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In recent years, multi-modal measurements of process and product properties have become widely
popular. Sometimes classical chemometric methods such as principal component analysis (PCA) and
partial least squares regression (PLS) are not adequate to analyze this kind of data. In recent years, several
multi-block methods have emerged for this purpose; however, their use is largely limited to chemo-
metricians, and non-experts have little experience with such methods. In order to deal with this, the
present review provides a brief overview of the multi-block data analysis concept, the various tasks that
can be performed with it and the advantages and disadvantages of different techniques. Moreover, basic
tasks ranging from multi-block data visualization to advanced innovative applications such as calibration
transfer will be briefly highlighted. Finally, a summary of software resources available for multi-block
data analysis is provided.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In analytical chemistry, data obtained by multiple sources is
frequently encountered [1e3]. A multi-block data set can either
come from a multi-platform analysis of the same samples (e.g., to
reach a better understanding of the physico-chemical properties of
the analyzed objects which is not possible with a single technique
[1,4]), or by the combination of chemical measurements with non-
analytical data generated from sensory or consumer sciences [5]. In
both cases, the data is not simply multivariate but is multi-modal,
i.e., multivariate and multi-source. An example of this would be
data generated by two different spectroscopic techniques such as
mid-infrared (MIR) spectroscopy and Raman spectroscopy. In this
rch, Wageningen University
ingen, the Netherlands.
.

ier B.V. This is an open access artic
case, spectral profiles are multivariate (as the responses are ac-
quired at several wavenumbers), and the modes are represented by
the two different spectroscopic techniques. Furthermore, multi-
modal data can also be obtained when working under different
conditions, for instance, when multiple batches of an industrial
process produce data under different processing conditions [6e9].

Chemometrics has been developed to handle multivariate data
generated from analytical techniques [10,11]. The foundation of
chemometrics lies on the identification of the underlying latent
spaces using bilinear or trilinear multivariate data decomposition
techniques. These explorations of latent spaces are specifically
targeted to find any structured variation and/or correlationwith the
key property of interest. Once identified, latent spaces can be used
to perform several data processing tasks, such as transforming
high-dimensional data to a lower dimensional representation for
data visualization purposes [12], or developing regression models
for predictive analysis [13] and identification of key variables of
interest [14e16]. Traditional chemometric methods (single-block
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

2D 2 dimensional
3D 3 dimensional
CCSWA Common component and specific weight analysis
ComDim Common Dimensions
CT Calibration transfer
DISCO-SCA Distinct and common simultaneous component

analysis
GCA Generalized canonical analysis
GSVD Generalized singular value decomposition
GUI Graphical user interface
H-PCA Hierarchal principal component analysis
H-PLS Hierarchal partial least-squares
JIVE Joint and individual variances explained
JUMBA Joint and unique multi-block analysis
MB-PCA Multi-block principal component analysis
MB-PLS Multi-block partial least-squares
MB-VIOP Multi-block variable importance in projection
MBA-GUI Multi-block analysis graphical user interface
MCR Multivariate curve resolution
MIR Mid-infrared
MOCA Multiple co-inertia analysis
MVP Multi-block variable partitioning
NIR Near-infrared
O2PLS Orthogonal 2-block partial least-squares
OnPLS Orthogonal n-block partial least-squares

P-EASCA Penalized exponential analysis of variance
simultaneous component analysis

P-ESCA Penalized exponential simultaneous component
analysis

PARAFAC Parallel factor analysis
PAT Process analytical technologies
PCA-GCA Principal component analysis generalized canonical

analysis
PCA Principal component analysis
PLS Partial least-squares
PO-PLS Parallel orthogonalized partial-least squares

regression
PORTO Parallel pre-processing through orthogonalization
ROSA Response-oriented sequential alternation
SCA Simultaneous component analysis
SCD-PCovR Sparse common and distinct principal covariate

regression
SLIDE Structured learning and integrative decomposition
SO-CovSel Sequential orthogonalized covariate selection
SOeN-PLS Sequential orthogonalized n-way partial least-

squares
SO-PLS Sequential orthogonalized partial-least squares

regression
SPORT Sequential pre-processing through orthogonalization
SR Selectivity ratio
VIP Variable importance in projection

Fig. 1. Scheme of multispectral fiber system (figure courtesy of Art Photonics GmbH,
Germany [26]). Raman system (1); FTIR absorption system (2); NIR reflection system
(3); fluorescence detector (4); chemical reactor (5); and fiber optic probes (6).
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chemometric techniques), such as principal component analysis
(PCA) [12], partial least squares (PLS) regression [13] and their
variants, only work properly when the data is single-mode, i.e.,
generated by only one source of variability, such as a single
analytical technique. In the case of multi-block data, the standard
single-block-techniques extract only a limited part of the infor-
mation present in the data [3,17]. It is only by using multi-block
data analysis techniques that it is possible to extract the comple-
mentary information from data generated in multiple modes [3,18].

Multi-block data analysis accomplishes similar tasks as single-
block chemometric techniques, i.e., enhancing data visualization
[3,19] improving predictive performances [1,4], and identifying the
key variables that influence the models [3,19e21]. Furthermore,
multi-block analysis can achieve an enhanced understanding of the
common and the distinct information present in the data coming
from different platforms [3,19e21]. The present review provides a
brief overview of the multi-block data analysis concept, the various
tasks that can be performed with it and the advantages and dis-
advantages of different techniques. Moreover, basic tasks ranging
from multi-block data visualization to advanced innovative appli-
cations such as calibration transfer will be briefly highlighted.
Special attention has been paid to simplify the explanation of
complex concepts andmethods related tomulti-block data analysis
so that users with minimal experience in chemometrics can un-
derstand and use advanced multi-block methods in their daily
tasks. And finally, a summary of software resources available for
multi-block data analysis is provided.

2. When is the multi-block data generated and what are its
characteristics?

An example of an experiment that produces a multi-block data
set is presented in Fig. 1, where four different spectroscopic tech-
niques (near-infrared spectroscopy, mid-infrared spectroscopy,
Raman spectroscopy and fluorescence spectroscopy) are combined
2

to monitor the chemical process taking place in a glass vessel. The
data from all the four techniques are acquired simultaneously as
presented in Fig. 2. This is just an illustration, but such acquisitions
of multi-source data are becoming popular in analytical chemistry
[22e25]. A similar example is the non-destructive quantification of
(bio-) chemical components in an aqueous process containing
fluorescent compounds.

