δ was arbitrary, the supremum over all possible

g1 ∈ G1, . . . , gA ∈ GA of the term lying between −Aδ + Ln,g and Un,g +Aδ also vanishes in

probability. The proof is complete.

Proof of Lemma E.3

Case πn = π constant. We have

G∗nnm =

√
π√
n

n∑
i=1

Yi,

37



where

Yi =
A∑
a=1

(
W

(a)
ni

π
ga(Xi)− E ga(X1)

)
, i = 1, . . . , n,

are independent, identically distributed and centered random vectors. Therefore, by the

central limit theorem, G∗nnm goes to a centered Gaussian random vector with variance-

covariance matrix (1− π) E
∑

a ga(X1)ga(X1)> + π
∑

a,b(E gag
>
b − E ga E g>b ).

Case πn → 0. We have

G∗nnm =
1
√
nπn

n∑
i=1

(
A∑
a=1

W
(a)
ni ga(Xi)− πn E ga(X1)

)

=
1
√
nπn

∑
i,a

(W
(a)
ni − πn)ga(Xi) +

√
nπn

(
1

n

∑
i,a

ga(Xi)− E ga(X1)

)
,

where the second term is of order
√
πnOP (1) and hence vanishes in probability as n→∞.

It remains to show that the first term goes to a Gaussian distribution. By Lindeberg-

Feller’s central limit theorem (see e.g. (van der Vaart, 1998, p. 20)), this is true under two

conditions:

(C1)
∑
i

Var

[
1
√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

]
→ Σ,

(C2) For all ε > 0,

∑
i

E

∥∥∥∥∥ 1
√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

∥∥∥∥∥
2

1

{∥∥∥∥∥ 1
√
nπn

∑
a

(W
(a)
ni − πn)ga(Xi)

∥∥∥∥∥ > ε

}]
→ 0,

38



where above 1{·} denotes the indicator function. Since the random vectors
∑

a(W
(a)
ni −

πn)ga(Xi), a = 1, . . . , A, are independent and identically distributed, the condition (C1)

boils down to
1

πn
Var

(∑
a

(W
(a)
n1 − πn)ga(X1)

)
→ Σ.

Thanks to the independence between {W (a)
n1 , a = 1, . . . , A} and X1, the lth row and l′th

column of the variance-covariance matrix

Var

(∑
a

(W
(a)
n1 − πn)ga(X1)

)

= E

E

[∑
a

(W
(a)
n1 − πn)ga(X1)

][∑
a

(W
(a)
n1 − πn)ga(X1)

]> ∣∣∣∣X1


is given by

E
∑
a,a′

gal(X1)ga′l′(X1) E(W
(a)
n1 − πn)(W

(a′)
n1 − πn)

= Eπn(1− πn)
∑
a

gal(X1)gal′(X1).

Thus, the left-hand side in the condition (C1) is (1−πn) E
∑

a ga(X1)ga(X1)> and we have

shown that it goes to Σ = E
∑

a ga(X1)ga(X1)>.

Let us now show that the condition (C2) holds. Choosing the Euclidean norm, the

condition boils down to

E

E

∥∥∥∥∥
A∑
a=1

W
(a)
n1 − πn√
πn

ga(X1)

∥∥∥∥∥
2

Bn

∣∣∣∣∣X1

→ 0,
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where Bn = 1
{∥∥∥∑a(W

(a)
n1 − πn)ga(X1)

∥∥∥ > ε
√
nπn

}
. The inner expectation is bounded by

2A−1

A∑
a=1

L∑
l=1

E

(W (a)
n1 − πn√
πn

)2

gal(X1)2Bn

∣∣∣∣X1



By Cauchy-Schwartz’s inequality and the independence between X1 and W
(a)
n1 , the expec-

tation above is less than√√√√E

(
W

(a)
n1 − πn√
πn

)4√
gal(X1)4 E(Bn|X1).

Straightforward calculations show that the first factor is equivalent to 1/
√
πn. Let us bound

the second one. We have

E(Bn|X1) = P

(∥∥∥∥∥∑
a

(W
(a)
n1 − πn)ga(X1)

∥∥∥∥∥
2

> ε
√
nπn

∣∣∣∣∣X1

)

≤ P

(∥∥∥∥∥∑
a

(W
(a)
n1 − πn)ga(X1)

∥∥∥∥∥
∞

>
ε
√
nπn√
L

∣∣∣∣∣X1

)

≤
L∑
l=1

P

(∣∣∣∣∣∑
a

(W
(a)
n1 − πn)gal(X1)

∣∣∣∣∣ > ε
√
nπn√
L

∣∣∣∣∣X1

)

≤
L∑
l=1

2 exp

(
− 2nπnε

2

L
∑

a 4(1− πn)2|gal(X1)|2

)
.

The last inequality is an application of Hoeffding’s inequality, see e.g (van de Geer, 2000,

p. 33). Gluing the pieces together, the left-hand side in condition (C2) is bounded above
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by

2A−1/2

A∑
a=1

L∑
l=1

√√√√ L∑
l′=1

E
gal(X1)4

πn
exp

(
− 2nπnε2

L
∑A

a′=1 4(1− πn)2|ga′l′(X1)|2

)
.

The condition in Lemma E.3 implies that the expectation above goes to zero. The proof is

complete.

Proof of Lemma F.2

From (i), |θ̂MRPL
n − θ0| ≥ ε implies (1/pn)(LPL(θ̂MRPL

n )− LPL(θ0)) ≤ −λ and hence

P
(
|θ̂MRPL
n − θ0| ≥ ε

)
≤ P

(
LPL(θ0)− LPL(θ̂MRPL

n )

pn
≥ λ

)
.

