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Understanding the drivers of species distribution is necessary in order to properly pre-
dict the future geographical ranges of colonizing species. Yet this task is challenging for 
species involved in intimate interactions, such as parasites, since their distribution is 
likely shaped by a complex interplay between environmental-related and host-related 
factors. Here we developed an original approach combining species distribution models 
(SDMs) and population genomics to test whether the local environmental conditions 
or the host genomic background most likely limits the colonization of an emerging 
freshwater fish ectoparasite, Tracheliastes polycolpus. We hypothesized that the absence 
of T. polycolpus in some areas may be due to an unsuitable environment in these areas 
(the ‘environmental suitability hypothesis’) and/or to the presence of resistant hosts 
in these areas (the ‘genomic background hypothesis’). Using a SDM set at the French 
spatial extent, we first found that the environmental conditions of an uninfected area 
were as suitable for the parasite as those of infected areas. Then, using single nucleotide 
polymorphisms (SNPs) data at the host genome scale, we demonstrated that there was 
a strong association between the spatial occurrence of parasites and the host genomic 
background. In particular, the area in which the parasite was absent sustained a unique 
host population from a genomic standpoint, and ninety SNPs were significantly asso-
ciated to the infection status (parasitized versus unparasitized) of individual hosts. We 
concluded that the spatial distribution of T. polycolpus (and its colonization potential) 
was more likely limited by intrinsic host characteristics associated to parasite resistance, 
rather than to the local environmental conditions. This study illustrates the usefulness 
of combining modeling and genomic approaches to reveal the determinants of species 
distribution and to improve predictions about their future ranges.
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Introduction

Determining the factors limiting species ranges has long fas-
cinated ecologists (Gaston 2009, Wiens  et  al. 2010). This 
issue has recently gained particular attention because of the 
major implications of assessing the future geographical ranges 
of species facing global change (Guisan and Thuiller 2005, 
Moor  et  al. 2015, Narouei-Khandan  et  al. 2016). This is 
especially true for emerging parasites that have already been 
observed to expand (or shift) their ranges due to human 
activities, which can have direct negative feedback on human 
health and biodiversity (Kutz et al. 2005, Morgan et al. 2009, 
Escobar et al. 2017). Nonetheless, parasites are involved in 
a triple interaction between the parasite, the host and their 
common environment (Wolinska and King 2009). Hence, 
both the ecological conditions of the surrounding environ-
ment and the factors related to host defense and/or parasite 
virulence are likely to determine parasite spatial distribution 
(Grosholz 1994, Bozick and Real 2015).

Studies on the environmental determinants of parasite dis-
tribution have mostly focused on the abiotic features of the 
environment that affect the demographic dynamics of parasites 
(Lachish et al. 2013, Pérez-Rodríguez et al. 2013, Pickles et al. 
2013). For instance, in many parasites, a higher temperature 
has been shown to be associated with a broader seasonal win-
dow for an efficient transmission to hosts or vectors, which 
facilitates the colonization of new areas (Kutz  et  al. 2005, 
Paull et al. 2015, Caminade et al. 2019). Nonetheless, Lafferty 
(2009) argued that non-climatic environmental factors should 
also be considered in order to understand and predict the spa-
tial distribution of parasites. In particular, for parasites inhabit-
ing aquatic ecosystems a broad range of environmental factors 
(e.g. water temperature, precipitations, water discharge, habi-
tat configuration etc.) that can be strongly structured spatially 
(e.g. along the upstream–downstream gradient in rivers) have 
been shown to influence parasite distribution (Cardon et  al. 
2011, Blasco-Costa  et  al. 2013, Marcogliese 2016). Given 
the complexity of host–parasite relationships, the most recent 
modeling approaches actually tend to integrate both abiotic 
(e.g. climate, but also land cover, or habitat fragmentation) and 
biotic factors (e.g. hosts distribution, hosts density, biotic inter-
actions) as potential environmental determinants of the spatial 
distribution of parasites (Giannini et al. 2013, Gehman et al. 
2018, Byers et al. 2019).

Alternatively, many studies have aimed to understand the 
distribution of parasites by focusing on the individual charac-
teristics of hosts (physiology, behavior, immunity) or parasites 
(virulence factors, infectivity) that underlie infection levels 
(Grosholz 1994, Morand  et  al. 1996, Mougeot 2005). The 
host genomic background (e.g. the diversity of genes involved 
in the major histocompatibility complex) seems to be a key 
determinant of the individual infection status (Bernatchez 
and Landry 2003, Wegner et  al. 2003, Aguilar  et  al. 2016). 
In geographic areas in which founder effects and/or bottle-
necks have led to a heterogeneous spatial distribution of alleles, 
parasite distribution could be spatially limited because of the 
presence of specific alleles conferring resistance (Zhang et al. 

2015, Charbonnel et al. 2019). Next-Generation Sequencing 
approaches have recently opened new research avenues by giv-
ing access to thousands of both non-coding and coding markers 
related to host defense at the genome-wide level (Wenzel et al. 
2015, Benavides et al. 2016, Zueva et al. 2018).