The main characteristics of multi-block data is that it either
consists of multiple matrices corresponding to different analytical
platforms generated from measurement on the same sample



Fig. 2. A schematic of the multiblock data generated in a four-blocks scenario (figure
courtesy of Art Photonics GmbH, Germany) [26].
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(Fig. 3A), a combination of matrices and higher order tensors
(Fig. 3B), or different independent batch processes (Fig. 3C).
3. Multi-block data pre-processing

Data pre-processing is essential in chemometrics and, like the
standard one-block methods, multi-block analysis is also influ-
enced by the pre-processing operation. In the case of multi-block
analysis, data pre-treatment can be divided into two stages, i.e.,
the inter-block and the intra-block pre-processing [8]. Recently,
Campos and Reis provided a comprehensive systemization of
multi-block data pre-processing and divided the steps into three
levels [8]. In particular, the first level [8] includes the standard
chemometric pre-processing operations to correct artefacts and
uninteresting variations such as noise, multiplicative effects,
scaling, baseline drift, peak shift and variations related to external
factors [27]. At the second level, the aim is to equalize the contri-
bution of all variables within each block and this can be achieved by
classical methods such as mean-centering and unit variance scaling
[8]. The third (and final) level aims at equalizing the inter-block
systemic effects such as the differences in the scales, number of
variables and the pseudo rank of different blocks [8]. This level of
pre-processing is necessary as some multi-block analysis methods
tend to favor the blocks with larger variations, leading to model
bias. However, with proper scaling or weighting of blocks, it has
been proven that model interpretation and predictive accuracy can
be increased [28]. The third level (inter-block) pre-processing ap-
proaches are mainly scaling, such as block scaling, block variance
scaling and block rank scaling [8,28]. Block scaling and block vari-
ance scaling balance the effect of the modelled blocks, to avoid any
block dominating the model [8]. More detailed information on
multi-block pre-processing can be accessed in a recently published
work [8]. Although multi-block pre-processing is important, not all
3

approaches to multi-block data analysis require all levels of pre-
processing. For example, the sequential and parallel approaches
to partial least-squares regression are less sensitive to the relative
scaling of the blocks and can also deal with the differences in the
ranks of multi-block data [8], because these methods handle the
multi-block data one block at a time, involving orthogonalization
steps which do not affect the relative weighting of the blocks [8,18].

In conclusion, the main outcome of all these considerations is
that multi-block pre-processing must be carefully planned in
accordance with the multi-block analysis to be performed.

4. Multi-block exploratory data analysis

Exploratory analysis is often performed to obtain low-
dimensional representations of high-dimensional multivariate
data, to facilitate its interpretation. The key properties of the data
can thus be visualized by means of interpretable 2D or 3D plots. In
chemometrics, one of the aims is to identify the latent (sub-) spaces
capturing key properties of data such as highest variance/closest fit
in the case of PCA, or maximum co-variance to the response vari-
ables for supervised data decomposition such as PLS. The data
decomposition results in a set of scores and loadings, where the
scores are the low dimensional representation of the data and the
loadings are the latent vectors spanning the relevant sub-space. In
standard one block chemometrics, different methods are available
for latent space modelling. In fact, the identification of these latent
spaces depends on data modes: for a simple 2D data matrix,
bilinear decomposition methods such as PCA can be implemented,
whereas when the order of the data increases to 3D or more, then
higher-order extensions of PCA called Tucker and parallel factor
analysis (PARAFAC) can be implemented. However, one block che-
mometrics methods do not provide a complete solution to deal
with multi-block data.

To deal with the challenges of visualizing multi-block multi-
variate data, several extensions of one-block chemometric methods
as well as new specific multi-block approaches have emerged in
recent decades. A summary of these methods is provided in Table 1.
There are different classifications of the multi-block methods; one
is based on the separation into two families, depending on how
these approaches handle common and distinct information in the
blocks. The first family comprises approaches based on identifying
the common information among different data blocks and later
exploring the contribution of each block to the common compo-
nents. The second family of methods is based on the simultaneous
extraction of the common as well as the distinct information in the
different data blocks. The methods belonging to the first family are
extensions of PCA. A simple, popular extension of PCA for themulti-
block scenario is SUM PCA [17], where multiple data blocks are
concatenated in the variable's domain and standard PCA is per-
formed on the joint data, leading to extraction of global principal
components. More advanced extensions, called multi-block PCA
(MB-PCA) or consensus PCA [29], allow extraction of global com-
ponents as well as the contribution of the associated blocks. The
extraction of subsequent components is performed by deflation of
the matrices with respect to the global components. This is done by
regressing all the variables in the different blocks with the
extracted global component, and the resulting residuals are then
used to extract new global components, and so on. The deflation
step is performed such that each global component contains unique
information. A method like MB-PCA, called multiple co-inertia
analysis (MOCA), was also proposed to explore multi-block data
[30]. From an algorithmic point of view, MOCA follows the same
procedure as MB-PCA to extract the global components, however,
in the second step, the block loadings are used for block deflation,
not the global scores as used in the case of MB-PCA [31]. The



Fig. 3. A summary of typical multi-block data configurations in analytical chemistry. (A) data generated by multiple analytical platforms in the form of 2D matrices, (B) data
generated by multiple analytical platforms in the form of 2D matrices or higher order tensors, and (C) multi-set data from batch processes which can be treated as multi-block data
when different batches are treated independently.
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deflation with the block loadings in MOCA allows the blocks to
capture orthogonal information. Furthermore, an advanced version
of PCA for multi-block analysis is hierarchal PCA (H-PCA) which
provides the global components along with the weights of the
blocks to reflect the importance of each block in contributing to the
extracted global components [29,32]. Like H-PCA, a method called
common components and specific weight analysis (CCSWA or
ComDim) has gained attention, as it also allows the extraction of
global components and the specific weights for each block to have
an insight into each one's importance [33e35]. Ideally, both H-PCA
and CCSWA lead to similar solutions but CCSWA is more sophisti-
cated in terms of mathematical explanations with several possi-
bilities of method extensions [35e38].

