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The density of soil observations is a major determinant of digital soil mapping (DSM) prediction accuracy. In this study, we investigated the effect of soil sampling density on the performance of DSM to predict topsoil particle-size distribution in the Mayenne region of France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile random forest (QRF). The study area is a region of ~5000 km 2 with the highest density of field soil observations in France (1 profile per 0.64 km 2 ). The number of training sites was progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km 2 to 1 profile per 13 km 2 ) to simulate the different density of observations. For OK and QRF, we tested random subsampling for splitting the data into training and testing datasets using k-fold cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the point coordinates or the covariates. The results indicated that, with increasing density of observations, OK performed as well or even better than QRF, depending on the particle-size fraction. For silt prediction, OK was systematically better than QRF. However, the prediction intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty correctly. Overall, the performance indicators increased with the density of observations with a threshold at about 1 profile per 2 km 2 which suggests that the main limitation of DSM prediction accuracy using QRF is the amount of data collected in the field, not the type of calibration sampling strategy. Future DSM activities should focus on gathering more field observations.

Introduction

It is generally accepted that a major limitation to Digital Soil Mapping (DSM) prediction performance is the density of soil observations that carry up-to-date information (e.g., Arrouays et al., 2014a[START_REF] Arrouays | Soil legacy data rescue via GlobalSoilMap and other international and national initiatives[END_REF][START_REF] Samuel-Rosa | Open legacy soil survey data in Brazil: geospatial data quality and how to improve it[END_REF]. [START_REF] Samuel-Rosa | Do more detailed environmental covariates deliver more accurate soil maps?[END_REF] evaluated whether investing in more spatially detailed environmental covariates improves the accuracy of digital soil maps. Their conclusions showed that more detailed covariates only result in a modest increase in prediction performance and it may be more useful to spend extra resources on collecting more soil observations. Indeed, substantial discrepancies in soil observations' density exist among, and even within, national soil databases [START_REF] Morvan | Soil monitoring in Europe: a review of existing systems and requirements for harmonisation[END_REF][START_REF] Arrouays | Soil legacy data rescue via GlobalSoilMap and other international and national initiatives[END_REF]. [START_REF] Somarathna | More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon[END_REF] tested various machine learning algorithms to predict soil carbon and found that the density of observations was more important than the type of machine learning models. While many DSM studies focused on comparing various machine learning models [START_REF] Padarian | Machine learning and soil sciences: A review aided by machine learning tools[END_REF], less work focused on the impact of the density of observations. By using a large dataset of pseudo values of clay content obtained from hyperspectral data, [START_REF] Lagacherie | Analysing the impact of soil spatial sampling on the performances of Digital Soil Mapping models and their evaluation : A numerical experiment on Quantile Random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery[END_REF] confirmed the importance of sampling density on DSM performances but showed that this importance diminished as sampling densities increased and that other spatial characteristics of the soil sampling (completeness and evenness in space) also had a strong effect.

Even within harmonized soil conventional mapping programs, the methodology and spatial coverage are far from homogeneous, even at the national scale. This is the case in France, where a national program for mapping soil-scapes at 1:250,000 is finalised [START_REF] Laroche | Le programme Inventaire Gestion et conservation des Sols. Volet Référentiel Régional[END_REF][START_REF] Richer-De-Forges | Mapping of Soils and Land-Related Environmental attributes in France: analysis of end-users' needs[END_REF]. In their prospective analysis on the future of the French national soil-mapping program, [START_REF] Voltz | Possible futures of soil-mapping in France[END_REF] proposed to move from conventional soil mapping to DSM and to improve the density of observed soil profiles to homogenize and enhance the accuracy of 1:250,000 soil maps for France. In practice, the French program of 1:250,000 soil mapping has been done using conventional mapping by administrative units i.e., the French "Départements" the mean area of which being about 6,000 km². Within these "Départements", the density of soil observations is highly variable, from 1 observation per 0.64 km² to 1 observation per 123 km². Three thresholds were set to indicate the quality of the maps (InfoSol, 2005): (i) at least 1 profile per 60 km² as a minimum standard designated as "operational level", (ii) more than 1 profile per 40 km² for a higher quality "advanced level" and (iii) more than 1 profile per 20 km² as "optimal level". These thresholds were set by experts and used to deliver labels of quality by the Ministry in charge of Agriculture, but their relevance was never assessed quantitatively. In particular, we never tested if increasing the density of points substantially would increase the performance of the predictions when using DSM techniques to map a "Département".

