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Introduction
New technological developments of digital tracking systems contribute to the produc-
tion of an ever-growing volume of high resolution animal movement data. This new 
source of knowledge is crucial to better understand and visualize animal movements at 
different scales. It can thus provide insights to develop adequate conservation planning 
strategies that are flexible in space and time (Urbano et al. 2010; Allen and Singh 2016). 
However, as it has arisen recently in many disciplines, dealing with large amount of data 
has brought to light new problems regarding the extraction of meaningful information 
from huge data sets (Hampton et al. 2013; Louail et al. 2015). Handling the spatio-tem-
poral nature of this information is one of those.

Animal movement has long been observed and modeled through the lens of diffu-
sive processes (Turchin 1998) and foraging theories (Stephens and Krebs 1987) strongly 
focusing on the characteristic of the spatio-temporal trajectories such as speed or turn-
ing angles. As mentioned in Wittemyer et  al. (2017), with our new abilities to collect 
high resolution spatio-temporal data over long periods of time, we can more and more 
concentrate our research on the analysis of individual movements. We can make an 
analogy here between animal and human movements (Meekan et  al. 2017). The ten-
dency for human individuals for revisiting locations (González et  al. 2008; Song et  al. 
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2010) and their interactions with different types of environment according to the time 
of day (Lenormand et al. 2015) can also be investigated in animal movement (Polansky 
et al. 2015). This is to some extent similar to the concept of spatial memory in animal 
movement (i.e. the ability to relocate to  previously visited places) (Fagan et  al. 2013). 
One can for instance focus on the habitat uses and on potential regularities in animal 
spatial behaviors. Some examples include the identification of repeatedly visited home 
range areas (Benhamou and Riotte-Lambert 2012), the space–time characterization of 
springbok movement (Lyons et  al. 2013), the cougars’ changes in movement charac-
teristics over time (Ironside et al. 2017) and the repeated use of specific rest locations 
by female elephants (Wittemyer et al. 2017). However, they usually focus on long-term 
mobility behavior, and therefore the presence of daily spatio-temporal patterns is rarely 
investigated.

In this work, we are interested in identifying daily mobility patterns in fish spatio-tem-
poral trajectories. Our main objective is to investigate the regularities characterizing the 
fish behaviors in space and time on a daily basis. We want to understand whether fish 
tend to observe the same behaviors at the same time and place each day. For this pur-
pose, we draw upon the recent advances in individual human mobility patterns modeling 
and analysis (Barbosa et al. 2018), and more particularly the concept of daily motifs (Sch-
neider et al. 2013) adapted to animal movements. We rely on network-based tools (Bar-
thelemy 2011; Barabási and Pósfai 2016) that have been widely used this past ten years in 
ecology in general (Bascompte 2007) and movement ecology in particular (Jacoby et al. 
2012; Jacoby and Freeman 2016; Bastille-Rousseau et al. 2018). More precisely, we rely 
in this study on the concept of event network (Wilson 2016) that represents a powerful 
tool to extract a coarse-grained signature of spatio-temporal trajectories. We are inter-
ested in the connections between resting events, defined as the presence of an individual 
in a particular location during a time windows higher than a predetermined threshold. 
Hence, the nodes of the considered networks are defined in space and time and con-
nected according to their spatio-temporal proximity. The analysis of these networks will 
enable us to uncover daily fish resting patterns.

The next section describes in details the proposed approach. The guiding idea is that 
resting event networks can be extracted from spatio-temporal (Fig. 1). These networks 
are then analyzed and compared with a null model preserving the observed events spa-
tio-temporal characteristics to ensure that the patterns identified are not due to random 
configurations. Network science offers a wide variety of tools and metrics to explore 
systematically the event network structure. We are particularly interested in the event 
networks’ topological structure and its degree distribution investigating the relationship 
between the connection of events in time and their spatial proximity. Sets of highly con-
nected events and the movements between them are also considered in order to identify 
statistically prevalent network communities and network motifs.