Although studies that focus on the influence of host 
and parasite characteristics on the distribution of parasites 
are usually set at small spatial scales (but see Schwabl et al. 
2017, Vajana et al. 2018), they provide crucial complemen-
tary information to that gathered at larger spatial scales from 
approaches linking environmental features to parasite distri-
bution (Cardon et al. 2011, Fourcade et al. 2014, Vajana et al. 
2018). The distribution of parasite infecting poïkilotherms 
hosts has been shown to be driven by multiple environmen-
tal features acting either directly on the parasite life-cycle or 
indirectly by altering host characteristics (Cardon et al. 2011, 
Blasco-Costa et al. 2015). For instance, lower water flow has 
been demonstrated to suppress fish immune response which 
subsequently altered fish parasite distribution (Bakke and 
Harris 1998, Marcogliese 2001). However, only a very few 
studies have simultaneously investigated the relative (or joint) 
influence of environmental determinants (sensu largo) and 
host individual characteristics (and notably the role of their 
genomic background) on parasite distribution (Barrett et al. 
2013, Fourcade et al. 2014, Schwabl et al. 2017).

To provide such an integrative assessment of the determi-
nants of parasite distribution, we focused on the fish ecto-
parasite, Tracheliastes polycolpus which has rapidly emerged 
in French watersheds from northeastern Europe (Rey et al. 
2015). Tracheliastes polycolpus was accidentally introduced in 
France in the Loire River Basin in the 1920s, most probably 
by the introduction of its main fish host, Leuciscus idus, for 
aquaculture (Rey et al. 2015). In 15–20 yr T. polycolpus has 
expanded its range from the Loire River Basin to almost all 
French river basins (Rey et al. 2015). However, repeated sur-
veys by local managers never recorded infection by T. poly-
colpus in the northeastern river basins of France such as the 
Seine, the Rhin and the Meuse River Basins (Fig. 1). These 
three river basins thus constitute an intriguing geographi-
cally delineated unparasitized area. This is highly surprising 
because 1) the parasite has been able to rapidly colonize all 
other river basins in France (which suggests a high dispersal 
ability), and 2) it is found in sites directly adjacent to these 
unparasitized river basins (see the inset in Fig. 1) which are 
connected through man-made channels (that impede host 
dispersal but not the dispersal of the parasite, Mazé-Guilmo 
2016). Examining the environmental determinants and the 
host individual characteristics that potentially limit the para-
site’s range expansion is an important, yet challenging, objec-
tive that could be fulfilled using integrative approaches.

Here, we aimed to identify the environmental determi-
nants and the individual host characteristics that underlie the 
spatial distribution of T. polycolpus, and that hence explain 
why its range expansion is currently limited. Specifically, we 
tested two non-exclusive hypotheses. First, the ‘environmen-
tal suitability hypothesis’ states that environmental features 
(sensu largo) are driving the distribution of T. polycolpus in 
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France, and it can be predicted that environmental features 
of the unparasitized area (Fig. 1) are unsuitable for the para-
site life-cycle. Second, the ‘genomic background hypothesis’ 
states that the spatial distribution of T. polycolpus is driven by 
individual host characteristics, and it can be predicted that 
the genomic background of hosts from the unparasitized area 
is different from that of hosts from parasitized areas and this 
genomic background likely confers a resistance to T. polycol-
pus. To test these two non-mutually exclusive hypotheses, we 
combined species distribution models (SDMs) and popula-
tion genomic approaches. The first approach aimed to statis-
tically test whether the environment was suitable for parasites 
in the unparasitized area. In contrast, the second approach 
aimed to test whether the genomic structure of host popula-
tions underlined the difference in the host infection status 
(parasitized versus unparasitized) among geographic areas, 
and whether some genomic regions were statistically related 
to the infection status of individual hosts.

Material and methods

Biological models

Tracheliastes polycolpus is a crustacean copepod in which 
females are ectoparasites of freshwater fish (males are dwarf 

and free-living, Piasecki 1989). Females anchor to the fins 
of fish where they are fecundated by a single male and rap-
idly develop two egg sacs carrying on average one hundred 
eggs each (Loot  et  al. 2011). After hatching, free-living 
copepodids are released into the water; this represents the 
infective stage of the parasite (Mazé-Guilmo, 2016). Fin 
damage and inflammation are directly caused by the feeding 
activities of this parasite, which indirectly affects host fitness 
(Blanchet et al. 2009b).

In French watersheds, Leuciscus burdigalensis and Leuciscus 
leuciscus (rostrum dace and common dace, respectively) are 
the main host species of T. polycolpus. Leuciscus leuciscus inhab-
its rivers from the northern and eastern parts of France and 
extends its range far east in Eurasia, whereas L. burdigalensis 
is endemic to rivers of southwestern France (Fig. 1). Previous 
studies that were based on microsatellite and mitochondrial 
markers demonstrated that these two species are structured 
into five lineages in France (i.e. three and two lineages for 
L. burdigalensis and L. leuciscus respectively, Costedoat et al. 
2014), which are geographically delineated by French river 
basins (Fig. 1). The unparasitized area encompasses three river 
basins (Rhin, Seine and Meuse, Fig. 1, 2) that are inhabited 
by a single lineage of L. leuciscus (hereafter referred to as ‘lin-
eage III-unparasitized’, Fig. 1), and this lineage also inhabits 
the Normandy River Basin where the parasite is present (here-
after referred to as ‘lineage III-parasitized’, Fig. 1). Despite 