The methods extracting common components (global compo-
nents) work well when the objective is to globally explore the
different blocks, however, they lack the means to highlight which
information is unique in each block. A framework for extraction of
common and distinct information recently summarized by Smilde
et al. [3], is presented in Fig. 4, where the three circles represent
three different blocks of data measured on the same samples and
4

the letters D and C indicate the distinct and the common parts of
the information, respectively. Several methods can be identified in
the framework of common and distinct information extraction, and
the evaluation of their performances can be found elsewhere
[3,7,20,21]. Some examples of these are distinct and common
simultaneous component analysis (DISCO-SCA) [39], principal
component analysis - generalized canonical analysis (PCA-GCA) [3],
generalized singular value decomposition (GSVD) [40], orthogonal2
PLS (O2PLS) [41], joint and individual variances explained (JIVE)
[42], structure revealing data fusion [43,44] and structured learning
and integrative decomposition (SLIDE) [45]. In the case of DISCO-
SCA, the first step involves a SCA step to decompose the matrices
to a set of scores and loadings matrices. In the second step, the
loadings matrices are partitioned and orthogonally rotated to
reveal the common and distinct components in the multi-block
scenario. In the case of the PCA-GCA, the first step is to perform
PCA followed by a GCA. PCA is performed to enhance the stability of
the GCA components. The second step is the regression of each
block onto its own common components, the residuals of the
regression are the distinct subspace which can then be used for



Table 1
A summary of multi-block methods available for multi-source data integration in chemometrics.

Tasks Data order Methods Background Key features References

Exploratory data
analysis

2nd order data Consensus principal
component analysis
(CPCA)

� Global components are extracted maximizing the variance
� Individual blocks are later regressed on the global

components to extract the weights for individual blocks to
have an insight into the contribution of each block to the
global component

� Weights of individual blocks provides importance for
each block in the final model

� Superweights normalized to length ¼ 1

[50]

Extensions of
multivariate curve
resolution (MCR)

� The data blocks or matrices are concatenated along the
common direction (rows, columns, both)

� MCR is applied to the augmented data array

� By suitable definition of the selectivity constraint, can
extract both common and distinct components

� Can deal with “incomplete” multi-sets (some matrices
sharing the row-dimension and some others the column
one)

� Through the use of suitable constraints, can be used also
for predictive modelling

[47]

Hierarchal principal
component analysis (H-
PCA)

� Like CPCA but relies on different normalization (superscores
normalized to length ¼ 1).

� Objective function is not clear
� May provide different solutions depending on

initialization.

[29,32]

Common component
and specific weight
analysis (CCSWA)

� Global components are extracted sequentially by maximizing
the variance of the weighted sum of cross-product matrices.

� Individual blocks are later deflated on the global components,
and the whole procedure is repeated on the deflated blocks.

� On each dimension, weights of individual blocks indicate
the importance of each block in the construction of the
corresponding component

� Both global and local components for each block can be
obtained, as well as loadings for each block.

[34]

Multiple co-inertia
analysis (MOCA)

� Data are preliminary transformed
� Orthogonal components are extracted so as to maximize the

sum of the squared covariance with the scores of each block

� Provides a simultaneous ordination of measurements and
variables of multiple blocks

[30]

Orthogonal 2 partial
least-squares (O2PLS)

� Preliminary estimation of common subspace by svd(XT
2X1)

� Orthogonalization of the blocks with respect to common
subspace

� Distinct component extracted from the orthogonalized blocks
� After deflation of the distinct components, the final common

components are extracted by a PLS-like step between the
blocks

� Common components are different between the blocks
� No asymmetric relation between the blocks is assumed

[41]

Distinct and common
simultaneous
component analysis
(DISCO-SCA)

� The joint subspace is extracted by SCA.
� Target rotation of the block loadings is used to identify

common and distinct components

� Does not allow the extraction of partially shared
components

[39]

Joint and individual
variances explained
(JIVE)

� Iterative extraction of common and distinct components
� SVD on the concatenated data matrices to estimate the

common components
� Deflation of each block with respect to the common

components
� SVD on the deflated blocks to estimate the distinct

components

� The ranks of common and distinctive matrices are
determined by permutation tests.

[42]

Principal component
analysis Generalized
canonical analysis
(PCA-GCA)

� Preliminary PCA on individual blocks to filter out noise.
� Finds linear combination of the blocks which best fit to a set

of orthogonal common components

� Focuses on common components
� Distinctive components are obtained by PCA on the

residual matrices after regressing each block on the
common components.

[3]

Generalized singular
value decomposition
(GSVD)

� Preliminary SCA to filter out noise.
� Joint SVD of the different data matrices
� Identification of common and distinct components based on

the singular values

� Originally proposed for multi-set data sharing the vari-
able dimensions.

[40]

Structured learning and
integrative
decomposition (SLIDE)

� Loadings are organized in a block-dependent structure
� Structure sparsity is imposed to reveal the common, distinct

and the partially shared information

� Can be considered as an intermediate model between
SUM-PCA and JIVE

� Components common only to some blocks can be
extracted

[45]

Penalized exponential
simultaneous

� Common and distinct variation in the data explored
separately

[21]

(continued on next page)
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Table 1 (continued )

Tasks Data order Methods Background Key features References

component analysis (P-
ESCA)

� Penalties are incorporated in the simultaneous component
analysis for separating common and distinct information in
the multi-block data

Penalized exponential
analysis of variance
simultaneous
component analysis (P-
EASCA)

� Combines the penalized exponential simultaneous
component analysis with the analysis of variance
simultaneous component analysis

� The multi-block data is decomposed into common and
distinct part and later the ASCA is used for exploratory
analysis of common and distinct variation

� Only multi-block technique available for exploration of
designed experimental data

[19]

Higher order data Combined matrix and
tensor factorization

� Combines the matrix factorization and tensor factorization � Data of multiple order such as 2D, 3D etc. can be jointly
explored

[43,44]

Predictive analysis 2nd order data Multi-block partial
least-squares
regression

� Global components are extracted maximizing the covariance
with the response variable(s)

� Individual blocks are later regressed on the global
components to extract the weights for individual blocks to
have an insight into the contribution of each block to the
global component

� Weights of individual blocks provides importance for
each block in the final model

� Block weights and superweights are normalized to unit
length

[48]

Hierarchal or consensus
partial least-squares
regression

� A CPCA cycle is performed on the multiple X blocks.
� A PLS cycle is done between the superscores and the

response(s)

� Superscores are normalized to unit length [29,50]

Orthogonal n partial
least-squares (OnPLS)
regression

� Extension of O2PLS to the multi-block scenario
� A global regression model is calculated between the block

containing the responses to be predicted, and the scores
extracted from all the other matrices

� Can be also used for exploratory analysis, since no
asymmetric relations between the blocks are assumed a
priori

[51]

ComDim (kþ1), or P-
ComDim

� Two sets of global components (for the predictor blocks and
for the response blocks) are extracted sequentially by
maximizing the variance of the sum of cross-product matrices
involving both predictor and response blocks.

