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Abstract  33 

Woody plant (WP) declines have multi-factorial determinants as well as a biological and 34 

economic reality. The vascular system of WPs involved in the transport of carbon, nitrogen 35 

and water from sources to sinks has a seasonal activity, which places it at a central position 36 

for mediating plant–environment interactions from nutrient cycling to community assembly 37 

and for regulating a variety of processes. To limit effects and to fight against declines, we 38 

propose (i) to consider the WP and its associated microbiota as an holobiont and as a set of 39 

functions, (ii) to consider simultaneously, without looking at what comes first, the 40 

physiological or pathogenic disorders and (iii) to define pragmatic strategies including 41 

preventive and curative agronomical practices based on microbiota engineering. 42 

 43 

Woody plants in ecosystem functioning 44 

Plants can be simply divided into annual, biennial (life cycle from seed to seed lasts 45 

one or two years) and perennial plants (can survive more than 2 years). Woody plants (WP) 46 

are perennial plants characterized by the presence during the non-growing season of 47 

persistent aboveground dormant parts, as well as ligneous material (mainly in vascular 48 

tissues).  49 

WPs play a major role in the functioning of the ecosystem. For example, they actively 50 

participate in water and CO2 cycles, especially within complex ecosystems such as forests [1]. 51 

WPs render many ecosystem services, either directly when providing economically 52 

important goods and services (e.g. wood, fiber and fruits) or indirectly as reservoir of 53 

biodiversity [1]. In a context of global warming, their carbon (C) sequestration capacity is 54 

also of particular interest [2]. 55 

In their tissues or organs, WPs host a set of symbiotic and free-living microorganisms 56 

(i.e. archae, bacteria, fungi, oomycetes, protists and viruses) commonly referred to as the 57 

microbiota. Although biomolecular techniques for detecting the diversity of microorganisms 58 

are improving, host-microbiota interaction mechanisms are still poorly understood [3–5]. 59 

The emergence of the “holobiont” concept, briefly defined as a “functional entity formed by 60 

a macrobe and its long- and short-term associations with microbes and viruses” [6], opened 61 

the possibility to view an entire system. 62 

In the present review, we first discuss the origin of WP declines with a focus on the 63 

link between flow and storage of carbon (C), nitrogen (N) and water in WPs and their 64 
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transfer to/from associated microbes, in healthy or declining conditions. Then, we introduce 65 

definitions and concepts about the interactions between WPs and their microbiota, often 66 

inspired by knowledge on animal-associated microbiota. Finally, we discuss prospects of 67 

microbiota engineering to enhance tolerance of WPs to declines. 68 

 69 

Woody plant declines: pathological and physiological disorders 70 

 Decline versus dieback 71 

In the last decades, WP declines are affecting more and more species [7]. They can be 72 

defined as a long-term degeneration of plant tissues following a succession of multiple 73 

negative events (e.g. abiotic stresses, climate deregulation, emergence of new pathogens, 74 

biological invasions and agricultural strategies). WP declines may also be seen as a decrease, 75 

over multiple years, of wood or fruit productivity, leading or not to a sudden death, the 76 

latter being occasionally referred to as dieback (Box 1). Several authors use ‘decline’ strictly 77 

for the progressive reduction of the vigor of the WP, whatever its causes and symptoms, 78 

while they would associate ‘dieback’ to the drying of the plant that starts at the tips [8]. 79 

However, the distinction between ‘decline’ and ‘dieback’ is not always made or accepted as 80 

such by forest pathologists [8,9]. For better readability, we will retain only the term ‘decline’ 81 

later in this review.  82 

 83 

Origin of the declines and impact on productivity and ecosystem services 84 

Individual tree mortality, estimated by the ICP forest network (www.icp-forests.net 85 

; [10]), has doubled in Europe’s temperate forests over the last three decades [11]. Per 86 

year, about 0.5 to 1.5% of trees died owing to different factors such as fungi, fire, grazing, 87 

climate change. Today, the impact of WP declines on ecosystem services has reached an 88 

apparent peak and brought to our attention the necessity to identify determinants and 89 

mechanisms leading to their occurrence [12]. However, the main mortality factor remains 90 

undetermined (Box 2).  91 

Longevity and late sexual maturity of WPs make their physiology, development and 92 

ecology different from annual plants. WPs are especially vulnerable to pathogens since 93 

exposure lasts for a longer period of time compared to annual plants [13]. WPs are also 94 

increasingly exposed to pathogens due to silvicultural and fruit farming techniques, and 95 
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especially globalization, favoring fast dispersal of microbe species along commercial routes 96 

[14].  97 

Compared to less complex or non-multifactorial diseases, it is difficult to define a 98 

state of decline based on the observed symptoms, as these vary widely according to the 99 

species or individuals concerned. Declines may affect different compartments and the 100 

symptoms may be diverse (i.e. twigs drying, leaves yellowing, wood rotting). Since declines 101 

result from the combination of various factors, the association of given symptoms to their 102 

origin is challenging. In most declines, the whole plant is damaged including woody parts and 103 

leaves. A given decline can first appear in a specific compartment, then spread to others, and 104 

finally affect the balance of the whole holobiont. After a while, it leads to visible symptoms 105 

such as a significant loss of biomass as shown in poplar [15] and ash [16,17], or a decrease in 106 

the quantity and quality of fruits (e.g. grapevine or olive tree) [18,19]. In addition to the 107 

economic impact (e.g. loss of quality, quantity, yield), forest diseases can affect some 108 

ecosystem services either directly (e.g. C sequestration, water purification, soil stability) or 109 

indirectly (e.g. associated biodiversity, recreational and cultural aspects) [20,21].  110 