We apply the method to analyze the daily mobility structure of different fish species in 
the Rhône River located in France. Although the temporal structure of the resting event 
network is mainly driven by the distribution of events duration and their day of occur-
rence, we show that it exists a spatial proximity between event occurring at similar hours 
but on different days. Finally, the method allows to capture daily mobility motifs in the 
global event network structure that are not reproduced by the null model.
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Methods
Data

The data set used for our analysis contains information about fish positions recorded 
with acoustic telemetry techniques between July and September 2009 in the Rhône 
River (France). In acoustic telemetry, the fish are tagged with acoustic transmitters that 
are then detected by receiver stations deployed in their natural environment. These 
data were collected as part of a research project conducted in a 1.8 km long and 140 m 
wide river segment. The purpose of the project was to track the movements of 94 fish 
captured in June 2009 in the river segment. For more details about the experiment see 
(Bergé et al. 2012; Capra et al. 2017; Lamonica et al. 2020). In favorable areas, fish posi-
tion can be received every 3 s. However, the signal can be subject to discontinuity in 
certain area of the river segment. Moreover, the presence of tagged fish in the study area 
can be very irregular and highly dependent on the fish individuals and the fish species. 
To assess the quality of the individual fish data, we segment each day of observation into 
288 5-min periods and compute the fraction γ of periods during which the position of 
the fish was recorded at least once. Based on this metric, we selected ten fish among 
the most frequently localized individuals that belong to three species: four barbels (bar-
bus barbus), two catfishes (ictalurus melas) and four chubs (squalius cephalus). For each 
fish individual, we selected the 10 days exhibiting the highest γ values. On average we 
detected the presence of the fish in the study area 85% of the day, with a minimum pres-
ence of 60% and a maximum of 100% . More details regarding the fish and day selection 
processes are available in Supplementary Information (Additional file 1: Figs. S1 and S2).

Daily spatio‑temporal trajectory

Fish trajectories are characterized by a sequence of visited locations. To build these 
sequences, both time and space need to be discretized. Each day is segmented into 288 
5-min periods and the river segment is divided into a regular grid composed of square 

Fig. 1  Illustration of the methodology used to extract resting event networks from spatio-temporal 
trajectories. Resting events are characterized by their duration, day of occurrence and location. A link is 
created between two events if they overlap in time on a daily basis. The weight of a link corresponds to the 
distance between events’ location
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cells of lateral size 20 m. Each 5-min period is assigned a location (i.e. a grid cell) if a 
position was recorded in that time interval. If no position is recorded during a time 
period, we assign it an unknown location. If the presence of a fish is detected into several 
grid cells in a given 5-min period, we choose the cell with the highest number of records. 
In the event of a tie, one of them is drawn at random. Nevertheless, in most of the cases, 
fish individuals spend most of their time in one location during a time interval (Addi-
tional file  1: Fig. S3a). At the end of the process, we obtain 100 daily spatio-temporal 
trajectories (10 days for each of the ten selected fish). A daily trajectory is represented 
by a spatio-temporal sequence S = {X1, ...,XT } of locations at which a fish was observed 
at each consecutive 5-min interval ( T = 288 ). It is important to note that some of these 
locations are unknown. However, the periods during which the presence of a fish is not 
detected in the study area during the selected days represents on average less than 15% 
of the time. Moreover, consecutive time periods with unknown location last generally 
less than 15 min (Additional file 1: Fig. S3b).

Resting event networks

The daily spatio-temporal trajectories defined in the previous section can be decom-
posed in a succession of events devoting to different fish “activities”. An event e is a sub-
sequence Se ⊆ S of consecutive locations. It is characterized by a starting time period 
te and a duration �e . In this work, we consider that a resting event r occurs when a 
fish rests in the same location during at least � consecutive time periods ( �e ≥ � ). We 
assume that unknown locations are always associated with non resting event whatever 
their duration. We only consider resting event starting and ending during the day (i.e. 
te > 1 and te +�e − 1 < 288).

For each fish, we obtain a collection of resting events R representing every resting 
events identified among the ten daily spatio-temporal trajectories. Whether an event 
belongs or not to R depends on the threshold � . Indeed, if � = 1 all the events are consid-
ered as resting events, and inversely, if � > 288 the entire trajectory will be consider as a 
non resting event. We may assume that the chosen value will depend on the type of ani-
mal but, in our case, the value � = 3 (15 min) seems to be a good compromise allowing 
us to preserve a reasonable number of resting events per day (between 6 and 28) while 
minimizing the variability across daily spatio-temporal trajectories (see Additional file 1: 
Fig. S4 for more details).