� Individual blocks are later deflated on the global components,
and the whole procedure is repeated on the deflated blocks.

� The weights (saliences) of each block on each dimension,
indicates its importance in the determination of that
common component

[37]

Sequential orthogonal
partial least-squares
(SO-PLS) regression

� Includes a combination of partial least-squares regression and
sequential orthogonalization step to extract complementary
latent variables from multi-block data

� Complementary unique information is extracted [52]

Parallel orthogonal
partial least-squares
(PO-PLS) regression

� Includes a combination of partial least-squares regression,
canonical correlation analysis and orthogonalization step to
extract common and distinct latent variables from multi-
block data

� Common and distinct information can be extracted
� Good for the cases when order of block is not important

or all blocks are of equal importance

[52]

Multi-block variance
partitioning (MVP)

� Individual PLS models between each predictor block Xk and Y
� For each block, unique Y-related variation is obtained by

orthogonalizing the predicted responses with respect to the
corresponding responses predicted using the other blocks

� Common variation is obtained by subtracting the unique part
and the residuals from the total variance

� Extracts common and distinct information
� Scale invariant
� Can be extended to evaluate the performances of

preprocessing methods

[53]

Higher order data Multi-way multi-block
covariates regression

� Extension of principal covariate regression
� Scores are extracted so as to explain the variation in their

associated block and convey similarities between the blocks

� A different number of scores can be extracted from each
block

� The extent to which inter- and intra-block variation is
accounted for is regulated by a metaparameter.

[60]

Sequential orthogonal
N-way partial least-
squares regression

� Includes a combination of PLS regression or N-PLS regression
(depending on the nature of the block to model) to
sequentially extract complementary latent variables from
multi-way multi-block data

� Complementary information is extracted [59]

Variable selection 2nd order data Variable importance in
projection (VIP) þ SO-
PLS

� The method is based on estimating the variable importance
on the components extracted by the sequential
orthogonalized partial least-squares (SO-PLS) regression

� The variables can be extracted with simultaneous SO-PLS
modelling

[54]

Sequential
orthogonalized

� Based on the sequential covariance maximization and
orthogonalization step to select variables across multiple
blocks of data

� The approach is sequential so data blocks based on their
importance can be arranged by user

[55]
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subsequent PCA [3]. In the case of GSVD, after performing a pre-
liminary SCA step to filter out the noise from the data, singular
value decomposition is jointly applied to the different matrices,
under the constraints that the left singular vectors (i.e., normalized
scores) be the same for all blocks and that the matrices of singular

values Db obey
PNblocks

b¼1
D2
b ¼ I, Nblocks being the number of blocks and I

the identity matrix of appropriate dimensionality. Then, identifi-
cation of a component as common or distinct is made based on the
associated singular values for the different blocks [40]. The O2PLS
approach can be considered as a multi-block extension of orthog-
onal PLS (OPLS), with the relevant difference that no asymmetric
relation among the blocks is implied, so that the method can be
used also for exploratory purposes [41]. At first, the distinct com-
ponents are extracted from each block, which is then deflated;
accordingly then, a PLS step is carried out to extract the common
components from the deflated blocks. In the case of JIVE, the
different blocks of data are directly decomposed into a set of
common and distinct information by an iterative procedure
involving alternating steps of SVD decomposition of the concate-
nated blocks for the estimation of the common component and SVD
decomposition of the individual blocks after deflation of the esti-
mated common components to account for the distinct variation
[42]. In the case of structure revealing data fusion, the matrices are
jointly factorized and with the help of penalty terms, the common
and distinct information is extracted [43,44]. Finally, the SLIDE can
be considered as an intermediate model between SUM-PCA and
JIVE as it allows components to be partially shared (i.e., common
only to some blocks). This is achieved by arranging the loadings in a
block-dependent structure and imposing structure sparsity to
reveal the common, distinct and the partially shared information
[45]. In analytical chemistry, experiments are often organized by
means of experimental designs (DoE), and much insight about the
samples can be gained in this way. Recently, to deal with this, a new
multi-block data visualization tool for exploration of multi-block
data generated by designed experiments was proposed. The
method is called penalized exponential analysis of variance -
simultaneous component analysis (PE-ASCA). PE-ASCA is a com-
bination of penalized exponential - simultaneous component
analysis (PE-SCA) [21] and the analysis of variance - simultaneous
component analysis (ASCA) [46]. In PE-ASCA, the multi-block data
is first partitioned into common and distinct information and later
ASCA models are used to incorporate the design information while
exploring the data using the SCA. The application of PE-ASCA was
recently presented in the domain of metabolomics [19].

Another interesting family of methods is the extension of the
multivariate curve resolution (MCR) bilinear decomposition tech-
nique [47] to the multi-set configuration. MCR operates a self-
modelling resolution of mixed profiles into the contribution of
the corresponding pure constituents, through a bilinear modelling
usually incorporating chemically inspired constraints (e.g., non-
negativity, unimodality, mass-balance, selectivity, just to cite a
few). The basic trick behind the use of the MCR for dealing with
multiple data sources is to first concatenate the data matrices along
the common direction and then analyze this augmented data array
through MCR, retaining, as a sort of additional constraint, the in-
formation related to the presence of different data blocks. In this
respect, themethod is rather flexible, as it can easily deal with cases
where the common direction is represented by the variables (e.g.,
in multi-batch situations), by the samples (multi-source data
integration) or, even by both (e.g., with different sets of samples
having all been analyzed bymore than one technique). More details
on the extension of the MCR for multi-block data analysis can be
found elsewhere [47]. Here it should also be stressed that by



Fig. 4. A framework of common and distinct information extraction from multi-block
data. Each circle represents data from a different technique. Inside each circle, D is the
distinct information and C is the common information. The figure is inspired by the
multi-block data concept presented in Ref. [3].
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introducing suitable so-called selectivity constraints, it is possible
to guide the model towards the extraction of both common and
distinct components. As well, through the use of other constraints
(e.g., correlation), MCR can also be employed for predictive
purposes.