 111 

Carbon, nitrogen and water in WP declines: fueling and fluxes problems?  112 

WP species exhibit a wide range of gas exchange responses and hydraulic strategies, 113 

depending on whole-tree conductance and rooting depth. Photosynthesis essentially takes 114 

place in leaves during the light period. The Rubisco-fixed C is partly accumulated (i) as starch 115 

in the chloroplast to sustain metabolism during the dark period and (ii) as hexoses and 116 

sucrose in the cytosol for both daily metabolism and plant long distance transport. The 117 

excess of C is exported for long-term storage in the trunk and roots. Within the plant, 118 

carbohydrate are transported from photosynthetic and storage tissue (sources) to areas of 119 

active growth and metabolism (sinks). This phenomenon is at least partially regulated by a 120 

large number of monosaccharide- and sucrose-specific transporters, identified in WPs as 121 

poplar and grapevine [22,23]. Besides C, nitrogen (N) is required in significant quantities as it 122 

constitutes 1–5% of the WP dry weight [24]. N compounds are taken-up directly from the 123 

soil either under organic or inorganic forms directly through the plant roots- or the 124 

mycorrhizal-pathway. They are then transferred to the upper parts in the form of amino 125 

acids via an interconnection of the xylem and the phloem (Box 4) [23,25]. Because N-126 
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containing compounds are necessary for C assimilation, N mobilization and C assimilation 127 

are probably tightly co-regulated to allow the optimal development of WPs [26,27]. 128 

C storage organs, varying depending on the season [28], play a key role in annual and 129 

seasonal metabolism and growth variations in WPs [26], as it represents resources that build 130 

up in the plant and can be mobilized in the future. This is especially true in deciduous species 131 

where in spring remobilization of reserves is necessary for budburst and growth of new 132 

leaves, allowing functional photosynthesis [29]. N is stored before leaf fall. Two thirds of the 133 

foliar N, mainly as Rubisco, which is primarily a storage protein, is recycled during the leaf 134 

senescence process, then transported and stored as amino acids and proteins in the 135 

perennial parts of the tree [30]. C and N stored in autumn in the trunk and roots are used for 136 

wood formation, especially for the phloem [31], before N root uptake is efficient. 137 

As C, N and water transport depends on source and sink activity, any disturbance 138 

could influence WP functions, from growth and allocation to defense and reproduction. 139 

Leaves, trunks and roots perform unique functions, necessary for a healthy development. 140 

Interruptions caused by short, long term or successive stresses, in any of the functions 141 

performed by leaves (decrease of photosynthesis leading to less food and fewer energy 142 

storage), trunks (damage to vascular tissues reduces or inhibits C, N and water transport) 143 

and roots (improper soil conditions and mechanical damages lead to lesser root extension) 144 

may lead to plant starvation. These interruptions, combined with defenses against other 145 

diseases (physiological or pathogenic), could finally lead to decline. In addition, several 146 

groups have recently proposed to link forest declines with microbiome modification or 147 

imbalance [32]. 148 

 149 

The WP holobiont 150 

The recent explosion of the number of studies on human gut microbiota highlighted 151 

links between altered microbiota (dysbiosis) and development of immune-mediated and 152 

metabolic pathologies such as obesity, type-2 diabetes, or cancer [33]. In this context, one 153 

could imagine a transposition to the study of links between taxonomic composition and 154 

functioning of the WP microbiota and decline outcomes. 155 

 156 

 Key concepts on the plant holobiont 157 
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Plants do not live alone, but are colonized and surrounded by microbes. Microbial 158 

colonization, whether epiphytic or endophytic, vary between plant tissues. A wide diversity 159 

of microbial taxa is involved in these associations going from pathogenic to beneficial 160 

through neutral [34,35] (Figure 1) as revealed by more and more sophisticated methods (see 161 

for instance Mercado-Blanco, 2018 [3] and Outstanding question 1). The microbiota 162 

corresponds to all microbes associated with a plant and the pool of microbial genes 163 

corresponds to the microbiome [4,36]. In addition, it appears that (i) from one individual to 164 

another the microbiota and the microbiome are different, (ii) within the same individual, 165 

several microbiomes or microbiota co-exist among different tissues [37,38] and (iii) microbes 166 

might support various plant functions. Therefore, to investigate a potential link between the 167 

microbiota or microbiome and declines, it is necessary to (i) analyze the diversity of 168 

associated microbes, (ii) determine how microbes interact amongst themselves and with the 169 

plant and (iii) highlight their respective potential functions and their impact on WP 170 

metabolism and development. 171 

The short and long-term interactions between host-microbe and microbe-microbe 172 

mediate both host and microbial properties and are essential for the health of the host 173 

