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Abstract 13 

The density of soil observations is a major determinant of digital soil mapping (DSM) 14 

prediction accuracy. In this study, we investigated the effect of soil sampling density on the 15 

performance of DSM to predict topsoil particle-size distribution in the Mayenne region of 16 

France. We tested two prediction algorithms, namely ordinary kriging (OK) and quantile 17 

random forest (QRF). The study area is a region of ~5000 km2 with the highest density of 18 

field soil observations in France (1 profile per 0.64 km2). The number of training sites was 19 

progressively reduced (from n = 7500 to n = 400, corresponding to 1 profile per 0.7 km2 to 1 20 

profile per 13 km2) to simulate the different density of observations. For OK and QRF, we 21 

tested random subsampling for splitting the data into training and testing datasets using k-fold 22 

cross validation. For QRF we also tested conditioned Latin hypercube sampling based on the 23 

point coordinates or the covariates. The results indicated that, with increasing density of 24 

observations, OK performed as well or even better than QRF, depending on the particle-size 25 

fraction. For silt prediction, OK was systematically better than QRF. However, the prediction 26 

intervals were much larger for OK than for QRF, and OK did not seem to estimate uncertainty 27 

correctly. Overall, the performance indicators increased with the density of observations with 28 

a threshold at about 1 profile per 2 km2 which suggests that the main limitation of DSM 29 

prediction accuracy using QRF is the amount of data collected in the field, not the type of 30 

calibration sampling strategy. Future DSM activities should focus on gathering more field 31 

observations. 32 

Keywords: Digital Soil Mapping; topsoil particle-size distribution; sampling strategy; 33 

sampling density; prediction performance; Multiple soil classes; France 34 
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1. Introduction 36 

It is generally accepted that a major limitation to Digital Soil Mapping (DSM) prediction 37 

performance is the density of soil observations that carry up-to-date information (e.g., 38 

Arrouays et al., 2014a, 2017; Samuel-Rosa et al., 2020). Samuel-Rosa et al. (2015) evaluated 39 

whether investing in more spatially detailed environmental covariates improves the accuracy 40 

of digital soil maps. Their conclusions showed that more detailed covariates only result in a 41 

modest increase in prediction performance and it may be more useful to spend extra resources 42 

on collecting more soil observations. Indeed, substantial discrepancies in soil observations' 43 

density exist among, and even within, national soil databases (Morvan et al., 2008; Arrouays 44 

et al., 2017). Somarathna et al. (2017) tested various machine learning algorithms to predict 45 

soil carbon and found that the density of observations was more important than the type of 46 

machine learning models. While many DSM studies focused on comparing various machine 47 

learning models (Padarian et al., 2020), less work focused on the impact of the density of 48 

observations. By using a large dataset of pseudo values of clay content obtained from 49 

hyperspectral data, Lagacherie et al. (2020) confirmed the importance of sampling density on 50 

DSM performances but showed that this importance diminished as sampling densities 51 

increased and that other spatial characteristics of the soil sampling (completeness and 52 

evenness in space) also had a strong effect. 53 

Even within harmonized soil conventional mapping programs, the methodology and spatial 54 

coverage are far from homogeneous, even at the national scale. This is the case in France, 55 

where a national program for mapping soil-scapes at 1:250,000 is finalised (Laroche et al., 56 

2014; Richer-de-Forges et al., 2019). In their prospective analysis on the future of the French 57 

national soil-mapping program, Voltz et al. (2020) proposed to move from conventional soil 58 

mapping to DSM and to improve the density of observed soil profiles to homogenize and 59 

enhance the accuracy of 1:250,000 soil maps for France. In practice, the French program of 60 



1:250,000 soil mapping has been done using conventional mapping by administrative units 61 

i.e., the French “Départements” the mean area of which being about 6,000 km². Within these 62 

“Départements”, the density of soil observations is highly variable, from 1 observation per 63 

0.64 km² to 1 observation per 123 km². Three thresholds were set to indicate the quality of the 64 

maps (InfoSol, 2005): (i) at least 1 profile per 60 km² as a minimum standard designated as 65 