5. Multi-block predictive modelling

In recent years, a lot of effort in analytical chemistry has been
put into developing spectroscopic methodologies to replace
certain complex and highly sophisticated wet chemistry routines
for quantitative analysis. In chemometrics, a common method to
perform this task is partial least-squares (PLS) regression [13]
which decomposes the data into a set of scores and loadings.
Later, the scores are used to perform the ordinary least-squares
regression. In the case of PLS regression, the scores are extrac-
ted to have maximum covariance with the response variable(s).
However, PLS cannot be explicitly implemented in the scenario of
multi-block data, especially when the aim is to extract common
and distinct information. Several approaches to do multi-block
predictive analysis have recently gained attention and a sum-
mary of methods can be found in Table 1. Unlike standard PLS
regression and classification modelling, the aim of multi-block
predictive methods is to extract the complementary information
from multiple sources to improve the quality of the models
(prediction accuracy and/or interpretability). In chemometrics,
most of the methods for multi-block predictive analysis are ex-
tensions of standard PLS regression to the multi-block scenario. In
this regard, one of the first methods developed was multi-block
partial least-squares (MB-PLS) regression. This approach, in the
formulation proposed by Qin et al., 2001 allows the extraction of
global scores by maximizing the covariance with the response
variable(s) [29,48,49]. The extracted global scores are used in
ordinary least squares regression to obtain predictive models.
Hierarchal PLS (H-PLS) is a more sophisticated method that al-
lows the extraction of global and block components, giving the
possibility of understanding the relative contribution of each
block to the global model [29,32,50]. A similar method, called P-
ComDim, or ComDim (kþ1), extracts global scores that capture
the maximum covariance with the response variable(s) [37]. This
is done by maximizing the covariances between the local scores
8

of each block and the scores of the response block. In a procedure
like that of CCSWA, the loadings of the variables in each block and
the weight (salience) of each block can be calculated for each
common component. However, the MB-PLS and the ComDim
(kþ1) approaches do not provide a clear extraction of the com-
mon and distinct information from the different data blocks. To
deal with this, orthogonal n-PLS (OnPLS) was proposed [51],
which is the extension of the two-block O2PLS to the multi-block
scenario. As O2PLS, OnPLS does not introduce a priori any
asymmetry among the blocks, so that it could in principle be used
as an exploratory technique; however, if one block contains the
response(s) to be predicted, by suitably combining the scores
extracted from all the other matrices, a global regression model
can be calculated. Recently, another multi-block extension of PLS
regression, called response-oriented sequential alternation
(ROSA) was also proposed [73]. ROSA adopts a “winner-takes-all”
approach to extract the components which are calculated in turn
from the block leading to the lowest error. In comparison to other
multi-block methods, ROSA was found to be computationally
faster, as it does not require any deflation step to calculate
orthogonal scores and loading weights, can easily deal with a
large number of blocks and is invariant to block scaling and
ordering [73].

More recently, two other methods, i.e., sequential and
orthogonalized-PLS (SO-PLS) and parallel and orthogonalized-PLS
(PO-PLS), were also proposed as extensions of standard PLS [52].
The SO-PLS approach involves a series of standard PLS regression
and matrix orthogonalization operations to extract sequentially
the complementary information from different data blocks; a
generic schema of the algorithm is presented in Fig. 5. As
mentioned, in SO-PLS, the extraction of information is sequential,
meaning that the aim is to incorporate blocks of data one at a
time and to assess their incremental contribution. A PLS regres-
sion model is calculated between the first block X1 and Y, yielding
scores T1. Then, all the remaining blocks X2, … Xk and Y are
orthogonalized with regards to T1. The process is repeated on the
second block, and so on for all the blocks, taking care to
orthogonalize all the following blocks with respect to the previ-
ously modelled matrices. The major advantages of SO-PLS are
linked to the orthogonalization, which removes redundant in-
formation, and to its sequential nature, which allows the inter-
pretation of the incremental contributions provided by each data
block. The SO-PLS approach is particularly advantageous when
the aim is to identify possible extra benefits from the inclusion of
each block of information into the model [18]. On the other hand,
the PO-PLS approach involves a combination of PLS regression,
generalized canonical correlation analysis (GCA) and multiple
orthogonalization steps [5]. PO-PLS, unlike SO-PLS, does not
explore the blocks sequentially, but aims at identifying the
common and the distinct information in different blocks to have a
better understanding of how the combinations of blocks
contribute to the improved predictive performances.

Multi-block variance partitioning (MVP), originally proposed by
Skov et al., in 2008 [53], presents some similarities with both SO-
PLS and PO-PLS. It was one of the first methods to specifically
focus attention on identifying the unique part and the commonpart
of the Y-related variation in the predictor blocks; this is accom-
plished by using PLS models between predictor blocks and a
common response. For each predictor block Xk, the total variance of
the responses Y is partitioned into a unique part (that ascribable
only to that particular predictor block), a common part (the one
shared also with the other independent matrices) and an uninfor-
mative part (which is the portion of Y-variance not relevant for by



Fig. 5. A schema presenting the sequential orthogonalized partial least squares (SO-PLS) regression method [26].
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that particular regression model). Operationally, individual PLS
models are calculated between each Xk and Y. For each predictor
block, the uninformative variance is associated to the residuals of
that regression, while the unique contribution is calculated after
orthogonalizing the predicted responses (variable-wise) with
respect to the corresponding predicted responses based on all the
other predictor blocks. The common variation is obtained by sub-
tracting the contribution of the unique and uninformative parts
from the total variance.
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6. Multi-block analysis for variable selection