Figure 1. Map showing the distribution of sampled sites used in the SDM approach for the two Leuciscus species (dots, Leuciscus burdiga-
lensis; squares, Leuciscus leuciscus), together with their levels of parasite prevalence. The main Leuciscus lineages are also displayed. Grey lines 
delimitate the main River Basins (and some are indicated). The red line shows range delimitation between the two Leuciscus species. The 
inset is an enlarged representation of the area included in the black square in the main map. Finally, the hatched area refers to the area where 
hosts are consistently unparasitized. The L. leuciscus lineage I is not represented on this map since its range covers central European rivers 
and is absent in France (Costedoat et al. 2014).
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strong genetic differentiation, the two Leuciscus species have 
very similar ecological requirements. They both live in run-
ning water with moderate water temperature (from 14°C 
to 24°C in warmer months), and they are gregarious spe-
cies which usually feed on benthic invertebrates. Tracheliastes 
polycolpus also has several alternative host species including 
Parachondrostoma toxostoma, Gobio sp., Phoxinus phoxinus, 
Rutilus rutilus and Squalius cephalus (Lootvoet et al. 2013). 
Average prevalence on alternative hosts are lower than that on 
the main host species, as it generally ranges from 1% to 10% 
in alternative host species and from 10% to 90% in the main 
hosts species (Lootvoet et al. 2013).

Testing the environmental suitability hypothesis

We aimed to test whether environmental conditions could 
limit T. polycolpus distribution in the host lineage III-
unparasitized. We built a SDM at the French spatial extent 
linking environmental features to parasite prevalence esti-
mated at the sampling site level. Prevalence here refers to the 
number of parasitized hosts over the total number of hosts 
sampled in a given site. We used the SDM to test which 
environmental variables affect the distribution of T. polycol-
pus in France, and then used it to predict parasite prevalence 
as expected based on the actual environmental features. If 
the environment suitability hypothesis is verified, we would 
expect the SDM to predict low parasite prevalence in the 

lineage III-unparasitized, which would indicate that the envi-
ronment is unsuitable for the parasite in this part of France.

Field data
158 sites were sampled in French rivers from 2009 to 2011 
(Fig. 1). Sites were sampled using electrofishing by the the 
Agence Française de la Biodiversité (AFB), the Fédérations 
Départementales de Pêche et de Protection des Milieux 
Aquatiques (FDPPMA) or directly by our own team. 
Sampling was always carried out during summer to avoid sea-
sonal effects on parasite prevalence, and the sampling effort 
was kept as constant as possible. At each site, the number of 
dace sampled was recorded, their individual body length (mm) 
was measured, and their individual infection status (parasit-
ized by T. polycolpus or unparasitized) was determined. Data 
on infection status was used to calculate parasite prevalence 
at each site (number of parasitized dace divided by the total 
number of dace sampled). A total of 1935 dace were sampled 
(12 dace per site in average), among which 908 L. burdiga-
lensis (468 were parasitized) and 1027 L. leuciscus (257 were 
parasitized). In most sites, a piece of pelvic fin of each dace (5 
mm2) was sampled and preserved in 95% alcohol.

Environmental data
We focused on thirteen abiotic and biotic variables that may 
explain the spatial distribution of T. polycolpus. We focused 
on biotic variables measured at the individual host level (but 

Figure 2. Map showing the distribution of sampled sites used in the population genomic approach. Grey lines delimitate the main river 
basins and their names are indicated in white rectangles for relevant ones. The hatched area refers to area where hosts are consistently 
unparasitized.
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averaged at the site level, see hereafter), and both abiotic and 
biotic variables measured at the site level (see Table 1 for a 
detailed list).

At the individual level, we considered host body length 
(mm), expected heterozygosity (He) computed from a set of 
microsatellite data (Mazé-Guilmo 2016) and identity of the 
main host species of T. polycolpus on which we recorded infec-
tions (i.e. either L. burdigalensis or L. leuciscus, Table 1). Each 
of these variables was averaged at the site level before being 
included in the SDM.

At the site level, we first extracted biotic variables related 
to the fish community composition using the AFB database 
(Poulet et al. 2011, Blanchet et al. 2014). This database con-
tains fish occurrence data from yearly fish sampling in many 
sites evenly distributed across France. For each sampling 
site we drew a list of fish species occurrence over the period 
2009–2011, from which we summed the total number of fish 
species (‘fish species richness’) and the total number of host 
species for T. polycolpus (‘number of host species’, Table 1) 
defined according to Lootvoet et al. (2013).