“operational level”, (ii) more than 1 profile per 40 km² for a higher quality “advanced level” 66 

and (iii) more than 1 profile per 20 km² as “optimal level”. These thresholds were set by 67 

experts and used to deliver labels of quality by the Ministry in charge of Agriculture, but their 68 

relevance was never assessed quantitatively. In particular, we never tested if increasing the 69 

density of points substantially would increase the performance of the predictions when using 70 

DSM techniques to map a “Département”.  71 

In this study, we chose the French “Département” with the highest soil profile density 72 

observations. We tested how the density of training profiles affects the prediction of topsoil 73 

particle size distribution, namely clay, silt, and sand contents. This paper has two objectives: 74 

i) to assess if we could identify thresholds of the density of soil profiles for prediction 75 

performances when applying DSM techniques to predict some basic soil properties and, ii) to 76 

compare the performances of a machine learning algorithm (quantile random forest) to pure 77 

spatial interpolation, ordinary kriging, as a function of the density of observations. 78 

2. Material and methods 79 

2.1.Study area and general framework of the study 80 

We chose the “Mayenne” French “Département”. (~8,100 points for a total area of 5208 km², 81 

corresponding to a density of one profile per 0.64 km²), which has the highest density of 82 

observations for a French department in the framework of the systematic conventional survey 83 

of soils at the scale of 1:250,000. Figure 1 shows the study area with the original sampling 84 

points from the soil surveyor and the elevation. Except for some urban areas, sampling points 85 



are rather homogeneously distributed. Of course, the density of points is not regular, because 86 

conventional survey allows the surveyor to place the points for maximum information on the 87 

soil-landscape, but we can reasonably expect that most of the soil/landscape situations are 88 

represented in this sampling. 89 

 90 

Fig. 1. Map of the study area with soil sampling points used for the conventional mapping and 91 

elevation (m).  92 

The region is located at the boundary of sedimentary deposits (mainly calcareous and loess) 93 

and crystalline and metamorphic rocks. Thus, we expect that we would be able to see 94 

contrasting spatial structures of soil texture within this region. In addition, the area is covered 95 

by interesting spatial covariates, namely, (i) a harmonized and revised lithological map 96 

(1:50,000 scale; Vernhet, 2010, recoded by Bialkowski et al., 2019), and (ii) an airborne 97 

gamma-ray survey. 98 



 99 

2.2. Soil sampling and analysis 100 

Soil sampling was done in the framework of a conventional soil survey; its density was 101 

adapted to the soil variations observed in the field by the soil surveyors. At each field 102 

sampling location, the soils were sampled either by digging a soil pit or by augering. The 103 

topsoil organo-mineral horizon (excluding O horizons when present) was sampled. For most 104 

of the agricultural plots, the corresponding thickness was the ploughed layer (from 0-20 to 0-105 

30 cm, with an average thickness of 24 cm) whereas the thickness ranged from 0-5 to 0-30 cm 106 

(with an average of 20 cm) and from 0-5 to 0-25 cm (with an average of 18 cm) under 107 

permanent pastures and forest respectively. Samples were air-dried at 30°C to a constant mass 108 

and then gently crushed to a 2 mm sieve. The particle-size analysis was performed using the 109 

Robinson pipette method (Robinson, 1933). 110 

As the fractions clay (< 2 µm), silt (2-50 µm), and sand (50-2000 µm) sum to 1000 g kg-1, the 111 

data were transformed with the additive log-ratio (alr-transform, Aitchison, 1982) for the 112 

spatial prediction of compositional data (Lark and Bishop, 2007). The alr-transformed 113 

variables were calculated as follows (Eqs (1 and 2)): 114 

������� � ln 	
�������	�1� 115 

������� � ln 	 ���������	�2� 116 

The alr predicted variables were then back-transformed to sand, silt, and clay through the alr 117 

inverse transformation (Eqs (3-5)): 118 

����	��. ��� � � 	!"#$%&'(�1 )	!"#$%&'( ) !*+#,&'(� - 1000		�3� 119 



����	��. ��� � � 	!*+#,&'(�1 )	!"#$%&'( ) !*+#,&'(� - 1000		�4� 120 

��12	��. ��� � � 	1�1 )	!"#$%&'( ) !*+#,&'(� - 1000		�5� 121 

To assess the confidence interval of our predictions, we calculated the variance of the back-122 

transformed clay, sand, and silt fractions. Román Dobarco et al. (2019) showed that since the 123 

prediction and variance are independent, the Taylor analysis method is more efficient than 124 

using Monte Carlo simulation to estimate the prediction variance of each particle-size. 125 