Data generated from several analytical techniques, such as op-
tical spectroscopy, mass spectrometry, nuclear magnetic resonance,
and chromatography, consists of many variables, of which only a
subset is informative. In fact, most of the variables are often
correlated or related to some background phenomenon which is
not of interest to explain the response variable(s). Therefore, in
chemometrics, variable selection is often performed to identify the
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most useful variables for the characterization of the response
[14,15]. To deal with the multi-block scenario, several predictive
data fusion methods have also been extended to incorporate vari-
able selection [54,55]. A summary of the multi-block variable se-
lection methods is presented in Table 1. The main benefit of these
approaches is that they allow the selection of complementary
variables from multiple sources which jointly achieve good model
performance. Variable selection approaches can be divided into
three main categories, i.e., filter, wrapper and embedded methods.
Techniques belonging to the first family are based on ranking the
predictors according to some model-based criterion, e.g., variable
importance in projection (VIP) or selectivity ratio (SR), and
retaining only those variables for which specific parameters exceed
given thresholds. In a multi-block scenario, some PLS-inspired
variable selection methods have been discussed; for instance, in
the context of SO-PLS [54] or OnPLS [56,57]. Second, wrapper ap-
proaches directly calculate multi-block models with different
combinations of subsets of variables and select the one that gives
the best results (usually determined by internal validation, e.g.,
cross-validation). Finally, embeddedmethods carry out the variable
selection while building the model. In this context, an interesting
possibility is the recently proposed multi-block method, called
sequential and orthogonalized covariance selection (SO-CovSel)
[55]. As the name implies, this approach is strongly related to SO-
PLS, and shares some of its advantages. Nevertheless, SO-CovSel
is especially suited to variable selection and the interpretation of
the system under study because it directly provides information
about which variables drive the model most. However, a key thing
that SO-CovSel [55] and other multiblock variables selection
methods [54,56,57] lack is the clear explanation of the variables
that contribute to the common and distinct variability of the
different data blocks. To deal with this, two new methods recently
emerged in the chemometrics domain, the first is the multiblock
variable influence on orthogonal projections (MB-VIOP) [57] and
the second is the sparse common and distinct covariate regression
(SCD-CovR) [58]. The MB-VIOP utilises the variable importance in
projection (VIP) approach to sort the variables based on their
importance for the simplification and interpretation of the OnPLS
model [57]. VIP is performed on the global, common and distinct
components extracted by OnPLS, thus reflecting the key variables in
the global, common and distinct fusion of multi-block data. The
SCD-CovR approach on the other hand combines the sparse prin-
cipal covariate regression with the simultaneous component anal-
ysis to extract the variables explaining common and distinct
variations in the multi-block data [58].

7. Multi-block analysis for higher order data fusion

Higher order data in analytical chemistry is commonly
encountered [59]. Let us consider a situation where N samples are
analyzed by NIR spectroscopy, giving rise to spectra comprising M
variables at T time points. The resulting data structure is a cube of
dimensions N � M � T. If the same objects are analyzed by another
platform, at only one time point, this leads to a data matrix of di-
mensions N � K, where K is the number of variables measured by
another platform. The resulting data set is a multi-block one, but
the data structures present diverse dimensionalities. To handle
such data sets, the most straightforward solution would be to un-
fold the cube into a matrix and to apply the traditional data fusion
approaches. Nevertheless, it has been demonstrated that, when
modelling multi-way structures, it is better to leave their natural
dimensionality untouched, exploiting suitable methods for their
analysis, rather than unfold them out into two-dimensional arrays.
10
In the light of this, multi-block methods for the combination of
arrays presenting different number of modes have been proposed.
These multi-block methods can be used for both exploratory and
predictive purposes. Currently, multi-block methods for unsuper-
vised fusion of higher-order data are mostly based on coupled
tensor and matrix factorization approaches [43,44]. In the context
of predictive analysis, both approaches based onmulti-block multi-
way covariate analysis [60] and the more recently proposed
extension of sequential and orthogonalized PLS regression tomulti-
way arrays (SOeN-PLS) [59] are available. This latter approach re-
sembles SO-PLS presented above, with the main difference being
that multi-way blocks are handled by means of N-PLS rather than
PLS, to maintain their multi-way structure.

8. Innovative uses of multi-block analysis

Apart from standard chemometric tasks such as exploratory
analysis, regression, classification and variable selection, other
innovative applications of multi-block methods are emerging. Two
such applications are pre-processing selection and fusion, and
calibration transfer. Pre-processing selection is a key step in che-
mometric modelling, and it is largely debated since it is difficult to
define an optimal strategy. Often users struggle among different
pre-processing techniques to identify the best pre-processing or
the best combination of pre-processing techniques. A novel appli-
cation of multi-block data analysis is to perform the fusion of
multiple pre-processing techniques [61e63], where the same data
after pre-processing with different methods can be considered as a
multi-block dataset and can then be processed by multi-block
regression and classification. Recently, a technique called sequen-
tial pre-processing through orthogonalization (SPORT) was pro-
posed [64]. SPORT is based on the SO-PLS approach to data fusion
where the model learns in an incremental way the complementary
information present in different data blocks. Recent applications of
SPORT can be found relating to selection of pre-processing [64] and
complementary fusion of scatter correction techniques [61] in NIR
spectroscopy. Since the SPORT approach is sequential, it is neces-
sary to define the order of pre-processing. The order can be decided
upon, based on the complexity of pre-processing techniques so that
all easy, fast, and model-free techniques are used at the start and
the complex, slow, model-based techniques are reserved for the
end. However, to deal with the decision about application, a new
pre-processing fusion approach called parallel pre-processing
through orthogonalization (PORTO) was proposed [65]. PORTO is
based on the PO-PLS procedure of predictive multi-block analysis
and allows different pre-processing options and their combinations
to be explored in parallel. The PORTO approach has the advantage
over the SPORTapproach in that it provides a better insight into the
common and distinct information highlighted by different pre-
processing techniques. However, it has been reported that both
the SPORT and PORTO approaches usually lead to the same pre-
dictive performance. The concept of considering differently pre-
processed versions of the same matrix as a multi-block data set
had already been considered in the framework of the MVP method
[53]. In that context, the use of MVP was advocated in order to get a
deeper insight into which pre-processings could carry similar in-
formation and which ones could possibly add a unique
contribution.

The second innovative application of multi-block data analysis is
related to calibration transfer (CT). CT is a widely explored task in
chemometrics when the aim is to use a model developed using one
sensor, on another similar sensor. The aim of calibration transfer is
to remove the differences between the two instruments so that the
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model developed on one instrument can be transferred and used
with the other sensor. Recently, methods based on multi-block
techniques have emerged for calibration transfer [66]. A recent
method called joint and unique multi-block analysis (JUMBA) was
proposed for the calibration transfer of NIR models [66]. The
method relies on the assumption that the two instruments have a
major part of information in common and a minor part that is
distinct. Once the common information is identified by the multi-
block methods, the model developed on one sensor can be
applied on the other.