We then extracted abiotic variables belonging to four 
main categories namely climatic variables, hydrographic vari-
ables, landscape variables and habitat fragmentation variables 

(Table 1). Water temperature was not available across all sam-
pling sites and was thus modeled based on air temperature 
variables. More specifically, we predicted the mean annual 
water temperature based on a combination of the mean annual 
air temperature, and the mean monthly air temperatures for 
January and July extracted for each site from the SAFRAN 
database (LeMoine 2002) using a random forest model (see 
Chevalier et al. 2018 for more details). Hydrographic variables 
were extracted from the ‘Réseau Hydrographique Théorique’ 
database (RHT, Pella et al. 2012) at each site: altitude (m), 
river slope (%), riverine distance of each site from its river 
source (km), area of the upstream watershed (km2), Strahler 
index (i.e. the hierarchical level in the hydrographic network 
of each river), river width (m), river depth (m), average size 
of bed sediment (mm), minimum average monthly river flow 
(m3 s−1) and average natural river flow (m3 s−1). Landscape 
variables were extracted from the Corine land cover 2012 
database (<www.statistiques.developpement-durable.gouv.
fr/corine-land-cover-0>) as percentages of main land cover 
types within a 10 km radius around each site using the first 
level of land cover description (agricultural land, artificialized 
lands, forest and semi-natural lands and wetlands grouped 
with bodies of water). We then synthetized hydrographic 

Table 1. Summary of the variables used in the species distribution model developed to identify the underlying determinants of T. polycolpus 
distribution in France. For each variable the organization level at which the variable has been measured is indicated along with the name 
of the variable and the associated biological hypotheses.

Level Explicative variables Hypotheses

Individual level Expected heterozygosity Global level of individual heterozygosity has been shown to impact parasite resistance 
in many host species, including dace (Blanchet et al. 2009a, Cardon et al. 2011)

Dace body length Larger hosts are expected to harbor more parasites because they are older (and less 
resistant) and because their bodies have a larger surface area (Cardon et al. 2011)

Species identity We expect that the two main hosts species (i.e. L. leuciscus and L. burdigalensis) on 
which we measured prevalence may differ in their intrinsic ability to resist the 
parasite

Site level 
(biotic)

Number of hosts species T. polycolpus is a generalist species (i.e. it can be found at lower prevalence on other 
cyprinid species than Leuciscus sp., Lootvoet et al. 2013) and may be affected by the 
dilution effect: the higher the host species richness, the lowest the prevalence 
(Johnson et al. 2008)

Fish species richness ‘Fish species richness’ refers to the same hypothesis than above (the dilution effect) 
except that it focuses on all species of the fish community since it can include 
potential host species that are fully resistant (Roche et al. 2012)

Site level 
(abiotic)

Climatic variables
 Water temperature 

(modeled from air 
temperatures)

Temperature affects several aspects of the parasite life-cycle (Cardon et al. 2011, 
Mazé-Guilmo et al. 2016) and may affect host resistance 

Hydrographic variables
 Hydrology (PC1) We expect that the weakly mobile infective larvae may be favored in waters with low 

velocities/discharges 
 Topology (PC2) Different topologic characteristics (slope, altitude) could define habitats that are more 

or less suitable to the parasite: for instance, sites at higher altitude may be less 
suitable

Landscape variables
 Landscape 1 and Landscape 

2 (PC1 and PC2)
Landscape composition around the site describe a particular level of anthropogenic 

pressures that can affect the success of non-native species 
Fragmentation variables
 Dam density Dams affect water velocity/discharge and may influence the survival of the infective 

larva
 Weirs density In the same way, weirs affect water velocity/discharge and may also influence the 

survival of the infective larvae 
 Weirs position Weirs position relates to the same hypothesis than above
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and landscape variables using principal component analy-
ses (one PCA per category) in order to avoid both collin-
earity and over-parametrization in subsequent linear models 
(Supplementary material Appendix 1 Fig. A1, Table A1). For 
the hydrographic variables, we conserved the first two axes 
(58% and 15% of the variance respectively, Supplementary 
material Appendix 1 Fig. A1a, Table A1) that we named 
‘Hydrology’ and ‘Topology’ respectively. For landscape vari-
ables we conserved the first two axes (50% and 28% of the 
variance respectively, Supplementary material Appendix 1 
Fig. A1b, Table A1) that we arbitrarily named ‘Landscape 
1’ and ‘Landscape 2’. Finally, we extracted fragmentation 
variables from the ‘Référentiel des Obstacles à l’Ecoulement’ 
database (ROE, <www.onema.fr/REFERENTIEL-DES-
OBSTACLES-A-L>) to quantify habitat fragmentation by 
weirs (number of obstacles being < 3 m height) or dams 
(number of obstacles being > 3 m height) within a 10 km 
radius around each sampling site. We input whether a weir 
was present directly upstream, downstream or both upstream 
and downstream for each sampling site (within a 2 km 
radius) to generate a more direct estimate of fragmentation at 
the sampling site level (categorical variable: upstream, down-
stream, both upstream and downstream or no weir at all). 
All abiotic characteristics were extracted using a Geographic 
Information System (QGIS Development Team 2008) and 
PCAs were run using the R package ‘ade4’ (Dray et al. 2007).

Statistical analyses

We developed a SDM to explain T. polycolpus prevalence at 
the site level by using a model accounting for spatial depen-
dence among sites as we detected a strong signal of spatial 
autocorrelation for T. polycolpus prevalence (Moran test, 
p-value < 0.001). We used the R package ‘spaMM’ (Rousset 
and Ferdy 2014) and its function ‘corrHLfit’ to specify geo-
graphic coordinates of each sampling site into continuous 
random terms.