Utilising the first-order Taylor analysis, the variance of prediction can be derived as follow 126 

(Eqs (6-8)): 127 

• 4�� 5����	��. ��� �6 � 7"#$%&'(8 	9:::;<='&>&'(;9?<='&>&'(?<@A'B&'(C�<D='&>&'(C;9?<='&>&'(?<@A'B&'(C² �8 )128 

7*+#,&'(8 F �9:::<='&>&'(<@A'B&'(;9?<='&>&'(?<@A'B&'(CDG8 ) 2HIJ�
��$#K , ����$#K� �9:M<D='&>&'(<@A'B&'(;9?<@A'B&'(C;9?<='&>&'(?<@A'B&'(CD    (6) 129 

• 4�� 5������. ��� �6 � 7*+#,&'(8 	9:::;<@A'B&'(;9?<='&>&'(?<@A'B&'(C�<D@A'B&'(C;9?<='&>&'(?<@A'B&'(C² �8 )130 

7"#$%&'(8 F�9:::<='&>&'(<@A'B&'(;9?<='&>&'(?<@A'B&'(CDG8 ) 2HIJ�
��$#K, ����$#K� �9:M<='&>&'(<D@A'B&'(;9?<='&>&'(C;9?<='&>&'(?<@A'B&'(CD  131 

(7) 132 

• 4�� 5��12��. ��� �6 � 7"#$%&'(8 F �9:::<='&>&'(;9?<='&>&'(?<@A'B&'(CDG8 )133 

7*+#,&'(8 F �9:::<@A'B&'(;9?<='&>&'(?<@A'B&'(CDG8 ) 2HIJ�
��$#K , ����$#K� 9:M<='&>&'(<@A'B&'(;9?<='&>&'(?<@A'B&'(CD                    134 

(8) 135 

For more detailed explanations on the use of first-order Taylor analysis in spatial models, we 136 

refer to Heuvelink et al. (1989). 137 
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 141 

2.3.Covariates 142 

The list of covariates used in this study is provided in Table 1. 143 

Table 1. Spatially exhaustive co-variates used in the Mayenne department. 

Covariates Resolution Data type Reference 

Climate     

Climate type 250 m Qualitative Joly et al., (2010) 

Vegetation     

Forest type 1:25 K  Qualitative 
Inventaire Forestier National 

(2006) 

Land use 2016 10 m Qualitative CESBIO (2016) 
Principal Component NDVI 

(N=3) 
500 m Quantitative Loiseau et al., (2019) 

Soil maps     

Clay content France (%) 500 m Quantitative Ballabio et al., (2016) 

Silt Content France (%) 500 m 
   

Quantitative 
Ballabio et al., (2016) 

Sand content France (%) 500 m Quantitative Ballabio et al., (2016) 
Rate of river network 

development and persistence 

(IDPR) 
1:50 K Quantitative BRGM (2014) 

Topography     

Elevation 25 m Quantitative IGN (2014) 

Compound topographic index 

(CTI) 
25 m 

  

Quantitative 
IGN (2014) 

Multi-Resolution Valley Bottom 

Flatness (MRVBF) 
25 m Quantitative IGN (2014) 

Multi-Resolution Ridge Top 

Flatness (MRRTF) 
25 m Quantitative IGN (2014) 

Roughness 25 m Quantitative IGN (2014) 
Curvature 25 m Quantitative IGN (2014) 
Exposition  25 m Quantitative IGN (2014) 
Slope position 25 m Quantitative IGN (2014) 
Slope, cosines(slope) 25 m Quantitative IGN (2014) 