Now that the nodes of the resting event networks are formally defined, we need to 
connect them according to their similarities from both the spatial and temporal point of 
views. To this end, we propose two similarity metrics, δt and δs , to link the events accord-
ing to their spatio-temporal proximity. δt computes the number of time periods shared 
by two events while δs measures the spatial proximity between two events e and e′ based 
on the distance dee′ between the event locations (Eq. 1). To be more specific, the distance 
dee′ is equal to the euclidean distance between the centroids of the cells where the events 
e and e′ occurred (expressed in meters).

(1)δs(e, e
′) =

1

1+ dee′



Page 5 of 14Lenormand et al. Appl Netw Sci             (2021) 6:7 	

In this work, we decided to focus on the temporal proximity to build the topological 
structure of the networks and on the spatial proximity to define the intensity of inter-
actions between events. More specifically, a link is created between two events e  = e

′ 
if δt(e, e′) > 0 and the weight of a link between them is equal to δs(e, e′) . The creation 
of a link thus implies that two events share at least one time period. Since two events 
occurring at the same day do not overlap in time, it therefore follows that there is no link 
between events occurring at the same day. This is an important characteristic of the rest-
ing event networks that we propose in this study. At the end of the process, we obtain 
one weighted undirected spatio-temporal resting event network per fish.

Null model

To properly characterize the event networks and identify potential daily mobility pat-
terns in fish trajectories we first need to define a null model (NM). Null model analy-
sis are really useful to identify non-random patterns. In our case we need to generate 
random event networks preserving the observed events spatio-temporal characteristics: 
the number of events, the events duration and day of occurrence, and the global spatial 
distribution of events. The topology of the resting event network introduced in the pre-
vious section is strongly constrained in time. Indeed, the probability P(δt(e, e′) > 0) of 
connecting two events in a random situation is highly dependent of the events’ duration 
and whether they occurred on the same day or not. We can however take these temporal 
constraints into account by generating random networks’ topology in which, for a given 
day, starting events time are drawn at random along the day. In other words, we reshuf-
fled, for each fish, the starting time of every events of the resting event network while 
preserving the day of occurrence of the events and their duration. Regarding the spatial 
component of the network (i.e. link weights), we generated random weights δs(e, e′) by 
reshuffling the resting events’ location, thus preserving the spatial distribution of events 
locations over the 10 days of observation. Using this approach we generate 100 random 
event networks for each fish.

Network measures

Degree

Networks topology can be quantitatively described by a wide variety of measures. The 
most important of them is probably the node degree. The degree of a node is the num-
ber of connections that links it to the rest of the network. To evaluate to what extent the 
degree distributions are characteristic of the event networks structure, we will compare 
these distributions to the ones returned by the null models.

Dilatation index

Resting event networks are also spatial networks. To characterize the spatial component 
of event networks we introduce the Dilatation Index (DI) defined as the average pairwise 
euclidean distance between connected events. This metric is expressed in meters and 
defined as follows,
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where A = {(e, e′) ∈ R× R | e �= e
′ ∧ δt(e, e

′) > 0} represents the set of pairs of con-
nected events. As defined above, dee′ is equal to the euclidean distance between 
the centroids of the cells where the events e and e′ occurred (expressed in meters). 
In order to contrast the results, two other dilatation indices are also considered, 
DItot defined as the average pairwise euclidean distance between all the events (i.e. 
A = {(e, e′) ∈ R× R | e �= e

′} ), and, DINM defined as the average pairwise euclidean dis-
tance between connected events generated with the null model described above.

Network community structure

Community structure is an important network feature, revealing both the network inter-
nal organization and similarity patterns among its individual elements. In this study we 
used the Order Statistics Local Optimization Method (OSLOM) algorithm proposed in 
Lancichinetti et al. (2011) that detects statistically significant network community with 
respect to a global null model (i.e. random graph without community structure). This 
algorithm is non-parametric in the sense that it returns the optimal statistically signifi-
cant partition without defining the number of communities a priori. More details about 
OSLOM are available in Supplementary Information. In our case, the purpose is to iden-
tify spatio-temporal communities clustering events exhibiting significant temporal and 
spatial proximity.