We first built a full model fitted on the dataset covering 
the current range of T. polycolpus (i.e. parasitized areas, Fig. 1, 
n = 128 sites) to test the significance of each variable on para-
site prevalence. It included all explicative variables (Table 1) as 
well as the quadratic term for body length because preliminary 
visual inspections suggested a non-linear relationship between 
prevalence and body length. A binomial error terms distribu-
tion with a logit link function was fitted to the prevalence data. 
Then, likelihood ratio tests based on PQL/L fits were per-
formed by contrasting the full model to a model excluding the 
explicative variable of interest, so as to generate a χ2 statistic 
and its associated p-value for each explicative variable.

Secondly, we parametrized the model on a restricted dataset 
including 75% of the sampling sites covering the current range 
of T. polycolpus (i.e. parasitized areas, Fig. 1). The parameter-
ized model allowed predicting T. polycolpus prevalence both on 
the remaining 25% of the dataset covering the current range of 
T. polycolpus and in sites out of the range limit of T. polycolpus 
(Lineage III-unparasitized, Fig. 1). This procedure was reiter-
ated 100 times to account for the uncertainty arising from the 

selection of the calibration dataset. The predictive power of the 
model was assessed at the host lineage level and at the site level 
within each host lineage using the mean absolute error (MAE) 
computed using the R package ‘caret’ (Kuhn 2012). We finally 
compared predicted prevalence between lineages using contrast 
tests using the R package ‘lsmeans’ and a binomial generalized 
linear mixed model (Lenth 2016).

Testing the role of the genetic background

We aimed to test whether genomic background of hosts 
could explain the individual infection status of T. polycolpus, 
and hence its range limitation in the lineage III-unparasitized 
(Fig. 1). In this section, models were set at the individual 
level, with the response variable being whether or not a given 
individual host is parasitized. We investigated whether some 
genomic structure underlined the absence of T. polycolpus in 
individuals from the lineage III-unparasitized. Secondly, we 
investigated genomic variation associated with T. polycolpus 
occurrence at the individual level.

Data collection and sequencing
DNA was extracted from the piece of pelvic fin as described 
in Aljanabi and Martinez (1997), and collected on 96 indi-
vidual hosts belonging to the species L. leuciscus so as to 
reflect the variability of parasite prevalence and the differ-
ent lineages (lineage II, lineage III-parasitized and lineage 
III-unparasitized). Overall, 28 individuals from the lineage 
II were sampled at four sampling sites belonging to the 
Rhone River Basin (Fig. 2) and we selected half of them 
with parasites and the other half without. We then sampled 
28 individuals from the lineage III-parasitized at five sam-
pling sites belonging to the Normandy River Basin (Fig. 2), 
and we selected half of them with parasites and the other 
half without. Finally, 40 individuals from to the lineage III-
unparasitized were sampled at five sampling sites localized in 
the Rhin, Seine and Meuse Rivers Basins (Fig. 2).

We used a paired-end restriction site-associated DNA 
sequencing approach (RAD-seq, Baird et al. 2008) to sequence 
a reduced representation of the host genome into reads of 145 
bp. Briefly, DNA quality was tested using a spectrophotom-
eter (Nanodrop ND8000), quantified using a fluorimeter and 
standardized to 200 ng. DNA was sheared through sonication, 
digested using the sbf1 enzyme for one hour at 37°C and then 
inactivated at 65°C. Adapters were ligated and samples were 
individually barcoded. Sequences were amplified through ten 
PCR cycles using the kit KAPA HiFi HotStart ReadyMix. 
Libraries were paired-end sequenced on one lane of an Illumina 
HISeq3000 containing 96 independent banks (one per indi-
vidual) and using the chemistry V4 from kits TruSeq (2 × 125 
pb). Libraries were finally quality checked using BioAnalyzer. 
Library preparation and sequencing were performed at the 
GeT-PlaGe core facility (Toulouse, France).

Data filtering and catalogue construction
We relied on the ‘Stacks’ pipeline (ver. 2.3.4) to both filter the 
raw dataset and identify SNPs genotyped at the individual 
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level (Catchen  et  al. 2013). First, we removed reads with 
unidentified bases and/or with low quality scores (below a 
phred33 quality score of 20) using ‘process_radtags’. PCR 
duplicates were also removed using ‘clone_filter’. To build 
our catalogue of loci, alleles and ultimately SNPs from the 
filtered reads, we ran the ‘denovo_map.pl’ using as param-
eters value: m = 3, M = 2, n = 4 (i.e. set of parameters maxi-
mizing the number of SNPs having high likelihood according 
to preliminary tests). Finally, ‘populations’ was used to select 
loci with a minimum allele frequency above 3%, with a likeli-
hood over −20, with a minimum coverage depth greater than 
3, occurring in the three populations and in at least 40% of 
the individuals for each population. We also kept only one 
SNP per locus to limit linkage disequilibrium between SNPs. 
When applied to the whole database (i.e. 95 individuals 
because one individual was discarded due to its poor sequenc-
ing quality), this parameter set resulted in a catalog of 14 255 
SNPs. A final filtering excluded SNPs with more than 30% of 
missing values from further analyzes using the library ‘poppr’ 
in R (Kamvar et al. 2014). This resulted in a final dataset of 
2543 SNPs genotyped from 95 individuals.