In this study, we chose the French "Département" with the highest soil profile density observations. We tested how the density of training profiles affects the prediction of topsoil particle size distribution, namely clay, silt, and sand contents. This paper has two objectives: i) to assess if we could identify thresholds of the density of soil profiles for prediction performances when applying DSM techniques to predict some basic soil properties and, ii) to compare the performances of a machine learning algorithm (quantile random forest) to pure spatial interpolation, ordinary kriging, as a function of the density of observations.

Material and methods

2.1.Study area and general framework of the study

We chose the "Mayenne" French "Département". (~8,100 points for a total area of 5208 km², corresponding to a density of one profile per 0.64 km²), which has the highest density of observations for a French department in the framework of the systematic conventional survey of soils at the scale of 1:250,000. Figure 1 shows the study area with the original sampling points from the soil surveyor and the elevation. Except for some urban areas, sampling points are rather homogeneously distributed. Of course, the density of points is not regular, because conventional survey allows the surveyor to place the points for maximum information on the soil-landscape, but we can reasonably expect that most of the soil/landscape situations are represented in this sampling. The region is located at the boundary of sedimentary deposits (mainly calcareous and loess) and crystalline and metamorphic rocks. Thus, we expect that we would be able to see contrasting spatial structures of soil texture within this region. In addition, the area is covered by interesting spatial covariates, namely, (i) a harmonized and revised lithological map (1:50,000 scale; [START_REF] Vernhet | Carte géologique harmonisée du département de la Mayenne[END_REF], recoded by Bialkowski et al., 2019), and (ii) an airborne gamma-ray survey.

Soil sampling and analysis

Soil sampling was done in the framework of a conventional soil survey; its density was adapted to the soil variations observed in the field by the soil surveyors. At each field sampling location, the soils were sampled either by digging a soil pit or by augering. The topsoil organo-mineral horizon (excluding O horizons when present) was sampled. For most of the agricultural plots, the corresponding thickness was the ploughed layer (from 0-20 to 0-30 cm, with an average thickness of 24 cm) whereas the thickness ranged from 0-5 to 0-30 cm (with an average of 20 cm) and from 0-5 to 0-25 cm (with an average of 18 cm) under permanent pastures and forest respectively. Samples were air-dried at 30°C to a constant mass and then gently crushed to a 2 mm sieve. The particle-size analysis was performed using the Robinson pipette method [START_REF] Robinson | The dispersion of soils in mechanical analysis[END_REF].

As the fractions clay (< 2 µm), silt (2-50 µm), and sand (50-2000 µm) sum to 1000 g kg -1 , the data were transformed with the additive log-ratio (alr-transform, [START_REF] Aitchison | The statistical analysis of compositional data[END_REF] for the spatial prediction of compositional data [START_REF] Lark | Cokriging particle size fractions of the soil[END_REF]. The alr-transformed variables were calculated as follows (Eqs (1 and 2)):

ln 1 ln 2
The alr predicted variables were then back-transformed to sand, silt, and clay through the alr inverse transformation (Eqs (3-5)):
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To assess the confidence interval of our predictions, we calculated the variance of the backtransformed clay, sand, and silt fractions. Román Dobarco et al. (2019) showed that since the prediction and variance are independent, the Taylor analysis method is more efficient than using Monte Carlo simulation to estimate the prediction variance of each particle-size.

Utilising the first-order Taylor analysis, the variance of prediction can be derived as follow (Eqs (6-8)):
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For more detailed explanations on the use of first-order Taylor analysis in spatial models, we refer to [START_REF] Heuvelink | Propagation of errors in spatial modelling with GIS[END_REF].

2.3.Covariates

The list of covariates used in this study is provided in Table 1. All covariates were transformed to a 90 m resolution grid according to the GlobalSoilMap specifications (Arrouays et al., 2014b), either through downscaling for coarser-resolution layers, or upscaling for the finer ones. The upscaling was done in two ways: 1) by the average aggregation for quantitative data, 2) by a majority vote estimation for the qualitative covariates. In addition, we transformed the classes from the qualitative covariates to binary information (0: absence and 1: presence) to assess each class's importance in our model.