[3,34,39]. Plant microbiota is carried out either by vertical transmission through the seeds or 174 

by horizontal transmission through environmental sources [40]. Within plant microbiota, 175 

beneficial microbes (i) provide or extend major metabolic functions of plants, especially in 176 

terms of nutrient acquisition [3,41,42], (ii) promote plant resistance against biotic and 177 

abiotic stresses [43,44], (iii) mediate metabolites production and (iv) support seed 178 

germination [45]. Considering the importance of the gained functions, some authors account 179 

microbiome for a ‘second plant genome’. Combination of plant host and microbiota is thus 180 

referred to as ‘holobiont’ (Figure 1), which can be defined as ‘the genomic reflection of the 181 

complex network of symbiotic interactions that link an individual of a given taxon with its 182 

associated microbiome’ [42,46,47]. The holobiont concept applied to plants allows a new 183 

interpretation of the facilitation concept in plant ecology, the microbiota being considered 184 

as a ‘facilitator’ element providing additional functions to the holobiont and adjusting to 185 

environmental conditions that are optimal for survival and to keep or reinforce plant 186 

homeostasis [48]. 187 

 188 
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The hologenome theory takes the holobiont as a unit of selection in evolution [49], 189 

where the microbiome is associated with the plant genome both evolving in parallel. Pioneer 190 

descriptions of plant microbiota have been published for model plants such as Arabidopsis 191 

thaliana, Medicago truncatula and Lotus japonicus [50–52]. Microbiota of WPs has been 192 

described on poplar [53–55], oak [56,57] and grapevine [5], either on a plant compartment, 193 

including root system [34], trunk [58], phyllosphere [55], fruits [59], or as a comprehensive 194 

analysis [54,60]. 195 

 196 

 Concept of ‘core microbiota’: any bacterial or fungal species shared in healthy and diseased 197 

plants  198 

Plant diseases, either physiological or ecological, are often associated with changes 199 

or compositional deviations from a ‘core microbiota’ of the holobiont [50] (Figure 2). The 200 

core microbiota concept emerged with the discovery that plant microbiota differs from 201 

rhizospheric microbiota. Briefly, healthy plants favor colonization by commensal microbes 202 

and avoid its colonization by pathogens [3,50]. The core microbiota varies with plant age and 203 

compartment as well as soil properties [61,62]. The idea of a ‘functional core microbiota’ 204 

playing a central role in plant physiology and health is now admitted [63], and is often 205 

described as the sum of ‘the good’ (plant beneficial microbes), the ‘bad’ (plant pathogenic 206 

microbes) and ‘the ugly’ (human pathogenic microbes) [35]. From one plant to another, core 207 

microbiota does not consist of identical microbial taxa, but rather different taxa that ensure 208 

the same set of essential functions for the holobiont fitness [63]. Key or hub species of this 209 

core microbiota can be affected during the onset of declines, making the holobiont 210 

ineffective against the spread of symptoms. 211 

 212 

 The holobiont functioning: exchange of good practices between partners? 213 

A chemical and molecular dialogue within holobiont. Within the holobiont, plant-microbe 214 

and microbe-microbe communicate mainly through chemical and molecular signaling [64]. A 215 

large part of microbiome studies focused on the rhizosphere were dedicated to quorum 216 

sensing (strictly microbe-microbe communication) and signaling molecules [65] such as 217 

volatile organic compounds, phytohormones or antimicrobial peptides [66]. Different 218 

communication tools are used to recruit beneficial microbes, to activate desirable microbe 219 

traits, induce systemic defense, coordinate microbial population behavior and activity, shape 220 
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rhizomicrobiome or establish mutualistic symbiosis with fungi or bacteria [66]. For instance, 221 

mycorrhizal fungi form mutualistic associations called mycorrhizas [57,67–70], able to 222 

transfer signaling molecules and nutrients between plants through common mycorrhizal 223 

networks [71] (Box 4). Disruption of this communication tools could be linked to the 224 

evolution of declines in WP (see Outstanding question 2). 225 

 226 

Around the roots: a top exchange zone. The rhizosphere and the mycorrhizosphere refer to 227 

the zone of influence created by roots alone or with the mycelium of mycorrhizal fungi, 228 

influencing the composition and function of its microbiota through their exudates, and vice 229 

versa [71,72]. The soil is subjected to numerous abiotic and biotic stresses, affecting the 230 

diversity, abundance and activity of living organisms in the soil and consequently the 231 

functioning of the ecosystem [73]. Soil microbial community can affect plant survival, growth 232 

and tolerance to biotic and abiotic stresses and induce systemic resistance against pests and 233 

pathogens both in leaves and roots [34,74,75]. The microbial lifestyle could switch from 234 

rhizospheric to mycorrhizospheric or from epiphytic to endophytic depending on 235 

environmental factors [76].  236 

C and N are the main fuels for plant development and the basis of rhizodeposition by 237 

root exudation of primary metabolites. Rhizodeposition describes the C-root loss from 238 

plants, ranging from 10 to 40 % of assimilated C [77]. The flux of root-derived C (sugars, 239 

sugar alcohols, amino acids and phenolics) constitutes a substantial nutrient release in soils, 240 

with sugars the main C source for microbes as mycorrhizal fungi and bacteria [78,79]. It was 241 

suggested that the more C translocated from leaves to roots, the more C ought to be exuded 242 

from roots (e.g. [80]) and that C exudation by roots is controlled by factors drawing C into 243 

the rhizosphere, such as root colonization by fungi (e.g. [81]). In addition to sugars, released 244 

amino acids are used by microbial communities as C-N source, but are also recognized by 245 