9. Free software resources available for multi-block data
analysis

Multi-block data analysis is a relatively new domain in che-
mometrics and software for performing the multi-block analysis
are scarce. However, several groups around the world have pub-
lished freely available codes so that the community can benefit
from them. The first publicly available MATLAB-based toolbox is
from the University of Copenhagen, Denmark (http://www.models.
life.ku.dk/~courses/MBtoolbox/mbtmain.htm), which, having been
last revised in 2001, focuses only on the two data fusion approaches
that were most popular at that time, i.e., multi-block principal
component analysis and multi-block partial least squares regres-
sion. The second toolbox is that by NOFIMA for multi-block
regression by parallel and sequential partial least-squares regres-
sion [52]. Both toolboxes provide command line functionalities
(within the MATLAB environment) and consist of a limited number
of tools. There is also a basic graphical user interface (GUI) available
for performing multi-block component analysis in the domain of
behavioural research [67]. However, this GUI only proposes prin-
cipal component analysis on each data block separately, simulta-
neous component analysis, and cluster-wise simultaneous
component analysis for data exploration. Recently, a new graphical
user interface, the MBA-GUI (freely available at: https://github.
com/puneetmishra2/Multi-block.git) has been made available
which integrates several advanced multi-block techniques related
to data exploration, regression, variable selection, pre-processing
selection and fusion [26]. A python library called ‘mbpls 1.0.4’
was also recently developed for performing multi-block PLS and is
available at https://pypi.org/project/mbpls/. An ‘R’ library for
implementing the ROSA [73] algorithm can be found at https://
github.com/khliland/rosa.

10. Some comparative examples for predictive multi-block
modelling

Thanks to the chemometrics developments in recent years,
multi-block techniques are now available to perform both
exploratory and predictive data modelling. However, there are so
Fig. 6. Pear data set e Comparison of model performances for the prediction of moisture c
individual blocks; (B) MB-PLS; (C) SO PLS; and (D) PO-PLS.
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many new tools, as well as extensions of standard single-block
chemometric techniques (such as MCR, PLS), that it is becoming
difficult to find the best solutions to start with when dealing with
a new problem/application. However, in chemometrics, as in
other scientific fields, it is difficult if not impossible to univocally
define what could be the best technique in an absolute sense.
First of all, as the term “best”, itself, can assume several meanings
depending on the specific application (e.g., more robust, less
impacted by interferents, more accurate, and so on). As well,
different techniques have advantages and disadvantages for
different data types. For this reason, these different tools could
even be ensembled to get a better understanding of the data and
solve the background challenges. Recently, several works have
tried to compare the performances of different multi-block
methods to achieve a deeper understanding of their characteris-
tics, similarities and dissimilarities, in the light of the practical
use of those techniques [3,7,20,21,35]. Since most of these works
focus on exploratory approaches (i.e., to symmetric data fusion),
while to the authors’ knowledge, so far, no research literature
provides a comparative overview of the predictive approaches,
hence, three such practical comparisons are provided in the
following section. The comparisons are based on the pear data set
where a total of 231 pear fruit were measured with two com-
plementary near-infrared (NIR) spectral sensors covering the
spectral ranges of ~700e1050 nm and ~1050e1600 nm, respec-
tively. The reference property was the moisture content (MC)
measured with hot-air oven drying technique [68]. The samples
were divided into a calibration set and an independent test set of
190 and 41 individuals, respectively. The data set used in these
examples has already been published and it is used here for
demonstration purposes only. More details on sampling and
reference analysis can be accessed in the original publication
related to this data [68]. Out of the three comparisons, the first is
the comparative overview of PLS and two multiblock PLS
methods (SO-PLS and PO-PLS) [52], the second example is the
comparison of two multi-block pre-processing fusion approaches,
i.e., SPORT [64] and PORTO [65], and the third is an example of
multi-block variable selection with SO-CovSel [55].
10.1. Comparison of PLS, MB-PLS, SO-PLS and PO-PLS

A summary of the performances of the different approaches
to model the spectral data from multiple complementary NIR
sensors is shown in Fig. 6. As a baseline, the results of PLS
modelling of the spectra from sensor 1 only (the best model on
the individual matrices) was added to show that this block
alone is not sufficient to achieve an error as low as the one
obtained through the fusion of the complementary information
in the multiple sensors. The PLS model built on sensor 1 data
only with 7 LVs (optimized using 5-fold cross-validation)
ontent (MC). Predicted vs observed MC values (test set) for: (A) the best PLS model on

http://www.models.life.ku.dk/%7Ecourses/MBtoolbox/mbtmain.htm
http://www.models.life.ku.dk/%7Ecourses/MBtoolbox/mbtmain.htm
https://github.com/puneetmishra2/Multi-block.git
https://github.com/puneetmishra2/Multi-block.git
https://pypi.org/project/mbpls/
https://github.com/khliland/rosa
https://github.com/khliland/rosa


Fig. 7. Pear data set e Comparison of models for the prediction of moisture content (MC). Regression coefficients for the PLS model built on sensor 1 data only (continuous thick red
line), MB-PLS on concatenated data from sensors 1 and 2 (continuous thin blue line), and SOPLS on sensor 1 and 2 data (dotted black line; the coefficient vectors for the two separate
PLS regressions involved have been concatenated, for a better visualization).
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(Fig. 6A) attained a root mean square error (RMSEP) of 0.53% to
predict MC. Furthermore, when the data from two sensors was
concatenated along the variable direction and a new PLS model
was developed (Fig. 6B), the RMSEP was slightly increased, from
0.53 to 0.56%, SO-PLS also showed a similar RMSEP to that of
PLS on concatenated spectral data (MB-PLS), but by extracting
complementary information from two sensors. On the other
hand, in this case, PO-PLS resulted in the lowest RMSEP (0.47%).
Furthermore, PO-PLS obtained this superior performance by
partitioning the common and unique information in the two
sensors. However, a key point to note is that the performance of
MB-PLS was poorer than that of the SO-PLS approach (i.e., a
RMSEP of 0.52%). Methods like SO-PLS and PO-PLS allow effi-
cient modelling of different data matrices and can lead to more
accurate predictions than MB-PLS. Advanced multi-block
methods also bring added values such as a better understand-
ing of background chemistry, which can also be noted in Fig. 7,
where the regression coefficients corresponding to MB-PLS
(dotted blue line) and SO-PLS (dashed black line) are pre-
sented. It can be noted that calculating MB-PLS resulted in a
model with higher absolute coefficients for sensor 1 data and
several key features in the spectral range of sensor 2 are poorly
modelled, e.g. at 1400 nm, which corresponds to the H2O
overtones directly related to the moisture [69]. A main chal-
lenge with MB-PLS is the need to perform proper scaling of the
data, but that is not the case with methods like SO-PLS as they
treat each data block sequentially [8], thus avoiding any nega-
tive effect of different data scales.
Fig. 8. Pear data set e Comparison of model performances for the prediction of moisture
processed with 2nd derivative only), (B) SPORT, and (C) PORTO models.
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10.2. Comparison of pre-processing fusion approaches