Gamma ray data    

Thorium (Gamma) 250 m Quantitative Bonijoly et al., (1999) 
Uranium (Gamma) 250 m Quantitative Bonijoly et al., (1999) 

Potassium (Gamma) 250 m Quantitative Bonijoly et al., (1999) 

Th/K ratio (Gamma) 250 m Quantitative Bonijoly et al., (1999) 

Th/U ratio (Gamma) 250 m Quantitative Bonijoly et al., (1999) 

Simplified Lithology 1:50 K Qualitative 
Loiseau et al., (2020) from 

Vernhet (2010) 

 144 

All covariates were transformed to a 90 m resolution grid according to the GlobalSoilMap 145 

specifications (Arrouays et al., 2014b), either through downscaling for coarser-resolution 146 

layers, or upscaling for the finer ones. The upscaling was done in two ways: 1) by the average 147 

aggregation for quantitative data, 2) by a majority vote estimation for the qualitative 148 

covariates. In addition, we transformed the classes from the qualitative covariates to binary 149 

information (0: absence and 1: presence) to assess each class's importance in our model. 150 

2.4.Digital soil mapping modelling 151 

In order to assess the effect of point density on the performance of the predictions, we reduced 152 

the number of training samples progressively and adopted three different strategies to predict 153 

particle-size distribution over the “Département”. To keep comparable testing sizes for large 154 

and small datasets, we selected 8100 to 600 sample points with a 1000 to 200 increment 155 

(Table 2). We used 200 testing points for cross-validation when the number of training points 156 

was larger than 2000, and 500 testing points when the number of training points was smaller 157 

or equal to 2000. This strategy aimed at keeping enough testing points for each fold, and as 158 

many folds as possible. Each splitting procedure was repeated 100 times. 159 

Table 2. Training and testing datasets used in this study. 

Total samples (n) 600 800 1000 1200 1400 1600 1800 2000 3000 4000 5000 6000 7000 8100 

Training samples 400 600 800 1000 1200 1400 1600 1800 2500 3500 4500 5500 6500 7600 



(n)  

Training points 

density (n/km2) 

0.08 0.12 0.15 0.19 0.23 0.27 0.31 0.35 0.48 0.67 0.86 1.06 1.25 1.46 

Training points 

density (1/a km2) 

13 8.7 6.5 5.2 4.3 3.7 3.3 2.9 2.1 1.5 1.2 0.9 0.8 0.7 

Number of points 

per-fold (n) 

200 200 200 200 200 200 200 200 500 500 500 500 500 500 

Number of k- fold 3 4 5 6 7 8 9 10 6 8 10 12 14 16 

 160 

We tested four different prediction methods, summarized as follows:  161 

1) Ordinary Kriging (OK), to assess the prediction of soil texture, only using soil sample 162 

location and measured particle-size values as information. Samples were randomly 163 

selected to form various sizes of training data. 164 

2) Quantile Regression Forest (QRF) using the R package quantregForest (Meinshausen, 165 

2006) with covariates listed in Table 1. We chose this technique as it has been shown 166 

to be robust, and it enabled us to derive quantile distributions instead of a single mean 167 

value (Vaysse and Lagacherie, 2017). Samples were randomly selected as in OK.  168 

3) QRF as previously, but we chose to sample the points using the conditional Latin 169 

Hypercube Sampling (cLHS, Minasny and McBratney, 2006) method based on their 170 

coordinates to reduce the clustering of samples.  171 

4) QRF as previously, but we chose to sample the points using cLHS applied on the 172 

covariates to ensure even coverage of the covariates.   173 

2.5.Assessing the performance of the predictions 174 

The performance of the predictions was evaluated through a k-fold cross validation by 175 

keeping a minimum of 200 to 500 samples apart for testing, depending on the strategy of 176 



partitioning the data. We assessed the model performance through a 100 times replication of 177 

the cross-validation method by reporting the medianvalue of the following indicators: 178 