microbial chemoreceptors involved in the early root colonization [82]. Several authors have 246 

proposed that differences in sugars and amino acids concentration between root cells and 247 

root vicinity mediate root exudation [83], but mechanisms and transport systems remain 248 

largely unknown.  249 

 250 

C-N pools, WP declines and associated microbes: a vicious circle? 251 
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WP storage is highly sensitive to variations in environmental factors. Pathogens 252 

involved in declines accentuate some of these physiological dysfunctions in C-N production 253 

and flow. In several WP declines, physiological functions needed to assure proper storage 254 

are disrupted, although such disruptions might be associated with other type of diseases. For 255 

example, in the olive tree CoDiRO disease (Box 1), leaves are subjected to chlorosis or 256 

wilting, leading to the reduction of the leaf surface area and a lower photosynthesis rate. In 257 

Eutypa dieback or Esca disease in grapevine [84], anatomical analyses have shown a 258 

degradation of the photosynthetic systems (e.g. chloroplast alteration, thylakoid and 259 

endomembrane deformation). In addition, leaf degradation leads to a reduction of stomatal 260 

conductance, gas exchanges between atmosphere and the plant, and hydraulic lift from the 261 

soil to the leaves [84]. 262 

 C and N storage can also be reduced after vascular system degradation or plug-263 

blocking. Cankers in the trunk disturb water flux by degrading xylem vessels. The bacterium 264 

Xylella fastidiosa, involved in Pierce disease and CoDiRO, forms plugs and blocks xylem sap 265 

circulation [85]. In the case of horse chestnut bleeding canker, presence of Pseudomonas 266 

syringae is related to the stopping of water flow through the trunk [13]. In grapevine, in vitro 267 

tests showed disappearance of all starch reserves after 18 months of Eutypa lata activity 268 

[86]. Following the damage, three allocations for the non-structural sugars are possible: (i) 269 

storage for re-growth when the threat has passed (i.e. poplar; [87]), (ii) growth of sink 270 

tissues such as fine roots or young leaves, and (iii) synthesis of defensive compounds 271 

(poplar: [88]; Quercus ilex: [89]). Similar reactions following the damage were recorded for 272 

N allocation on common milkweed and red oak [90,91]. N deprivation in the previous 273 

autumn (N blocked in roots and woods) leads to budburst disturbance, C resource depletion 274 

and tree decline in spring. Finally, root architecture could be modified leading to the 275 

reduction of water and N uptake [92].  276 

Finally, the question of which came first, the physiological or ecological disease, is still open 277 

(Figure 3). Is it possible that a monofactorial disease, readily identifiable, leads to a 278 

weakening of the WP? This would make the affected WP more susceptible to other stresses 279 

leading to an overall decline. Conversely, it can be assumed that multiple stresses applied to 280 

a WP weaken it, lowering its innate immune response when a specific pathogen arrives, 281 

acting like an opportunist (Box 2).  282 
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This question is still open depending on the type of pathogen involved and the type of stress 283 

applied. Indeed, a strict biotrophic agent can be disadvantaged during the infection of a 284 

plant already stressed and deficient, which cannot provide the necessary nutrients for its 285 

metabolism. On the contrary, saprophytes (e.g. the GTD responsible fungi) will be favored 286 

within already weakened plants. These saprophytic pathogens are often latent members of 287 

the plant holobiont, but their virulence would only be expressed during a modification of the 288 

microbial community due to the previous weakening of the plant (with for example an 289 

exclusion of beneficial endophytes when the carbon status of the plant no longer allows the 290 

survival of these). 291 

 292 

Nevertheless, we know that imbalances of microbiota are observed in many declines 293 

(Boxes 2 & 3). In Acute Oak Decline, comparison between diseased and healthy trees 294 

revealed microbiota modifications, with a predominance of Brenneria goodwinii, Rahnella 295 

victoriana and Gibbsiella quercinecans in diseased tissues ([57,67–70]. In silver fir dieback, 296 

the link between modifications of the microbiota and the presence of disease is not clearly 297 

established, even if tree decline has an impact on soil microbiota composition [93]. Decline 298 

of photosynthesis rate leads to modify roots and mycorrhizal exudation, changing bacterial 299 

growth and community composition as well as nitrification process in and near 300 

the rhizosphere and mycorrhizosphere [94–96]. 301 

 302 

 Engineering the microbiota, a realistic perspective to cure WPs from declines? 303 

Plant microbiota protect the plant against pathogens via direct (production of 304 

bacterial toxins) or indirect effect (stimulation of the host immune response and 305 

competition for ecological niches) [13,36,39]. Cultural practices are known to impact the 306 

composition of WP associated microbiota [97–99]. Therefore, adjusting these practices 307 

might be a straightforward option to reduce, prevent or even cure declines [3]. 308 

The development of agroecological practices, based on the valorization of ecosystem 309 

services and of natural biological regulations, responds to a strong societal demand [100]. In 310 

this context, beneficial microbes promoting the growth, nutrition and health of plants 311 

constitute the basis for a model of functional community useful in the development of 312 

agroecological practices [101]. The majority of the results on these approaches come from 313 

crops, mostly annual plants like rice, tobacco, tomato, maize or potato (for review, see 314 
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Compant et al., 2019 [102]). Transferring this knowledge for WP management, requires 315 

specific adaptation to perennial plants: 316 

� Development of new rootstock-graft assemblies and ungrafted plants: having a better 317 

tolerance to diseases using beneficial synthetic communities within the selection 318 

process. It is tempting to hypothesize that better ecosystem services might be explained 319 

by roots and rootstock capacity to associate with different microbiota [103]. The 320 

physiological aspects of the rootstock-graft interactions may affect the physiology of the 321 

plant and it is possible to optimize the assembly between the two vegetative parts [104–322 