Pre-processing selection in chemometrics is a challenging task,
where a lot of time and resources are usually spent with the aim of
achieving optimal pre-processing combinations [70]. However,
such an approach can be considered old-fashioned due to emer-
gence of new ensemble pre-processing fusion approaches [70] and
especially the multi-block data analysis inspired methods such as
SPORT [64] and PORTO [65]. A comparison of the use of SPORT and
PORTO on the pear data set already described is shown in Fig. 8, as
an example. The data used in this analysis are only those from
sensor 1, although SPORT and PORTO can both deal with simulta-
neous multi-sensor multi-processing. Furthermore, only two data
blocks, i.e. raw data and data pre-processed by 2nd derivative, are
used for the demonstration. The main thing to note is that using
2nd derivative only (best individual pre-processing) results in a
higher value of the RMSEP (0.53%) (Fig. 8A), whereas modelling
with both the raw and 2nd derivative pre-processed data gave a
lower RMSEP, 0.50% for SPORT (Fig. 8B) and 0.49% with PORTO
(Fig. 8C).

The good performance from the combined used of raw and 2nd
derivative pre-processed data is not a surprise from a fruit property
modelling point of view. This is because the NIR spectra of fresh
fruit are a mixture of absorption and scattering profiles, the ab-
sorption can usually be related to broad peaks in the NIR data,
whereas the scattering properties are expressed as the additive and
multiplicative effects [71]. The chemical and physical properties of
fruits are correlated to both the effect of scattering due to fruit
content (MC). Predicted vs observed MC values (test set) for: (A) PLS (on data pre-



Fig. 9. Pear data set e SPORT model. Regression coefficients for the two blocks of data (raw and 2nd derivative pre-processed).

Fig. 10. Pear data set - Comparison of the results of variable selection on the individual blocks and in the multi-block scenario. (A) Variables selected from sensor 1 data through
single-block CovSel analysis, (B) Variables selected from sensor 2 data through single-block CovSel analysis, and (C) Variables jointly selected from sensor 1 and sensor 2 data
through the multi-block SO-CovSel approach.

Fig. 11. Pear data set - Comparison of the results of variable selection on the individual blocks and in the multi-block scenario for the prediction of moisture prediction in pear fruit.
Predicted vs measured values of moisture content based on (A) Single-block CovSel analysis on sensor 1 data, (B) Single-block CovSel analysis on sensor 2 data, and (C) Multi-block
SO-CovSel approach.

P. Mishra, J.-M. Roger, D. Jouan-Rimbaud-Bouveresse et al. Trends in Analytical Chemistry 137 (2021) 116206
cellular structure (which differs with the ripening stage of fruit)
and absorption present in NIR data. Hence, doing a 2nd derivative
13
estimation may eliminate the global intensity differences related to
scattering, and therefore, may remove some useful information
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related to fruit properties. The multi-block approaches compensate
this loss of information by first modelling the 2nd derivative and
then modelling the remaining variation within the raw data. An
example of the complementary modelling performed by SO-PLS is
shown in Fig. 9, where the regression vectors for the 2nd derivative
pre-processed (solid blue line) and raw data (dashed red line) are
shown. It can be seen that the main features of the 2nd derivative
are the peaks related to overtones of eOH, eCH and eNH [69],
whereas the main information captured from the raw data is the
global shape of the spectrum which is an indication of the scat-
tering information.

10.3. Selecting variables in multi-block scenario

Variable selection is useful in chemometrics and is even chal-
lenging when the data is multi-block. Particularly, the challenge
arises when the redundant information is present in multiple data
blocks and the aim is to just use the complementary information
that improves the predictive performances of the model. In such a
case, new multi-block methods such as SO-CovSel can be used
efficiently. Fig. 10 C shows the results of performing SO-CovSel on
the two-sensors pear data set. For the sake of comparison, CovSel
analysis on individual blocks is also presented and the selected
variables for sensor 1 and sensor 2 are shown in Fig. 10 A and B,
respectively. Separate CovSel analyses on sensor 1 and sensor 2
data selected 7 and 8 wavelengths, respectively. However, most of
the wavelengths are related to overtones of similar chemical bonds
and, therefore, carry redundant information. In the case of SO-
CovSel, due to such redundancy, only 2 bands are selected from
sensor 2 and, nevertheless, the RMSEP is reduced from 0.58% (best
individual model) to 0.55% (Fig. 11).

11. Concluding remarks

Multi-block data analysis in chemometrics is gaining increasing
attention and the development of newmethods in recent years has
been rapid. Analytical chemistry can directly benefit from these
new techniques to explore and combine data from multiple sour-
ces. Due to advances in sensor and computing technologies, multi-
source data are now frequently encountered. Multi-block methods
are available for diverse tasks such as exploratory data analysis,
predictive modelling, variable selection, pre-processing optimiza-
tion, and calibration transfer. There are also methods available to
explore the multi-block data generated by designed experiments,
which is often the casewith lab-based classical analytical chemistry
experiments. The main benefit of multi-block data analysis
compared to the standard chemometric methods is that they allow
a detailed understanding of common and distinct information
present in different data-blocks or data generated from multiple
sources. Recently, free software tools such as the MBA-GUI have
been made available to the scientific community to explore the
possibilities of multi-block data analysis. It can be expected that the
future trend will be an exponential increase in the applications of
multi-block data analysis methods in analytical chemistry to
combine in an optimal way multiple sources of data. Another
important direction that can be foreseen is the development of
interactive data visualization tools [72] dedicated to multi-block
data analysis, which will allow even non-experts to have a better
comprehension of their data.
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