Network motifs

An interesting local network property is recurrent patterns, repeating themselves in a 
network, and usually called network motifs. In this study, a motif is defined as a displace-
ment between spatio-temporal communities. To be more specific, two consecutive rest-
ing events occurring the same day can be interpreted as a spatio-temporal displacement 
between the community to which the first event belong to the community of the second 
event. We call this displacement a motif characterized by a movement between a com-
munity of origin and a community of destination that can be identical. A motif can be 
seen as an ordered pair of communities. Hence, for every fish and day of observation we 
can extract a list of daily motifs. Similarly to the method used in Clemente et al. (2018), 
the Sørensen index (Sørensen 1948) is used to define matrices of similarity between lists 
of daily motifs. This index varies from 0, when no agreement is found, to 1, when the 
two lists are identical. For each fish, we obtain 45 comparisons, each of them assessing 
the motifs similarity between 2 days of observation that can be used to investigate daily 
mobility patterns. More detail about the method used to compute the similarity between 
daily motifs are available in Supplementary Information.

Results
Resting event networks

Resting events

In order to get a preliminary grasp of the data we plot the resting event’s spatial distri-
bution in Fig. 2. We observe that the resting event locations are more or less dispersed 

(2)DI =
1

|A|

∑

(e,e′)∈A

dee′
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according to the fish individual. It seems however that there is no significant differences 
among species. We also plot several resting event characteristics in Fig. 3. Despite some 
particularities according to the species, the selected fish shows globally similar event fea-
tures. The average number of resting events per day, displayed in Fig. 3a, lies between 
15 and 20 with a standard deviation of 3 events. Regarding the duration of these events, 
fish tend to rest half of the day in average (Fig. 3c) with a median resting event duration 
around 20–30 min (Fig. 3b). Although the difference is not significant some differences 
among species can be observed. Chubs tend to have a higher number of resting events 
but with a lower fraction of resting event duration and resting time than the two others 

Barbel 3744 Barbel 3170 Barbel 3128 Barbel 3100 Catfish 3835

Catfish 3856 Chub 3240 Chub 3212 Chub 3730 Chub 3352

Fig. 2  Resting event’s spatial distribution. The blue squares represent the barbels’ resting event locations, the 
red squares stand for the catfish and the green circles for the chubs
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species. It is also interesting to note that their resting event characteristics are more sta-
ble in time (i.e. day) particularly regarding the resting event median duration.

Event network topology

We now want to identify potential temporal patterns by comparing the observed event 
network topology with the one returned by the null model introduced in the meth-
ods section. Some basic network properties are gathered in Table 1. The random net-
work has more connections than the original one leading to a slightly higher average 
degree. The event network degree distribution is an important feature that allows for the 
identification of temporal patterns. However, the degree distribution alone is not very 
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Fig. 4  Comparison between observed and average random degree distribution. Each point represents an 
event with the observed average degree on the x-axis and the average degree obtained with the null model 
on the y-axis averaged over 100 replications (the error bars represent one standard deviation). The insets 
show the marginal probability density distribution. We choose a representative example with the Barbel 
3170. Similar plots for all fish are available in Additional file 1: Fig. S5

Table 1  Statistical properties of the resting event networks

Number of events (#Nodes), number of links (#Links), average degree (Degree) and dilatation indices (expressed in meters). 
All the metrics based on the null model (NM) have been averaged over 100 replications. The associated standard deviations 
are available in Supplementary Information