Population genetic structure
A discriminant analysis of principal component (DAPC) was 
conducted using ‘adegenet’ (Jombart 2008) in R to first iden-
tify a potential genetic structure among populations using 
the ‘find.cluster’ function. All principal components were 
kept, and the best number of clusters was selected using the 
Bayesian information criterion (BIC). A second DAPC was 
run using 30 principal components (Supplementary material 
Appendix 1 Fig. A2) and the k number of clusters selected 
previously. The k − 1 discriminant functions (i.e. individu-
als’ scores extracted along the k − 1 discriminant axis) were 
then extracted. We finally constructed a generalized linear 
model (GLM) with a quasibinomial error term linking para-
site prevalence at the individual level to the k − 1 discrimi-
nant functions of the DAPC to test their significance. In this 
model, we also controlled for the host body length and the 
individual level of genomic diversity (measured as expected 
heterozygosity, He, calculated from allelic frequencies over 
all 2543 SNPs using the ‘adegenet’ R package). These later 
variables were included as continuous explicative variables 
(together with their respective quadratic terms) since they 
have been shown to be (sometimes non-linearly) related to 
individual parasite prevalence in this host–parasite system 
(Blanchet et al. 2009a).

Genome wide association study
We used a genome wide association study (GWAS) approach 
to test whether prevalence at the individual level was signifi-
cantly related to particular SNPs. We relied on GLMs with 
a quasibinomial error term linking parasite prevalence at the 
individual level (parasitized or unparasitized, response vari-
able) to the genotype (coded as a categorical factor: homozy-
gote for allele a or b and heterozygote ab) of each SNP. One 
model per SNP marker (i.e. 2543) was run in which we con-
trolled for population structure using the k − 1 discriminant 

functions described previously. We also included the host 
body length and He as continuous co-variables with their 
respective quadratic terms. Type I ANOVAs were performed 
to extract the p-value associated to each SNP marker. p-val-
ues were then corrected for multiple comparisons using a 
false discovery rate approach (FDR) and using the ‘fdrtool’ R 
package (Strimmer 2008).

The R software (ver. 3.5.3, <www.r-project.org>) was 
used to run statistical analyses when no other software is 
mentioned.

Results

Testing the environmental suitability hypothesis

In the parasitized area, Tracheliastes polycolpus prevalence was 
significantly related to host body length, host species iden-
tity, temperature, hydrology, the first synthetic variable of 
landscape composition and the position of weirs around the 
sampling site (Table 2). These relationships suggested that 
T. polycolpus prevalence was higher in L. burdigalensis than 
in L. leuciscus and that T. polycolpus prevalence was higher 
for hosts with an intermediate body length than for hosts 
with a smaller or larger body length (Supplementary material 
Appendix 1 Table A2). Furthermore, T. polycolpus prevalence 
was higher in cold sites localized in small rivers and preferen-
tially associated with agricultural lands rather than warm sites 
localized in large rivers and associated with forest or semi-
natural lands (Supplementary material Appendix 1 Table A2, 
Fig. A1). Finally, fragmentation by weirs had a significant 
impact on T. polycolpus prevalence, with higher prevalence 
expected in sites in which a weir was present downstream 
(compared to other positions of weirs or no weir at all, Table 2 
and Supplementary material Appendix 1 Table A2).

Computation of model MAE indicated an overall 
good predictive power of the model, at the lineage level 

Table 2. Likelihood ratio tests [ χ2, degrees of freedom (df) and  
p-values] testing the significance of each of the explicative variables 
included in the SDM that was developed to identify the underlying 
determinants of T. polycolpus distribution in France. Significant vari-
ables are indicated in bold.

Variable χ2_LR df p_value

Expected heterozygosity 0.031 1 0.860
Dace body length 11.380 1 0.001
(Dace body length)2 5.563 1 0.018
Species identity 13.330 1 < 0.001
Number of hosts species 0.539 1 0.463
Fish species richness 1.031 1 0.310
Water temperature 5.554 1 0.018
Hydrology 4.591 1 0.032
Topology 1.621 1 0.203
Landscape 1 9.619 1 0.002
Landscape 2 1.820 1 0.177
Dams density 0.474 1 0.491
Weirs density 0.413 1 0.520
Weirs position 8.849 3 0.031
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(MAE = 0.151, Fig. 3) and at the site level within most host 
lineages (ranging from 0.258 in lineage II to 0.367 in lin-
eage VI). In the five host lineages localized in the current 
range of T. polycolpus, prevalences predicted from our model 
were very close to observed prevalences (except in the lineage 
VI, Fig. 3). However, in the unparasitized area of the lin-
eage III (i.e. lineage III-unparasitized, Fig. 3), the predicted 
parasite prevalence was high (0.36) and similar to the prev-
alence values observed and predicted in areas and lineages 
in which T. polycolpus is currently present (i.e. L. burdiga-
lensis, lineage II, lineage III-parasitized, Fig. 3). Specifically, 
in lineage III-unparasitized, the predicted parasite preva-
lence was not significantly different neither from the preva-
lence predicted in the lineage III-parasitized (Contrast test, 
p = 0.220, Supplementary material Appendix 1 Fig. A3) nor 
from the prevalence predicted in the lineage II (Contrast test, 
p = 0.102, Supplementary material Appendix 1 Fig. A3). 
This indicated that the environment was not unsuitable for 
T. polycolpus in the lineage III-unparasitized.