� The coefficient of determination (R²), which measures the adequacy between our 179 

model and our observed value. 180 

N8 � 1 O ;1 O NPQP�$RSTU,<R8 C � O 1� O V O 1	�9� 181 

where    NPQP�$RSTU,<R8 �	∑ �YA∗�	Y̅�\A]^ ²∑ �\A]^ YA�Y̅	�²   (10) 182 

 Here, _+and _̅ are the value of the observation for point i and the mean of all 183 

observations, respectively; _+∗ is the value of the prediction for point i.  184 

� The root-mean-square error (RMSE), which provides information on the statistical 185 

dispersion of our predictions in relation to our observations.  186 

N`�a � 	b1�c�_+ O	_+∗�8P
+d9 							�11� 187 

� The concordance coefficient (CC; Lin, 1989), which is given as 188 

�� � 	 2e7Y∗7Y7Y8 ) 7Y∗² )	�_̅ O _̅∗�8 	- 100				�12� 189 

 where 7Y8and 7Y∗²  are the observation and prediction variances, respectively, e 190 

is their correlation coefficient, and _̅∗ is the mean of the prediction 191 

� The bias of the predictions, which is the difference between the mean predicted 192 

and mean observed values. 193 

`f�1	f��g� � 1�c�P
+d9 _+∗ O	_+�						�13� 194 

� The PICP (prediction interval coverage probability). This indicator assesses the 195 

uncertainty between the observed and predicted distribution. The PICP is the 196 



probability that the target of an input pattern lies within the prediction limits 197 

(Shrestha and Solomatine, 2006). The PICP was calculated from the confidence 198 

interval of 90% with the extreme quantile 5% and 95% of the model prediction. 199 

 200 
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 202 

 203 

 204 
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 207 

3. Results and discussion 208 

3.1.Summary statistics 209 

The distribution of the particle-size fractions in g.kg-1, over the Mayenne department, is 210 

shown in Table 3. We observed a large dominance of the silt fraction over the samples. 211 

Moreover, testing the skewness and kurtosis indices, silt and sand seemed to follow a rather 212 

symmetric distribution with fewer and less extreme outliers than the normal distribution. The 213 

clay distribution was positively skewed and had a high kurtosis value, which shows its 214 

asymmetry and more outliers in the right part of its distribution. 215 

Table 3. Summary statistics of particle-size distribution of the samples over the Mayenne 216 

department. 217 

  Clay Silt Sand 

Min 18,83 20 19,06 

Q1 141 448 189 

Mean 177,22 529,26 293,33 

Median 164 540 267 



 218 

 219 

 220 

 221 

 222 

 223 

3.2.Performance of the predictions 224 

In order to assess the performances of each sampling strategy, we compared the performance 225 

of the predictions for each sampling density and algorithms used. Figures 2 to 6 show the 226 

evolution of selected statistical indicators (R², RMSE, ME, CCC, and PICP) as a function of 227 

training sample densities. 228 

The R2 for the QRF algorithms for silt and sand showed a sharp increase with an increasing 229 

number of training points until about 1800 and 2500 respectively, followed by a small 230 

increase (Fig 2). This shape is similar to those obtained by Lagacherie et al (2020). These 231 

threshold were less evident for clay. The three QRF algorithms gave quite similar results. 232 

Interestingly the R2 for silt was always higher when using OK than using QRF methods. This 233 

may be due to the fact that the covariates we used did not capture silt distribution effectively. 234 

Moreover, when the number of training samples was very large, OK R² gave similar results 235 

compared to QRF for clay and slightly better results for sand. Note, however, that OK gave 236 

poorer results than QRF for clay and especially for sand at the lowest densities of sampling 237 

and that for these fractions, the decrease of R2 was more pronounced for low sampling 238 

densities. 239 

 240 

Q3 200 624 374 

Max 631 839 898 

Decile 1 125,87 360,6 144 

Decile 9 249 683 481,54 

Skewness 1,76 -0,48 0,88 

Kurtosis 6,07 -0,08 0,59 



 

Fig 2. Median R² for testing: comparison for a) Clay, b) Silt and c) Sand fraction for each 241 

sampling strategy with increasing training sample size over the Mayenne department. The red 242 

line separates the strategies using 500 testing points from those using 200 testing points. 243 