Fish ID Species #Nodes #Links #Links (NM) Degree Degree (NM) DI DItot DINM

3744 Barbel 161 675 917.75 8.39 11.42 211.50 241.75 238.96

3170 Barbel 199 1049 1071.55 10.54 10.72 584.66 633.38 633.09

3128 Barbel 173 846 812.62 9.78 9.41 171.02 179.30 180.14

3100 Barbel 156 733 798.18 9.40 10.25 300.96 384.80 381.70

3835 Catfish 190 944 1116.14 9.94 11.76 157.94 169.11 167.06

3856 Catfish 168 668 728.65 7.95 8.70 206.75 135.76 131.74

3240 Chub 192 772 848.21 8.04 8.85 444.92 460.90 462.58

3212 Chub 176 507 596.46 5.76 6.78 292.03 298.11 297.49

3730 Chub 184 852 891.91 9.26 9.65 351.87 375.32 375.84

3352 Chub 216 942 1001.87 8.72 9.24 157.95 171.40 171.71
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informative since a network constrained in time will naturally tend to exhibit a heavy tail 
distribution. A comparison with the degree distribution obtained with the null model is 
therefore crucial to identify any particular network topology. Figure 4 displays an exam-
ple of such comparison for a barbel (see Additional file 1: Fig. S5 for all fish). Although 
the observed and randomized degree distributions (top and left insets) are similar, the 
observed degree of a specific event can be very different from the one returned by the 
null model. This deviation from the random situation is a good indicator of the pres-
ence of patterns in resting events temporal distribution. We observe that the degree of 
events with a very low observed degree increased systematically in random situation. It 
is important to note here that there is a clear relationship between the event duration 
and its degree. Indeed, the higher the duration of an event, the higher the probability for 
this event to be connected to other events (see Additional file 1: Fig. S6 for more details). 
Short resting events are therefore less connected than they should be. Conversely, the 
highly connected events of some fish (Additional file 1: Fig. S5) are less connected in the 
observed network than in random conditions. It means that events that should be con-
nected according to their long duration and day of occurrence are not connected. How-
ever, this is not the case for most of the fish whose temporal event network structure 
does not deviate substantially from the one returned by the null model (see Additional 
file 1: Fig. S5).

To conclude, we observe differences between observed and random network topolo-
gies. Nevertheless, the presence of patterns in the temporal structure of the fish event 
networks remains unclear. For most fish it seems indeed mostly driven by the distribu-
tion of events duration and their day of occurrence than specific temporal patterns.

Spatio‑temporal structure

To investigate the relationship between space and time in the resting event distribution 
we compute the dilatation index based on fish event locations for different network con-
figurations. All the metrics based on the null model (NM) have been averaged over 100 
replications. Table 1 presents the results obtained for each fish. We observe that except 
for the second catfish the dilatation index measured in the observed network (DI) is 
lower than the one measured in the null model ( DINM ). The latter is actually equivalent 
to the dilatation index DItot defined as the average distance between all the events not 
only the connected ones. This observation suggests that there are spatio-temporal pat-
terns hidden in the fish resting event networks analyzed in this study. Implying that a 
temporal proximity between resting events leads to a spatial proximity between events’ 
location.

Event network community analysis

In order to go further in the analysis of fish resting events spatio-temporal structure 
we perform a network community analysis for each of the ten selected fish. We first 
rely on the number of communities to assess the community structure obtained with 
the OSLOM algorithm. We observe in Table 2 that resting events can be globally clus-
tered in a dozen of spatio-temporal communities. Note that this number can vary by 
a factor of two from one fish to another. Chubs tend to have more communities than 
the other fish, probably due to the fact that they have more and shorter resting events 



Page 10 of 14Lenormand et al. Appl Netw Sci             (2021) 6:7 

than the two others species. Figure 5 shows a representation of the spatio-temporal 
distribution of communities according to their size (i.e. number of events). The tem-
poral dimension is presented on the x-axis with the average time (hour of the day) 
at which the events occurred. The spatial dimension is presented on the y-axis with 
the community dilatation index between connected events belonging to a community 
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Fig. 5  Analysis of the event networks’ community structure. The plots display the communities 
characteristics for every fish. Each point represents a community with the average resting time on the x-axis 
and the community dilatation index on the y-axis. The community dilatation index is normalized by the 
dilatation index DI. The size of the dots is proportional to the fraction of events

Table 2  Number of resting event network communities

The metric based on the null model (NM) have been averaged over 100 replications. The associated standard deviations are 
available in Supplementary Information

Fish ID Species #Com #Com (NM)

3744 Barbel 8 7.41

3170 Barbel 15 12.51

3128 Barbel 10 13.12

3100 Barbel 8 10.23

3835 Catfish 13 9.98

3856 Catfish 15 12.17

3240 Chub 10 11.03

3212 Chub 19 14.66

3730 Chub 16 9.96

3352 Chub 16 18.86
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normalized by the “global” dilatation index (DI in Table 1). We observe different size 
of communities, the biggest community contains in average 17% of the events, but 
there is no evidence of existence of a relationship between the community size and its 
average time of occurrence.