2.4.Digital soil mapping modelling

In order to assess the effect of point density on the performance of the predictions, we reduced the number of training samples progressively and adopted three different strategies to predict particle-size distribution over the "Département". To keep comparable testing sizes for large and small datasets, we selected 8100 to 600 sample points with a 1000 to 200 increment (Table 2). We used 200 testing points for cross-validation when the number of training points was larger than 2000, and 500 testing points when the number of training points was smaller or equal to 2000. This strategy aimed at keeping enough testing points for each fold, and as many folds as possible. Each splitting procedure was repeated 100 times. We tested four different prediction methods, summarized as follows:

1) Ordinary Kriging (OK), to assess the prediction of soil texture, only using soil sample location and measured particle-size values as information. Samples were randomly selected to form various sizes of training data.

2) Quantile Regression Forest (QRF) using the R package quantregForest [START_REF] Meinshausen | Quantile Regression Forests[END_REF] with covariates listed in Table 1. We chose this technique as it has been shown to be robust, and it enabled us to derive quantile distributions instead of a single mean value [START_REF] Vaysse | Using quantile regression forest to estimate uncertainty of digital soil mapping products[END_REF]. Samples were randomly selected as in OK.

3) QRF as previously, but we chose to sample the points using the conditional Latin Hypercube Sampling (cLHS, [START_REF] Minasny | A conditioned Latin hypercube method for sampling in the presence of ancillary information[END_REF]) method based on their coordinates to reduce the clustering of samples.

4) QRF as previously, but we chose to sample the points using cLHS applied on the covariates to ensure even coverage of the covariates.

2.5.Assessing the performance of the predictions

The performance of the predictions was evaluated through a k-fold cross validation by keeping a minimum of 200 to 500 samples apart for testing, depending on the strategy of partitioning the data. We assessed the model performance through a 100 times replication of the cross-validation method by reporting the medianvalue of the following indicators:

The coefficient of determination (R²), which measures the adequacy between our model and our observed value.
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Here, _ + and _̅ are the value of the observation for point i and the mean of all observations, respectively; _ + * is the value of the prediction for point i.

The root-mean-square error (RMSE), which provides information on the statistical dispersion of our predictions in relation to our observations.
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The concordance coefficient (CC; Lin, 1989), which is given as
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where 7 Y 8 and 7 Y * ² are the observation and prediction variances, respectively, e is their correlation coefficient, and _̅ * is the mean of the prediction

The bias of the predictions, which is the difference between the mean predicted and mean observed values.
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The PICP (prediction interval coverage probability). This indicator assesses the uncertainty between the observed and predicted distribution. The PICP is the probability that the target of an input pattern lies within the prediction limits [START_REF] Shrestha | Machine learning approaches for estimation of prediction interval for the model output[END_REF]. The PICP was calculated from the confidence interval of 90% with the extreme quantile 5% and 95% of the model prediction.
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Results and discussion

3.1.Summary statistics

The distribution of the particle-size fractions in g.kg -1 , over the Mayenne department, is shown in Table 3. We observed a large dominance of the silt fraction over the samples.

Moreover, testing the skewness and kurtosis indices, silt and sand seemed to follow a rather symmetric distribution with fewer and less extreme outliers than the normal distribution. The clay distribution was positively skewed and had a high kurtosis value, which shows its asymmetry and more outliers in the right part of its distribution. 

3.2.Performance of the predictions

In order to assess the performances of each sampling strategy, we compared the performance of the predictions for each sampling density and algorithms used. The R 2 for the QRF algorithms for silt and sand showed a sharp increase with an increasing number of training points until about 1800 and 2500 respectively, followed by a small increase (Fig 2). This shape is similar to those obtained by [START_REF] Lagacherie | Analysing the impact of soil spatial sampling on the performances of Digital Soil Mapping models and their evaluation : A numerical experiment on Quantile Random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery[END_REF]. These threshold were less evident for clay. The three QRF algorithms gave quite similar results.

Interestingly the R 2 for silt was always higher when using OK than using QRF methods. This may be due to the fact that the covariates we used did not capture silt distribution effectively.