For clay, the RMSE (Fig 3) showed a substantial decrease with increasing training densities 244 

until reaching a threshold of about 2500, followed by a slight decrease thereafter. No real 245 



trend was observed for silt and sand. No substantial difference was observed between the 246 

algorithms (Fig. 3) except for silt, in which OK always performed slightly better than the QRF 247 

methods, especially at high sampling densities, which is consistent with the results of R². Note 248 

that the RMSE values are always lower than the interquartile range (see Table 3), suggesting 249 

that the mapping is effective. 250 

 251 



 

Fig 3. Median RMSE for testing: comparison for a) Clay, b) Silt and c) Sand fractions for 252 

each sampling strategy with increasing training sample size over the Mayenne department. 253 

The red line separates the strategies using 500 testing points from those using 200 testing 254 

points. 255 



The mean error for clay seemed to be constant for all models at a very low value for clay 256 

(around -2 g.kg-1). Silt and sand exhibited much larger ME, even if the OK presented better 257 

results for these fractions. For all QRF models, the ME median value stayed somewhat 258 

similar. Interestingly, silt and sand showed opposite trends, increasing ME for silt until about 259 

2500 points and a decreasing one for sand until the same threshold.  260 



 261 

Fig 4. Median error for testing: comparison for a) Clay, b) Silt and c) Sand fraction for each 262 

sampling strategy with increasing training sample size over the Mayenne department. The red 263 

line separates the strategies using 500 testing points from those using 200 testing points. 264 



 265 

The CCC indicator increased with increasing density for all fractions (Fig. 5). Interestingly, 266 

OK worked better than QRF for large sampling densities, and even for all densities for silt. 267 

For sand, the CCC trend was similar to R2, with a sharp increase with the increasing density 268 

of training points and a lower increase when the number of training points became higher 269 

(> 2500). For the highest training densities, it was higher for OK than for QRF, especially for 270 

silt. On the contrary, for the lowest densities, it became lower for OK than for QRF. 271 



 272 

Fig 5. Median Concordance for testing: comparison for a) Clay, b) Silt and c) Sand fractions 273 

for each sampling strategy with increasing training sample size over the Mayenne department. 274 

The red line separates the strategies using 500 testing points from those using 200 testing 275 

points. 276 



 277 

For clay (Fig. 6), the PICP was always lower than 90%, which shows that the 90% prediction 278 

intervals were slightly under-estimated. This was more evident for OK. From a practical point 279 

of view, this shows that kriging smoothed out high/low values, thus under-estimated the 280 

prediction intervals. The PICP is mostly over 90% for the prediction of silt by OK, although it 281 

shows acceptable values (close to 90%) for the QRF models. This shows that contrary to clay, 282 

OK over-estimated PIs for silt prediction, which counter-balanced the better prediction results 283 

obtained by OK. For sand prediction, all PICPs were larger than 90%. The contrast between 284 

the trends observed for clay and sand could be due to the negative correlation between these 285 

two fractions. We observed a rather erratic behavior of the PICP for the lowest calibration 286 

sample values. This is likely due to the low number of training and testing samples and the 287 

small number of k-fold cross-validations. This is consistent with the findings of Lagacherie et 288 

al. (2019), who showed that a small number of validation samples is not robust enough to 289 

assess the performance of the model predictions. However, this erratic behavior remains in a 290 

narrow range and we should recall here that we replicated 100 times the splitting between 291 

training and testing samples. 292 

 293 

 294 



 295 

Fig 6. Median PICP for testing: comparison for a) Clay, b) Silt and c) Sand fraction for each 296 

sampling strategy with increasing training sample size over the Mayenne department. The red 297 

line separates the strategies using 500 testing points from those using 200 testing points. 298 

 299 



There were no substantial differences between the 3 different sampling strategies for the QRF 300 

algorithms. This may be because all subsampling strategies that we tested were denser than 301 

the sampling strategies commonly used in France. Moreover, when the number of selected 302 

samples is large, cLHS has no advantage over other sampling designs (Wadoux et al., 2019).  303 