We have shown in the previous section that a relationship between the temporal 
proximity of events and their spatial proximity exists. We observe in Fig. 5 that this 
spatial proximity between connected events varies along the day with a community 
dilatation index more or less close to the global one (grey line) according to the hour 
of the day. Some communities exhibit a high dilatation index, up to three times DI, 
while others show a low dilatation index, sometimes close to 0. These deviations from 
the average may suggest different types of fish daily behaviors related to the heteroge-
neity of visited places according to the hour of the day.

In order to assess the significance of these results, we analyze the community struc-
ture, community size (Table  2) and their spatio-temporal distribution (Additional 
file 1: Fig. S7), obtained with the null model. As in Fig. 5, Additional file 1: Fig. S7 rep-
resents the spatio-temporal distribution of communities but for one realization of the 
null model. In this case the dilatation index between connected events belonging to 
the communities is normalized by the “global” dilatation index obtained with the null 
model ( DINM in Table  1). The differences between observed and null communities 
in terms of number and size is not striking. However, the difference between global 
and community dilatation indices is lower for the resting network obtained with the 
null model that the observed resting event networks. We have already shown that the 
dilatation index between connected events is significantly higher in random situation 
than in the observed one, but we also observed a temporal variation of the commu-
nity dilatation index, not reproduced by the null model.

It is however not clear whether or not these spatio-temporal patterns correspond to 
regularities due to the presence of fish daily motifs.

Daily motifs

With these event communities, we can now assess the similarity between fish daily 
motifs. As described in the methods section, each day of observation of a fish can be 
represented by a list of network motifs defined as a intra- or inter-community dis-
placement. We then calculate the Sørensen index between the ten lists of daily motifs 
for each fish. Figure 6 shows notched boxplots of the Sørensen index obtained with 
the observed daily motifs and the ones returned by the null model. First, we observe 
that the similarity between daily motifs is globally  high, with a median percentage of 
motifs in common ranging between 30 and 60 percent. It is worth noting that some 
days are more similar than others with a high variability around the median value. It 
seems however that there is no significant differences among species.

It is really interesting to note that the similarity between daily motifs is always sig-
nificantly higher in the observed than the random situation (between 2 and 3 times 
higher). Therefore, the daily mobility motifs identified here are not due to random 
configuration, they are the sign of spatio-temporal regularities in fish daily mobility 
behaviors.
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Discussion
Being able to develop new statistical tools and methods to extract meaningful informa-
tion from large data sets is crucial to enhance our comprehension of ecological systems. 
In this study, we contribute to this end by proposing a general method based on the con-
cept of resting event network to analyze animal daily mobility patterns. We successfully 
applied this method on several fish species in a large hydropeaking river in France. In 
particular, we showed that, despite some particularities according to the species, resting 
events characteristics are remarkably stable among fish individuals. We also found that, 
despite a few exceptions, the temporal dimension of resting event structure is mainly 
driven by the distribution of events duration and their day of occurrence. However, the 
spatial proximity between events temporally connected is higher in the observed events 
than the ones generated with the null model. This finding has been confirmed with the 
network community analysis performed in this study, showing that the community 
structure in terms of number and size is very similar to the ones return by the null model 
but the presence of temporal variation of the spatial component of the communities is 
not reproduced by the null model. Finally, we extracted daily motifs and demonstrated 
the presence of significant regularities in daily fish mobility.

The example chosen to illustrate the methodology is based on a local data set and on 
a small sample of individuals. It would be interesting to apply the proposed approach to 
other animals such as big terrestrial and marine mammalians for example. Neverthe-
less, focusing on fish daily mobility pushed us to incorporate a null model in the analysis 
enabling us to put aside patterns due to spatio-temporal constraints but also to highlight 
non random regularities.

To conclude, given the importance of animal resting behaviors in conservation plan-
ning strategies, the future application and adaptation of the proposed methodology are 
numerous. Moreover, as it is often the case with network-based tools, we believe that a 
key feature of the proposed approach resides in its generic nature since it can be applied 
to any type of individual spatio-temporal trajectories.
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Fig. 6  Similarity between fish daily motifs. Boxplot of Sørensen index between fish daily motifs according 
to the fish and fish species. Results obtained with the null model are displayed in a brighter version of the 
baseline fish species color. The boxplot is composed of 45 comparisons for the observed motifs and 45*100 
comparisons for the motifs obtained with the null model. Each boxplot is composed of the first decile, the 
lower hinge, the median, the upper hinge and the last decile
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