Moreover, when the number of training samples was very large, OK R² gave similar results compared to QRF for clay and slightly better results for sand. Note, however, that OK gave poorer results than QRF for clay and especially for sand at the lowest densities of sampling and that for these fractions, the decrease of R 2 was more pronounced for low sampling densities. until reaching a threshold of about 2500, followed by a slight decrease thereafter. No real trend was observed for silt and sand. No substantial difference was observed between the algorithms (Fig. 3) except for silt, in which OK always performed slightly better than the QRF methods, especially at high sampling densities, which is consistent with the results of R². Note that the RMSE values are always lower than the interquartile range (see Table 3), suggesting that the mapping is effective. The red line separates the strategies using 500 testing points from those using 200 testing points.

Q3

The mean error for clay seemed to be constant for all models at a very low value for clay (around -2 g.kg -1 ). Silt and sand exhibited much larger ME, even if the OK presented better results for these fractions. For all QRF models, the ME median value stayed somewhat similar. Interestingly, silt and sand showed opposite trends, increasing ME for silt until about The CCC indicator increased with increasing density for all fractions (Fig. 5). Interestingly, OK worked better than QRF for large sampling densities, and even for all densities for silt.

For sand, the CCC trend was similar to R 2 , with a sharp increase with the increasing density of training points and a lower increase when the number of training points became higher (> 2500). For the highest training densities, it was higher for OK than for QRF, especially for silt. On the contrary, for the lowest densities, it became lower for OK than for QRF. The red line separates the strategies using 500 testing points from those using 200 testing points.

For clay (Fig. 6), the PICP was always lower than 90%, which shows that the 90% prediction intervals were slightly under-estimated. This was more evident for OK. From a practical point of view, this shows that kriging smoothed out high/low values, thus under-estimated the prediction intervals. The PICP is mostly over 90% for the prediction of silt by OK, although it

shows acceptable values (close to 90%) for the QRF models. This shows that contrary to clay, OK over-estimated PIs for silt prediction, which counter-balanced the better prediction results obtained by OK. For sand prediction, all PICPs were larger than 90%. The contrast between the trends observed for clay and sand could be due to the negative correlation between these two fractions. We observed a rather erratic behavior of the PICP for the lowest calibration sample values. This is likely due to the low number of training and testing samples and the small number of k-fold cross-validations. This is consistent with the findings of Lagacherie et al. (2019), who showed that a small number of validation samples is not robust enough to assess the performance of the model predictions. However, this erratic behavior remains in a narrow range and we should recall here that we replicated 100 times the splitting between training and testing samples. There were no substantial differences between the 3 different sampling strategies for the QRF algorithms. This may be because all subsampling strategies that we tested were denser than the sampling strategies commonly used in France. Moreover, when the number of selected samples is large, cLHS has no advantage over other sampling designs [START_REF] Wadoux | Sampling design optimization for soil mapping with random forest[END_REF].

When the number of training samples was equal or larger than 2500, some QRF performance indicators were slightly improved with increasing sampling density. This suggests that collecting new data or rescuing more legacy data should further improve the prediction accuracy, as indicated by [START_REF] Arrouays | Soil legacy data rescue via GlobalSoilMap and other international and national initiatives[END_REF] and [START_REF] Samuel-Rosa | Do more detailed environmental covariates deliver more accurate soil maps?[END_REF]2020). When the sampling density was very high, OK performed as well, or even better than machine learning methods, which validates the general framework proposed by [START_REF] Minasny | Methodologies for global soil mapping[END_REF] for global digital soil mapping, that was thereafter adopted by the GlobalSoilMap initiative (Arrouays et al., 2014b). Interestingly, the silt fraction had a particular behavior compared to other fractions, i.e., except for PICP, the performance was better when using OK for most sampling densities. This may be due to the fact that the covariates that we selected were less responsive for silt than for the other fractions. A threshold of the number of points (around 2500) was identified, under which most of the performance indicators performed worse. Over this threshold, the performance indicators remained stable or increased more slowly with the density of points, suggesting that the main limitation of the goodness of DSM predictions is the amount of data collected in the field. We note that the number of testing points was changedfrom 200 to 500 at 2500 training points, which may affect the results. To keep a minimum number of k-fold the same time, we needed to change the number of testing points. But we assessed the model performance through a 100 times replication of the cross-validation method. This avoids a random chance of under-or over-estimation of error. Moreover, our results are consistent with those obtained recently by [START_REF] Lagacherie | Analysing the impact of soil spatial sampling on the performances of Digital Soil Mapping models and their evaluation : A numerical experiment on Quantile Random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery[END_REF].