106]. In addition, WP habitat can be also dependent on the local microbiome and 323 

especially on symbiotic organisms [107]. 324 

� Association of tree species with beneficial microbiota: sharing the benefits of the 325 

microbiota from one individual to another can be considered directly by pooling the 326 

microbiota in the soil (especially thanks to the mycorrhizae, see Box 4) or indirectly by 327 

chemical communication between microorganisms. After identification of the 328 

microbiota associated with a tree species and the functional benefits associated with it 329 

(i.e. root growth promotion), it will be possible to select species and associate them with 330 

others for a “microbial complementarity”. 331 

 332 

Conserving microbial functions, an important issue for microbiota engineering  333 

Plant-associated microbiota is a key factor to buffer the effects of biotic and abiotic 334 

constraints [65]. However, the description of the taxonomic composition of plant microbiota 335 

remains incomplete with the usual and current molecular tools and the processes regulating 336 

their assembly need to be further studied [108]. The understanding of the assembly of the 337 

microbiota is a research theme of fundamental importance to understand the phenomena of 338 

facilitation and rapid adaptation of plants to local environmental constraints. In this line of 339 

research, Lapsansky and collaborators [109] proposed the concept of “soil memory” : from 340 

one plant generation to another, a given soil would hold its associated rhizospheric and 341 

edaphic microbiota. The fitness of perennial plants of the n+1 generation (or of a new woody 342 

plant set up in a plot replanting context) would thus be improved, taking advantage of the 343 

pre-existing beneficial microbes for their development [109]. Time scales are often 344 

considered on an annual or biannual basis for agronomic plants with a short life cycle, but 345 
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this concept can also be applied to the time scales necessary for the renewal of a forest, a 346 

vineyard or at least an orchard. The concept of soil memory could be exploited artificially for 347 

example by sampling a given well-balanced forest soil microbiota, multiply it in controlled 348 

conditions, before introducing it into nursery greenhouses in plantlets soil. 349 

 350 

Acting directly on the microbiota composition by microbial inoculation  351 

Some bacteria, endophytic and mycorrhizal fungi can be used as microbial inoculants, 352 

owing to their functional properties of antibiosis, lysis, competition or nutrient acquisition, 353 

induced resistance or hormonal stimulation. Their functions depend on both abiotic and 354 

biotic context [110]. With an annual growth rate of about 10 %, the economic market of 355 

microbial inoculants increases rapidly [111]. Although field results on annual crops 356 

compared to market gardening are often disappointing compared to promising advances 357 

under controlled conditions, we can already try to modify root microbiota of woody species 358 

such as oak for Acute Oak Decline [56]. For example, the beneficial role of Fraxinus ornus 359 

fungal endophytic microbiota against ash decline was suggested, although results need to be 360 

further supported [112].  361 

Microbial inoculation (see Outstanding question 3) could be achieved: 362 

� in nursery by inoculating a single or a cocktail of microbial strains by selecting of native 363 

or locally adapted inoculants (considering both biotic and abiotic context)  or strains 364 

with a marketing authorization [113] 365 

� on established or mature WP by direct addition of bacterial strains or cocktails of 366 

strains by spraying (rather for endophytes) or by reintroduction of mycelial strains as 367 

spores or mycelium directly in the soil (i.e. mycorrhizal fungi, [114]). Such additions 368 

could be repeated until the microbial imbalance ends. 369 

� by indirect regular supplementation by complantation (i.e replacing dead plants, a 370 

cultural practice largely used in vineyards) or by using plant cover as a reservoir of 371 

diversity [115]. 372 

A key issue is that the introduction of beneficial microbes into an established 373 

holobiont is not easy to sustain over time. The microbial populations introduced by humans 374 

can decrease over time and thus their beneficial effects disappear. They can also eliminate 375 

native beneficial microbial species, changing the functional balance of the ecosystem. 376 
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Nursery manipulations (early stages of plant development) would reduce the odds of 377 

disturbing an established microbial equilibrium [109]. Additionally, it can be difficult to 378 

switch from an ‘unbalanced microbiota state’ to a ‘healthy microbiota state’, without coming 379 

back to the original microbial communities because of the resilience of the system, which 380 

would make it difficult to keep the new equilibrium over time [116]. Additionally, when 381 

microbial strains are characterized as beneficial for plants, the question of the specificity of 382 

certain strains for targeted cultivars will prevail. Results from lab experiments may be 383 

difficult to implement in the field [39]. Finally, it becomes clearly necessary to include 384 

microbiota in plant breeding strategies and in the analysis of varieties and rootstocks 385 

performance to limit the loss of microbial genetic diversity, inherent in current agricultural 386 

systems and practices.  387 

  388 

Acting indirectly on the microbiota composition: impact of agricultural practices.  389 