The proof will be complete if we can show that in the probability on the right, the random

variable in the left-hand side of the inequality vanishes in probability as n→∞. Thus, let

us write

LPL(θ0)− LPL(θ̂MRPL
n )

pn
=

LPL(θ0)− LRPL
n (θ0)

pn

+
LRPL
n (θ0)− LRPL

n (θ̂MRPL
n )

pn

+
LRPL
n (θ̂MRPL

n )− LPL(θ̂MRPL
n )

pn
.

The first and the last terms in the right-hand side of the above inequality vanish in prob-

ability by (ii). The term in the middle is nonpositive by definition. Therefore, since the

left-hand side is nonnegative, it must go to zero in probability as well. The proof is com-
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plete.

H Bound on an integral

Lemma H.1. If f is a function defined by

f(x) =
−α log x

x2
+

λ

(β + γx4)x2
,

x > 0, λ > 0, α > 0, β > 0, γ > 0, then there is x? ∈ (0,∞) such that f(x) ≥ f(x?) for all

x and −α(1− 2 log x?)(β + γx?4)2 − λγx?4 = 2λβ. Moreover, f(x?)→ 0 as λ→∞.

Proof. We have f ′(x) ≥ 0 iff

−α(1− 2 log x)(β + γx4)2 − λγx4 ≥ 2λβ. (S6)

Note that if x ≤ e1/2 then f ′(x) ≤ 0. Otherwise, (S6) is equivalent to

x4(ϕ1(x) + ϕ2(x)− λγ) + ϕ3(x) ≥ 2λβ, (S7)

where ϕ1(x) = −αγ2(1 − 2 log x)x4, ϕ2(x) = −2αβγ(1 − 2 log x) and ϕ3(x) = −αβ2(1 −

2 log x). The functions ϕ1, ϕ2 and ϕ3 are increasing and nonnegative on [e1/2,∞). Thus the

function in the left-hand side of (S7) is continuous and increasing and is equal to −λγe2

at e1/2. Therefore, it reaches 2λβ at a unique point x? > e1/2; this point satisfies (S7) and

hence (S6) with “=” instead of “≥”. It follows that the function f is decreasing on (0, x?),

reaches its global minimum at x? and is increasing on (x?,∞). It remains to show that
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f(x?)→ 0 as λ→∞. We have

f(x?) =
−α log x?

x?2
+

λ

(β + γx?4)x?2

and from (S7) we know that x? →∞. This implies that the limit is as required.

Lemma H.2. Let $ be such that
√

2$ =
∫
e−x

2/2 dx. If

I(λ) =

∫ ∞
0

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx,

σ > 0, λ > 0, α > 0, then for every 0 < γ ≤ 1, there are η0 > 0 and λ0 > 0 such that

I(λ) ≤

(
ηα exp

[
− λ

1 + γη4

]
σ
√

2$

2
+ exp

[
− η2

4σ2

])
exp

[
λ

1 + γη4
− λ

(1 + η2)2

]

for all η > η0 and λ > λ0.

Proof. Choose 0 < γ ≤ 1 and put f(x) := (1 + γx4)−1 − (1 + x2)−2. There is η0 > 0 such

that f ′(x) < 0 for all x > η0. Now choose η > η0. Then

B :=

∫ ∞
η

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx

≤ exp [λf(η)]

∫ ∞
η

xα exp

[
− λ

1 + γx4
− x2

2σ2

]
dx.

Let ν > 0. The integrand above is bounded by exp[−x2/(2ν2)] iff −2α log(x)/x2 +2λ/[(1+

γx4)x2] ≥ 1/ν2−1/σ2. In the above inequality, the function in the left is bounded below by

some constant that goes to zero as λ goes to infinity. (See Lemma H.1.) Taking ν2 = 2σ2

ensures that the inequality is true for all x as soon as λ is greater than some number λ0.
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Therefore,

B ≤ exp

[
λ

1 + γη4
− λ

(1 + η2)2

] ∫ ∞
η

exp

[
− x2

4σ2

]
dx

≤ exp

[
λ

1 + γη4
− λ

(1 + η2)2

]
exp

[
− η2

4σ2

]

for all η > η0 and λ > λ0. Finally,

A :=

∫ η

0

xα exp

[
− λ

(1 + x2)2
− x2

2σ2

]
dx

≤ ηα exp

[
− λ

(1 + η2)2

] ∫ η

0

exp

[
− x2

2σ2

]
dx

≤ ηα exp

[
− λ

(1 + η2)2

]
σ
√

2$

2

and, since I(λ) = A+B, the proof is complete.

Corollary H.1. The integral I(λ) defined in Lemma H.2 satisfies

I(λ) = O

(
exp

[
− λ1/3

4σ2 ∨ 2

])
, λ→∞.

Proof. In Lemma H.2, we may take η = λa, a > 0, because both η and λ are allowed to go

to infinity. If, furthermore, a < 1/4, then the first factor in the upper bound go to zero. If

γ = 1 and a ≥ 1/6 then the second factor goes to a nonnegative constant, say K. Now,
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with γ = 1 and a = 1/6,

(
λα/6 exp

[
− λ

1 + λ2/3

]
σ
√

2$

2
+ exp

[
−λ

1/3

4σ2

])
exp

[
λ1/3

4σ2 ∨ 2

]
= λα/6 exp

[
λ1/3

4σ2 ∨ 2
− λ1/3

λ−2/3 + 1

]
σ
√

2$

2
+ exp

[
λ1/3

4σ2 ∨ 2
− λ1/3

4σ2

]
.

The limit is zero if 4σ2 < 2 and one if 4σ2 ≥ 2. Therefore the limit of I(λ) exp[λ1/3/(4σ2∨2)]

is at most K. The proof is complete.
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