Testing the role of the genetic background

The clustering analysis based on 2543 SNPs revealed that the 
best clustering was achieved for k = 3 (Supplementary material 

Appendix 1 Fig. A4). The two first axes of the DAPC performed 
for k = 3 and based on 30 PCA components summarized 67.3% 
of the total variance (Fig. 4). The first axis discriminated the 
two dace lineages (i.e. lineage II and lineage III), as well as indi-
viduals of the lineage III belonging to the parasitized area from 
individuals of the same lineage but belonging to the unparasit-
ized area (Fig. 4 and Supplementary material Appendix 1 Fig. 
A5). Interestingly, the second axis discriminated individuals 
localized in the parasitized areas from individuals localized in 
the unparasitized area (lineages II and lineage III-parasitized 
versus lineage III-unparasitized, Fig. 4). This suggests that the 
genomic background of dace localized in the unparasitized area 
is different from the genomic background of dace belonging to 
the lineage II, but also from dace belonging to the lineage III 
but localized in the parasitized area. Furthermore, we found 
that both the first and second discriminant functions had a 
significant effect on individual infection status (F = 9.750; 
df = 88,1; p = 0.002 and F = 77.830; df = 88,1; p < 0.001 
respectively).

Finally, when controlling for population structure, the 
GWAS revealed 90 SNPs significantly associated to T. poly-
colpus prevalence measured at the individual level for L. leu-
ciscus (at a FDR threshold of 5%, Supplementary material 
Appendix 1 Table A3).

Figure 3. Barplot showing the average prevalence for each dace lineage. Black bars correspond to data measured in the wild. Grey bars cor-
respond to values predicted by the SDM model (averaged over 100 iterations). Error-bars are standard deviations from the mean.
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Discussion

We identified factors limiting the spatial distribution of an 
emerging parasite in its invasive range. Combining a species 
distribution model and population genomics approaches we 
suggest that host characteristics, such as the genomic back-
ground of individuals living in the unparasitized area, are 
more likely than environmental features to explain the cur-
rent spatial distribution of Tracheliastes polycolpus, and hence 
why it has not invaded some areas.

We first highlighted a complex role of environmental fac-
tors involving multifactorial drivers of T. polycolpus spatial 
distribution. Climate is one of the most studied drivers in 
parasite distribution (Kutz  et  al. 2005, Barrett  et  al. 2012, 
Caminade et al. 2019). We consistently found a significant 
effect of water temperature. In particular, cold sites were 
associated with high prevalence, which matches the biology 
of this parasite species and also the host habitat preferences 
(Mazé-Guilmo et al. 2016, Franke et al. 2019). However, we 
also found significant effects of various environmental driv-
ers such as host related factors (host body length and host 
species), the river topography, the surrounding landscape 
composition and the anthropogenic fragmentation. Overall, 
these later findings corroborate previous findings on this spe-
cies. For instance, as in Blanchet  et  al. (2009a), we found 
that parasite attachment is favored in hosts with intermedi-
ate body length, probably because of a trade-off between the 
surface available to the parasite to anchor and age-related 
ability of hosts to resist/tolerate the parasite (Cardon et  al. 
2011). Similarly, we found that sites localized in small rivers 
with low stream velocity (negative effect of the ‘Hydrology’ 

variable, Supplementary material Appendix 1 Fig. A1) and 
with a weir downstream were associated to high prevalence. 
These effects were expected as the free-living infective stage 
of this parasite requires low water velocity for development 
(Loot et al. 2004). More generally, such a multifactorial envi-
ronmental determinism of T. polycolpus distribution strongly 
supports the growing view that integrative distribution mod-
els accounting for multiple environmental drivers, including 
biological interactions, are particularly powerful for pre-
dicting the spatial distribution of parasites (Lafferty 2009, 
Giannini et al. 2013, Marcogliese 2016).

Based on predictions from this species distribution model, 
we further showed that environmental suitability was unlikely 
to explain the range limitation of T. polycolpus. Prevalence 
levels predicted from environmental conditions characteriz-
ing the area in which the parasite is currently absent were 
similar to those characterizing areas in which the parasite is 
recurrently observed. This suggests that these conditions are 
suitable for T. polycolpus. One could argue that in unparasit-
ized French river basins we may have missed some key envi-
ronmental variables better predicting the occurrence of the 
parasite. Nonetheless, our species distribution model showed 
very good predictive performances for all other host lineages 
highlighting a very good predictive power. It is noteworthy 
that predicted parasite prevalences were underestimated for 
the host lineage VI. Interestingly, the lineage VI is also the 
most phylogenetically differentiated lineage of L. burdigalen-
sis and is actually considered as a separate endemic species by 
some authors (L. bearnensis, Kottelat and Freyhof 2007 but 
see Costedoat  et  al. 2014). Discrepancy between predicted 
and observed prevalence in this phylogenetically divergent 

Figure 4. (a) Scatter plot from a DAPC based on genomic data (2543 SNP markers) showing population differentiation between the three 
genomic clusters previously inferred. Parasitized and unparasitized refer to the area (Fig. 1) not individual fish condition. The 30 first axes 
of a PCA were retained and two axes were retained for the DAPC as eigen-values plots show. (b–c) Contribution of each SNP to the mul-
tivariate DAPC analysis. These plots show the extent to which each allele is driving genomic population differentiation along the first (b) 
and (c) second axis of the DAPC. Each vertical line corresponds to the contribution of a unique SNP. SNP whose value is above the grey 
horizontal line are SNP contributing to more than 2‰ to the genomic differentiation between clusters. The SNPs are identified as follows: 
loci number_position of the SNP.
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lineage as well as in the host lineage III-unparasitized sug-
gest that other factors than environmental suitability, notably 
host genomic background, could determine patterns of T. 
polycolpus prevalence, and consequently its range limitation.