Some agricultural methods are specific of WPs agro-management and might act indirectly on 390 

microbiota composition. For example, yearly dead parts of woody plants are often removed 391 

because they are thought to contain detrimental microorganisms. However, they represent 392 

a valuable carbon source and their removal would contribute to the reduction of organic 393 

compounds within the soil which in turn affect soil microbiome [117,118]. If the risks of 394 

contamination are too high for some declines and prevent application of grinding dead 395 

wood, another option might be to spread dead parts after complete or partial combustion. 396 

 397 

Grafting is a technique widely used within WPs, such as grapevine, olive and citrus 398 

trees [73]. Some cultivars or rootstocks as well as clones are more tolerant to pathogens or 399 

are physiologically different: the nature of the host influences the susceptibility to a disease 400 

(e.g. GTDs in grapevine [119]), an apoplectic disorder or a physiological disturbance (e.g. the 401 

decline of the grapevine associated with the use of the rootstock 161-49C, see Box 1)  402 

[120,121]. As for GTDs, some olive tree cultivars are more susceptible to CoDiRO than 403 

others. For example, cultivar ‘Leccino’ seems to be more resistant [122]. For the grapevine 404 

Syrah decline, it has been shown that even if all rootstocks are concerned, 110R and 99R are 405 

more sensitive than others, so their use is not recommended. A very strong clone effect was 406 

also observed [123]. These differences in susceptibility could be related to differences in 407 

associated microbiota. Rhizodeposition, which is related to the recruitment of rhizospheric 408 
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microbes, has been shown to depend on the genotype of the rootstock in apple trees [124]. 409 

Within other plant compartments, an influence of the rootstock-scion combination genotype 410 

and of WP genotype on microbial diversity is also suggested (e.g. the endophytic microbiota 411 

in apple trees [125], the bacterial endophytes in olive trees [126], the rhizospheric 412 

microbiota in grapevine [127] or the arbuscular mycorrhizal community in citrus [128]. 413 

 414 

It has been shown that the diversity of organisms (plants, animals and microbes) is positively 415 

affected in organically managed or low-farming systems, compared to systems under 416 

integrated management [102]. Soil diversity has been studied, particularly in vineyards, 417 

where a link was found between soils under green manure and highest soil microbiota 418 

diversity, compared to other organic or biodynamic agro-management practices [129].  419 

Finally, since microbiota associated with plants can vary from one species to another, 420 

and even from one individual to another within the same species, strategies of association of 421 

different species within the same agricultural system can be considered [130]. Thus, a plant 422 

could take advantage of the beneficial effects of the microbiota of the neighboring plant, in 423 

particular the rhizospheric microbiota, and vice versa (see Outstanding questions 4 and 5). 424 

 425 

 Concluding remarks and future perspectives 426 

Improving longevity of WPs is a major challenge considering their declines. A major feature 427 

would be to understand, not only the physiology and the ecology of WPs, but also of their 428 

holobionts. Microbiota and by extension the microbiome could offer new engineering 429 

solutions to prevent and even cure WP declines only if (i) we take into account the specific 430 

physiology of WPs, especially fluxes of C, N and water between sources and sinks that are 431 

changing over seasons and years and (ii) the chemical and molecular dialogues between 432 

microbes and between the WP and microbes. Keeping the homeostasis of WP holobiont 433 

would necessitate to carefully balance its resources between growth, storage, reproduction 434 

and defense. From nursery to fruit and berry plantations, considering the use of microbiota 435 

portfolio adapted to specific conditions (i.e. climatic, chemical and biological stresses) will 436 

constitute a major step towards a better understanding and management of the agro-437 

ecological outcome of WPs holobionts (see Outstanding questions). 438 
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 757 

Text Boxes  758 

 759 

Box 1. WP declines and consequences on the productivity of fruits  760 

The question of which came first, the pathological or physiological disorder, is difficult to 761 

answer. Most of the time, WPs are considered as asymptomatic as no visual declines are 762 

observed and some plant compartments (i.e. vessels, roots) are difficult to access. So, WP 763 

weakening is already under way when the first symptoms of the disease or decline appear. 764 

In addition, there is a bias on several species since we are more focused on plants producing 765 

wood, fibers, berries and fruits for human nutrition. Grapevine (Vitis vinifera L.) and olive 766 

trees (Olea europaea L.) are worldwide distributed crops of significant economic importance 767 

and are currently facing several diseases, due to physiological imbalance of WP tissues and 768 

to fungal or bacterial agents. The rootstock 161-49C in grapevine develops limited C storage 769 

and displays disturbance in xylem (i.e. thylose) and phloem (i.e. smaller diameter) leading up 770 

to 50% of unproductive vineyard [121]. The main declines affecting mature grapevine plants 771 

are grapevine trunk diseases (GTDs) caused by several fungal species [86,131]. GTDs are 772 

currently affecting vineyards throughout the world. Approximately 13 % and 14% of 773 

respectively the French and Californian vineyards are unproductive. The Olive Quick Decline 774 

Syndrome (or CoDiRO, for Complesso del disseccamento rapido dell’olivo), whose symptoms 775 

look like those of grapevine declines, is mainly caused by the bacterium Xylella fastidiosa. 776 