When the number of training samples was equal or larger than 2500, some QRF performance 304 

indicators were slightly improved with increasing sampling density. This suggests that 305 

collecting new data or rescuing more legacy data should further improve the prediction 306 

accuracy, as indicated by Arrouays et al. (2017) and Samuel-Rosa et al. (2015; 2020). When 307 

the sampling density was very high, OK performed as well, or even better than machine 308 

learning methods, which validates the general framework proposed by Minasny and 309 

McBratney (2010) for global digital soil mapping, that was thereafter adopted by the 310 

GlobalSoilMap initiative (Arrouays et al., 2014b). Interestingly, the silt fraction had a 311 

particular behavior compared to other fractions, i.e., except for PICP, the performance was 312 

better when using OK for most sampling densities. This may be due to the fact that the 313 

covariates that we selected were less responsive for silt than for the other fractions. A 314 

threshold of the number of points (around 2500) was identified, under which most of the 315 

performance indicators performed worse. Over this threshold, the performance indicators 316 

remained stable or increased more slowly with the density of points, suggesting that the main 317 

limitation of the goodness of DSM predictions is the amount of data collected in the field. We 318 

note that the number of testing points was changedfrom 200 to 500 at 2500 training points, 319 

which may affect the results. To keep a minimum number of k-fold the same time, we needed 320 

to change the number of testing points. But we assessed the model performance through a 100 321 

times replication of the cross-validation method. This avoids a random chance of under- or 322 

over-estimation of error. Moreover, our results are consistent with those obtained recently by 323 

Lagacherie et al. (2020). 324 



It is worth noting that this threshold of 2500 points (about 1 profile per 2 km2) corresponds to 325 

a nearly ten times larger density that the density recommended in the traditional 1:250,000 326 

soil mapping programs, even for those considered as optimal (1 profile per 20 km2). The 327 

conventional survey recommendation at 1:250,000 may be adequate if applied by a skilled 328 

soil surveyor, but certainly not for fine resolution DSM applications. The large majority of the 329 

French departments have a number of profile observations much less than this threshold of 1 330 

profile per 2 km². One can, therefore, assess the enormous efforts needed if the objective is to 331 

produce fine resolution DSM products with an acceptable level of quality at the department 332 

level using only training points and available covariates. This is even more critical if we 333 

consider that the most important covariates in our case (airborne gamma-ray, Loiseau et al., 334 

2020) are not available for the entire French territory.  335 

3.3.Maps of predictions 336 

To assess the influence of increasing the number of calibration points on mapping predictions, 337 

we mapped several examples for the four trials that we tested for each particle-size fraction 338 

(Figures 7 to 9).  339 

The trend showed in these figures is a stabilization of the spatial prediction with the 340 

increasing number of training points. This trend is also more pronounced when we focus on 341 

OK. The increasing number of calibration points allowed the models to describe more 342 

detailed spatial structures, and decreased the smoothing effect of the kriging. 343 

When comparing QRF methodologies sampling, few differences were observed between 344 

sampling densities. However, for the lowest training densities, the predictions were more 345 

pixelated and some spatial patterns were less visible on the maps. At thresholds ranging from 346 

1800 to 2500 training points, the general patterns seemed to remain stable for clay, silt, and 347 

sand.  348 



For clay (figure 7), the spatial patterns with high values (over 200 g.kg-1) seemed to remain 349 

stable from 1800 training points in the middle part of the department.  350 

 351 



Fig 7. Clay predictions comparison for the four maps a) OK, b) QRF random, c) QRF 352 

coordinates and d) QRF covariates, when the number of training data increases.  353 



For silt, (figure 8), the spatial patterns remained more stable with the integration of more 354 

training data and produced more detailed patches when the number of training points 355 

exceeded 2000  356 



Fig 8. Silt predictions comparison for the four maps a) OK, b) QRF random, c) QRF 357 

coordinates and d) QRF covariates, when the number of training data increases.  358 

The predictions of sand (figure 9) presented also similar variations, with a quite similar 359 

stabilization of the predictions, for all QRF models, over a threshold close to 1800 points.  360 