Using a population genomic approach based on 2543 
SNPs, we showed that host genomic background is associ-
ated with T. polycolpus distribution, both at the individual 
and population levels. We first revealed a marked host pop-
ulation structure in L. leuciscus that spatially matches the 
distribution of T. polycolpus. We showed that the lineage III 
proposed by Costedoat et al. (2014) is actually separated into 
a parasitized ‘sub-lineage’ localized in the Normandy River 
Basins (Fig. 2) and unparasitized ‘sub-lineage’ in the Rhin-
Seine-Meuse River Basins. Previous studies on the genetic 
structure of the Leuciscus species complex were based on 
microsatellite, allozyme and mitochondrial markers, and cov-
ered a more extended spatial extent but with fewer sampled 
individuals per location (Costedoat et al. 2006, 2014). Here, 
the finer genetic structure that we detected probably results 
from the higher resolution of the SNP panel we used, as well 
as from the more intensive sampling of the Leuciscus species 
within lineages. For technical reasons, we focused on a subset 
of T. polycolpus host distribution in France (Fig. 1, 2). We can 
thus speculate that within-lineage genomic structure of host 
populations could be a more general mechanism underlying 
patterns of T. polycolpus prevalence across France (e.g. within 
the lineage II, where southern sites sampled also display null 
prevalence, Fig. 1). We further found that 90 SNPs were asso-
ciated with individual infection status, even when controlling 
for population structure. Both the genetic uniqueness of host 
populations localized in the unparasitized area and the asso-
ciation of SNPs with individual infection status suggest that 
T. polycolpus range limitation is due to local host resistance, 
hence providing a strong support to the ‘host genomic back-
ground hypothesis’.

The emergence of resistance against T. polycolpus in north-
eastern river basins is an intriguing question and two main 
hypotheses can be formulated: one related to macro-evo-
lutionary processes and the other one related to recent and 
rapid adaptation of hosts to this invasive parasite. The ‘macro-
evolutionary’ hypothesis assumes that resistance to T. polycol-
pus emerged during the differentiation of Leuciscus lineages 
over time. Costedoat et al. (2006) dated the differentiation 
of the lineage III back to the Pleistocene (~500 000 yr ago), 
with the colonization of river basins of northern France from 
eastern Europe. The differentiation between the lineage III-
parasitized and lineage III-unparasitized (and hence the emer-
gence of resistance) may have consequently occurred during 
late Pleistocene, probably after the former Channel River 
had retracted, hence causing a loss of connectivity between 
Normandy River Basins and Rhin-Seine-Meuse River Basins 
(which occurred ~10–12 000 yr ago, Antoine  et  al. 2007, 
Hugueny  et  al. 2011, Dias  et  al. 2014). Alternatively, the 
recent and rapid adaptation scenario assumes rapid adaptive 
changes in hosts along with the introduction of T. polycolpus 
in France during the 1920s (Rey et al. 2015). Some exam-
ples of rapid evolution of resistance to disease in wild host 

populations have been documented (Duffy and Sivars-Becker 
2007, Bonneaud et al. 2011, Epstein et al. 2016), but these 
examples remain rare. In the L. leuciscus–T. polycolpus system, 
adaptive evolution toward resistance cannot be excluded since 
we found significant SNP-infection status associations, but 
whether emergence of resistance is due to drift or to adaptive 
evolution, and whether this occurred far in the past or very 
recently are questions that would need to be fully tested.

Overall, our results demonstrated the importance of 
combining approaches for predicting the distribution range 
of co-evolving and interacting species. Species distribution 
modelling approaches focusing on parasite species have, so 
far, mainly focused on environmental factors (Ostfeld et al. 
2005, Caminade et al. 2019). However, our results suggest 
that predictions of future parasite distribution (such as north-
ern range expansion as often predicted in the context of cli-
mate change, Altizer  et  al. 2013, Carter 2018), when only 
based on environmental drivers should be carefully inter-
preted. Here, we indeed provided an empirical example in 
which the presence of a parasite would have been expected 
in an area where the parasite actually never achieved to infect 
local hosts. This suggests that ecological features alone are 
not sufficient to explain the range and potential spread of 
emerging parasites (Pérez-Rodríguez  et  al. 2013, Anderson 
2017). Furthermore, the genomic-based approach allowed 
demonstrating that the host genomic background was likely a 
critical factor for explaining T. polycolpus distribution both at 
the population and the individual levels. Population genomic 
approaches allow accounting for evolutionary processes lead-
ing to parasite resistance such as local adaptation, which, 
from our results, appears to be a crucial process to take into 
account in order to improve predictions regarding the poten-
tial spread of emerging pathogens. To conclude, our study 
illustrates the usefulness of integrative approaches to reveal 
the determinants of emerging pathogens at large spatial scales 
as well as to predict future spread.
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