It is worth noting that this threshold of 2500 points (about 1 profile per 2 km 2 ) corresponds to a nearly ten times larger density that the density recommended in the traditional 1:250,000 soil mapping programs, even for those considered as optimal (1 profile per 20 km 2 ). The conventional survey recommendation at 1:250,000 may be adequate if applied by a skilled soil surveyor, but certainly not for fine resolution DSM applications. The large majority of the French departments have a number of profile observations much less than this threshold of 1 profile per 2 km². One can, therefore, assess the enormous efforts needed if the objective is to produce fine resolution DSM products with an acceptable level of quality at the department level using only training points and available covariates. This is even more critical if we consider that the most important covariates in our case (airborne gamma-ray, [START_REF] Loiseau | Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France[END_REF] are not available for the entire French territory.

3.3.Maps of predictions

To assess the influence of increasing the number of calibration points on mapping predictions, we mapped several examples for the four trials that we tested for each particle-size fraction (Figures 7 to 9).

The trend showed in these figures is a stabilization of the spatial prediction with the increasing number of training points. This trend is also more pronounced when we focus on OK. The increasing number of calibration points allowed the models to describe more detailed spatial structures, and decreased the smoothing effect of the kriging.

When comparing QRF methodologies sampling, few differences were observed between sampling densities. However, for the lowest training densities, the predictions were more pixelated and some spatial patterns were less visible on the maps. At thresholds ranging from 1800 to 2500 training points, the general patterns seemed to remain stable for clay, silt, and sand.

For clay (figure 7), the spatial patterns with high values (over 200 g.kg -1 ) seemed to remain stable from 1800 training points in the middle part of the department. The predictions of sand (figure 9) presented also similar variations, with a quite similar stabilization of the predictions, for all QRF models, over a threshold close to 1800 points. Several thresholds, ranging from 1800 to 2500 training points, can be observed for the prediction maps of particle-size over the Mayenne department. Indeed, the sampling strategies did not impact the prediction maps compared to the number of training points. However, as shown in the precedent observations, the particle size variability was not entirely explained by our selected covariates. In complex regions, more observations could explain the spatial variation of the soil in more detail. Moreover, using good quality covariates increased a lot in the details of the spatial prediction. In comparison to OK, QRF seemed to indicate the variability of the predictions closer to the observed soil properties variability and produced less smoothed predictions. There are limitations in this study; we still missed some crucial covariates and that our selection of training samples was based on observations collected by a traditional soil survey, which may not be statistically optimal.

3.4.Interval of predictions and mapping

To assess the influence of the training dataset size over our textural predictions, we estimated and mapped their 90% prediction interval (PI). Figures 10 and11 show the PI of each sampling strategy for training sets of 400 and 2500 points. We observed for each sampling, a decrease of the PI with the increase of the number of training points, except for coordinates sampling where the PI seemed relatively stable or better, depending on the particle size, with a smaller dataset (Figure 9). For clay, PIs were lower and showed the most extensive variations over the metamorphic area, whereas the uncertainty was much larger with a few points for each sampling strategy.