CoDiRO, originally detected in the olive groves of Salento in Italy in the late 2000s, is 777 
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expected to expend to the rest of the Mediterranean basin and California [132]. Worldwide 778 

olive production has recently decreased by about 25% and in Italy by 50%.  779 

 780 

Box 2. Link between WP declines, pathogens and holobiont imbalance 781 

It seems that pathogenic agents (fungal, bacterial or viral) can trigger diseases on healthy 782 

trees acting as “primary factors” when using biotic diffusion vectors or as “secondary 783 

factors” when the pathogen benefits from the weakening of the tree (e.g. another disease, 784 

pruning wounds). This weakening can result from significant climatic (i.e. drought, extreme 785 

fluctuation in weather conditions), chemical (i.e. excessive fertilizers) and biological stresses 786 

(i.e. insects), poor plant selection for the location, physical constraints, improper planting 787 

practices, poor soil conditions and physical injury. It is likely that a given disease is not 788 

always related to the presence of a particular pathogen alone, but would result from a 789 

combination of adverse factors and the presence of one or several pathogens. In addition, 790 

external factors are necessary to influence the transition from an endophytic to a pathogenic 791 

state of some fungi in asymptomatic tissues state [133]. The intensity of the disease related 792 

to pathogen leads to the modification of the holobiont and depends on either the WP (i.e. 793 

cultivar) or the balance of microbes (i.e. epiphytic and endophytic microbiota) [134]. 794 

 795 

Box 3. Are some microbial species always present in the microbiota of woody plants 796 

exhibiting different declines related to pathogens? 797 

The same pathogenic species are often involved in declines affecting various WPs and act as 798 

opportunists. Similar fungal species from the Botryosphaeriaceae (endophytes, saprophytes 799 

and some pathogenic) are associated with many declines [135] and found in GTDs, Coast 800 

Redwood Trees Decline [136,137] and Branch Dieback of olive [138,139]. More than 300 801 

species of plants are susceptible to Xylella fastidiosa in the world [85,140] and some strains 802 

carried by xylem-sap feeding insects (e.g. leafhoppers and spittlebugs), cause fatal diseases 803 

in grapevine (Pierce disease), olive and citrus trees. The bacterium Pseudomonas syringae 804 

infect orchards (e.g. cherry, pear, plum and apricot) weakened by water stress or injury and 805 

are involved in horse chestnut bleeding canker [13,141].  806 

 807 

Box 4. Common mycorrhizal networks: a role of sentinel in prevention of decline? 808 
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Plant–plant interactions (e.g. facilitation, competition) are among the fundamental 809 

processes that shape structure and functioning of plant communities. Within the fungal 810 

component of the root microbiota, mycorrhizal fungi form mutualistic symbiotic associations 811 

called mycorrhizas [142]. Around 90 % of terrestrial plant species including fruit and olive 812 

trees, grapevine and tree species cultivated for their wood are mycorrhized. Mycorrhizal 813 

fungi are able to form common mycorrhizal networks (CMN) linking roots from the same or 814 

different species. CMNs benefit to host plant in many ways, including plant-plant facilitation 815 

or nutrition [3]. Since the highlighting of intra-kingdom communication between plants and 816 

microbes, especially between plants and bacteria, it has been shown that molecules other 817 

than nutrients can pass between microbes and their host plant. Bidirectional nutrient 818 

transfers of carbon (C) between ectomycorrhizal tree species such as birch and Douglas fir 819 

[143] and nutrient exchanges between endomycorrhizal plants [71] have been shown. We 820 

thus define a CMN formed by ecto- or endo-mycorrhizal fungi that link plants together. 821 

Transfer of different molecules may be bidirectional between plants and CMN can improve 822 

interplant nutrition and growth through plant-plant facilitation. CMNs can also induce plant 823 

defense responses and plant communication through phytohormones (e.g. jasmonic acid, 824 

methyl jasmonate, zeatin riboside) and therefore have a strong potential as a biocontrol 825 

agent. The role of arbuscular mycorrhizal fungi as potential bridge between different plants 826 

in the spread of a disease has recently been hypothesized, for example with Potato virus Y or 827 

following a necrotrophic fungus attack [144]. Indeed, in addition to the competitive role of 828 

arbuscular mycorrhizal fungi against pathogens by allelopathy, CMN can act as a conduit 829 

carrying chemical signaling compounds emitted by the attacked plant. These links make it 830 

possible for a plant to send warning signals during an insect or pathogenic attack to the 831 

network of plants connected by the CMN ‘informing them’ of the attack. In this context, an 832 

interesting perspective would be to study how this CMN would transfer the information of a 833 

pathogen attack for a ‘sentinel’ plant to a neighboring plant, which could preventively 834 

activate their defense mechanisms and enhance their immunity. 835 

 836 

Figure legends 837 

Figure 1. The woody plant holobiont. 838 

It is essential to consider the woody plant (WP) as a “holobiont”, e.g. the tree and its 839 

microbial continuum from soil to leaves. The microbiota resides on (epiphytic microbiota) or 840 
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within (endophytic microbiota in the phyllosphere, the lignosphere and the rhizosphere) any 841 

of a number of WP tissues. Interactions exist between the WP and its associated microbes, 842 

and among microbes. These microbes can be beneficial (e.g. better fitness, nutrition, 843 

immune defense), pathogenic (e.g. diseases) or neutral for the WP. 844 

 845 

Figure 2. Woody plant declines: a role of the microbiota 846 

The woody plant (WP)-associated microbiota is made up of bacteria, fungi, viruses, protists, 847 

archae and oomycetes. The microbiota could either enrich or weaken some physiological 848 

functions of the WP. We hypothesize that the taxonomic composition and functions of the 849 