Silt showed large variations in the North, but also in the South-Est. This can be due to its variability and the fact that complex deposition processes could not be captured by our model and covariates, even with a large set of training points (Figure 11). The global variation of sand over the department resulted from the cumulative error from the back transformation and presented the largest variation compared to clay and silt. Note that the PIs were always much larger for OK than for QRF models and that, as expected, the PI intervals strongly decreased when going from a small number to a large number of training points. The spatial patterns of PIs were very different from OK to QRF as already observed by [START_REF] Vaysse | Using quantile regression forest to estimate uncertainty of digital soil mapping products[END_REF]. Note also that the PI maps were very similar for all the QRF models, suggesting that the sampling strategy is not important at this high number of sampling points. These results were expected and supported environmental information integration in DSM models for mapping against pure geostatistical interpolation. With a large set of data, the QRF sampling strategies were indifferent, and the variability of prediction was more affected by the number of calibration samples. However, for small size of training points, cLHS appeared to be useful (i.e., for QRF, sampling capturing the maximum combinations of the values of relevant covariates). We suggest that for planning soil sampling for DSM, the use of sampling design that aims to capture the maximum of information is required. There are still discussions about the best sampling strategy for a small number of samples: it is beneficial to use methods such as cLHS or k-means clustering based on covariates when covariates exhibit contrasted values, which is the case in the present study. However, if the contrast of covariates is smoother, then it may be more important to get a rather regular coverage of the geographical space. Overall, increasing the number of training points to more than 2500 led to a relatively small increase in prediction performances, which suggests that acquiring more points may not be worth considering the gain in accuracy that can be achieved. This observation might be different if we consider more complex models such as deep learning [START_REF] Padarian | Using deep learning for digital soil mapping[END_REF][START_REF] Ng | The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data[END_REF] or new (or finer resolution) covariates that can explain soil texture variability better. This proposal will be tested in future work.

Conclusions

We evaluated the effect of soil observations density on the digital soil mapping model's performance for topsoil particle-size distribution with four sampling strategies and with a decreasing number of training points. We demonstrated a threshold of sampling density, and that sampling with a density less than about 1 profile per 2 km 2 could lead to a substantial decrease in the performance accuracy. This result is significant, considering that the density recommended for conventional soil mapping at 1:250,000 is 1 profile per 20 km 2 , which is 10 times smaller. We showed that sampling strategies based on covariates or coordinates with cLHS did not produce different results from random sampling when the number of training samples was large. We showed that increasing the number of training samples produced better improvements in the predictions maps when using QRF models compared to ordinary kriging. We conclude that the main limitations of DSM prediction accuracy are the amount of data collected in the field and high-quality covariates. Future DSM activities should focus on gathering more field observations. However, increasing the number of training points may in some cases not be worth considering the gain in accuracy that can be achieved.
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  Figures 2 to 6 show the evolution of selected statistical indicators (R², RMSE, ME, CCC, and PICP) as a function of training sample densities.
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Table 1 .

 1 Spatially exhaustive co-variates used in the Mayenne department.

		Covariates		Resolution Data type	Reference
	Climate				
	Climate type				250 m	Qualitative Joly et al., (2010)
	Vegetation			
	Forest type				1:25 K	Qualitative	Inventaire Forestier National (2006)
	Land use 2016				10 m	Qualitative CESBIO (2016)
	Principal (N=3)	Component		NDVI	500 m	Quantitative Loiseau et al., (2019)
	Soil maps			
	Clay content France (%)		500 m	Quantitative Ballabio et al., (2016)
	Silt Content France (%)		500 m	Quantitative	Ballabio et al., (2016)
	Sand content France (%)		500 m	Quantitative Ballabio et al., (2016)
	Rate	of	river	network
	development and persistence	1:50 K	Quantitative BRGM (2014)
	(IDPR)				
	Topography			
	Elevation				25 m	Quantitative IGN (2014)
	Compound topographic index (CTI)	25 m	Quantitative	IGN (2014)
	Multi-Resolution Valley Bottom Flatness (MRVBF)	25 m	Quantitative IGN (2014)
	Multi-Resolution Flatness (MRRTF)	Ridge	Top	25 m	Quantitative IGN (2014)
	Roughness				25 m	Quantitative IGN (2014)
	Curvature				25 m	Quantitative IGN (2014)
	Exposition				25 m	Quantitative IGN (2014)
	Slope position				25 m	Quantitative IGN (2014)
	Slope, cosines(slope)		25 m	Quantitative IGN (2014)

Table 2 .

 2 Training and testing datasets used in this study.

	Total samples (n) 600 800 1000 1200 1400 1600 1800 2000 3000 4000 5000 6000 7000 8100
	Training samples 400 600 800 1000 1200 1400 1600 1800 2500 3500 4500 5500 6500 7600

Table 3 .

 3 Summary statistics of particle-size distribution of the samples over the Mayenne department.

		Clay	Silt	Sand
	Min	18,83	20	19,06
	Q1	141	448	189
	Mean	177,22	529,26	293,33
	Median	164	540	267

coordinates and d) QRF covariates, when the number of training data increases.
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