WP-associated microbiota can influence the WP physiological status. The plant stays healthy 850 

with a given balance of microbiota. On the contrary, an imbalance of microbiota (as cause or 851 

consequence of the decline), leads to visible symptoms, whose origin can be physiological, 852 

cultural and pathological. Various options may be used to cure some WP declines: a direct 853 

inoculation of specific microbial species (e.g. involved in phosphorus mobilization) in order 854 

to restore the balance, or by providing specific microbial species with targeted nutrients to 855 

promote their growth. 856 

In this figure, pie charts only reflect the distribution of the microbiota and the microbiome. 857 

We have chosen some genes, not an exhaustive list, encoding proteins involved in functions 858 

of WP metabolism. Similarly, a balanced microbiota may correspond to different proportions 859 

of microorganisms belonging to each taxon. Taxonomic diversity does not necessarily mirror 860 

the functional diversity. 861 

 862 

 863 

Figure 3. Tag cloud of physiological and ecological diseases related to woody plant declines  864 

Woody plant (WP) declines have multi-factorial determinants (e.g. cultural practices, 865 

parasites, abiotic stresses) and their importance is not clearly established, and may depend 866 

on the WP species. This tag cloud (built using https://nuagedemots.co/) depicts factors and 867 

keywords commonly mentioned on WP declines in references used in this review, without 868 

any causal relationships. In WP declines, it would appear that microbiota could be a reliable 869 

indicator. 870 

 871 

Glossary 872 
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 873 

Allelopathy: the chemical (excretory products, metabolites) inhibition or regulation of one 874 

organism by another. 875 

 876 

Common mycorrhizal network: A continuum network formed by both endo- and 877 

ectomycorrhizal fungi connecting plants with each other via their mycelium. Common 878 

mycorrhizal network allows exchanges of nutrients and other chemical substances between 879 

connected plants.  880 

 881 

Core microbiota: All microbial species (bacteria, fungi, viruses, protists) which predominate 882 

at surface or inside a living organism (here plants). Plant core microbiota could be defined by 883 

a set of microbial species always found in plant of different genus. 884 

 885 

Core microbiome: Set of essential functions provided by the microbiota of a plant found 886 

from one plant to another. 887 

 888 

Decline: Gradual reduction of growth, vigor and productivity in a woody plant due to 889 

multiple abiotic (water or thermic stresses...) and biotic stresses (pathogens, insects…) and 890 

likely to an unbalanced microbiota. 891 

 892 

Dieback: Progressive death of twigs and branches which generally starts at the tips.  893 

 894 

Endophyte: Microorganism (mostly bacteria or fungi) that lives inside tissues of other 895 

organisms, in a symbiotic way, with beneficial effects or at least with no negative 896 

consequences for the host fitness. Microorganisms involved can therefore be commensal or 897 

beneficial, but they can also be saprobes or latent pathogens.  898 

 899 

Endosphere: Internal regions of plant tissues that can be colonized by microorganisms. 900 

 901 

Epiphyte: Microorganism (mostly bacteria or fungi) that lives on the surface of a given 902 

organism. 903 

 904 
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Facilitation: A positive interaction that can contribute to assembling ecological communities 905 

and preserving global biodiversity. 906 

 907 

Holobiont: Sum of the different species that forms an ecological unit. Here, we limit our 908 

definition to the plant and all its symbiotic microbiota.  909 

 910 

Hologenome: The host and microbiome genomes. The host genome is highly conserved with 911 

slow genetic changes. The microbiome genome is dynamic (e.g. horizontal gene transfer, 912 

mutation) and can change rapidly by modifying microbial populations in response to 913 

environmental changes. 914 

 915 

Homeostasis: The maintenance of a relatively steady state or equilibrium in a biological 916 

system by intrinsic regulatory mechanisms. 917 

 918 

Key or hub species: A small number of taxa that are strongly interconnected and having a 919 

severe effect on communities. 920 

 921 

Lignosphere: Botanically, it is the micro-ecosystem of the trunk and branches surface, 922 

considered as a possible habitat for microbes. 923 

 924 

Microbiome: Set of genes brought by microbes forming the microbiota within a holobiont. 925 

 926 

Microbiota: Community of microbes associated with the plant (bacteria, archaea, fungi, 927 

viruses, protists and other microeukaryota). 928 

 929 

Mycorrhiza: From mukes, fungus; and rhiza, root. Intimate association between roots from 930 

90% of land plants and specialized soil fungi. At least seven types of mycorrhiza exist, but 931 

ectomycorrhiza and arbuscular mycorrhiza are the most common. 932 

 933 

Phyllosphere: Botanically, it is the micro-ecosystem of the leaf surface, considered as a 934 

possible habitat for microbes. 935 

 936 
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Rhizosphere: Volume of soil surrounding living plant roots that is influenced by root activity 937 

and hosting specific rhizospheric microbes.  938 

 939 

Rhizodeposition: The release of materials from plant roots into the rhizosphere, including 940 

soluble and insoluble exudates, lysates and gases. 941 

 942 

Symbiont: Organism establishing a close and long-term interaction with its host (here the 943 

plant). 944 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 
 