 361 

Fig 9. Sand predictions comparison for the four maps a) OK, b) QRF random, c) QRF 362 

coordinates and d) QRF covariates, when the number of training data increases.  363 

 364 



Several thresholds, ranging from 1800 to 2500 training points, can be observed for the 365 

prediction maps of particle-size over the Mayenne department. Indeed, the sampling strategies 366 

did not impact the prediction maps compared to the number of training points. However, as 367 

shown in the precedent observations, the particle size variability was not entirely explained by 368 

our selected covariates. In complex regions, more observations could explain the spatial 369 

variation of the soil in more detail. Moreover, using good quality covariates increased a lot in 370 

the details of the spatial prediction. In comparison to OK, QRF seemed to indicate the 371 

variability of the predictions closer to the observed soil properties variability and produced 372 

less smoothed predictions. There are limitations in this study; we still missed some crucial 373 

covariates and that our selection of training samples was based on observations collected by a 374 

traditional soil survey, which may not be statistically optimal. 375 

 376 

3.4.Interval of predictions and mapping 377 

 To assess the influence of the training dataset size over our textural predictions, we 378 

estimated and mapped their 90% prediction interval (PI). Figures 10 and 11 show the PI of 379 

each sampling strategy for training sets of 400 and 2500 points. We observed for each 380 

sampling, a decrease of the PI with the increase of the number of training points, except for 381 

coordinates sampling where the PI seemed relatively stable or better, depending on the 382 

particle size, with a smaller dataset (Figure 9).   383 



 384 

Fig 10. Particle-size prediction interval (90%) for the four maps using 600 points (400 for 385 

training and 200 for testing). 386 

For clay, PIs were lower and showed the most extensive variations over the metamorphic 387 

area, whereas the uncertainty was much larger with a few points for each sampling strategy. 388 

Silt showed large variations in the North, but also in the South-Est. This can be due to its 389 

variability and the fact that complex deposition processes could not be captured by our model 390 

and covariates, even with a large set of training points (Figure 11). The global variation of 391 

sand over the department resulted from the cumulative error from the back transformation and 392 

presented the largest variation compared to clay and silt. Note that the PIs were always much 393 

larger for OK than for QRF models and that, as expected, the PI intervals strongly decreased 394 

when going from a small number to a large number of training points. The spatial patterns of 395 

PIs were very different from OK to QRF as already observed by Vaysse and Lagacherie 396 

(2017). Note also that the PI maps were very similar for all the QRF models, suggesting that 397 

the sampling strategy is not important at this high number of sampling points.         398 



 399 

Fig 11. Particle-size prediction interval (90%) for the four maps using 3000 sampling points 400 

(2500 for training and 500 for testing) 401 

These results were expected and supported environmental information integration in DSM 402 

models for mapping against pure geostatistical interpolation. With a large set of data, the QRF 403 

sampling strategies were indifferent, and the variability of prediction was more affected by 404 

the number of calibration samples. However, for small size of training points, cLHS appeared 405 

to be useful (i.e., for QRF, sampling capturing the maximum combinations of the values of 406 

relevant covariates). We suggest that for planning soil sampling for DSM, the use of sampling 407 

design that aims to capture the maximum of information is required. There are still 408 

discussions about the best sampling strategy for a small number of samples: it is beneficial to 409 

use methods such as cLHS or k-means clustering based on covariates when covariates exhibit 410 

contrasted values, which is the case in the present study. However, if the contrast of 411 

covariates is smoother, then it may be more important to get a rather regular coverage of the 412 

geographical space. Overall, increasing the number of training points to more than 2500 led to 413 



a relatively small increase in prediction performances, which suggests that acquiring more 414 

points may not be worth considering the gain in accuracy that can be achieved. This 415 

observation might be different if we consider more complex models such as deep learning 416 

(Padarian et al., 2019; Ng et al., 2020) or new (or finer resolution) covariates that can explain 417 

soil texture variability better. This proposal will be tested in future work. 418 

4. Conclusions 419 

We evaluated the effect of soil observations density on the digital soil mapping model's 420 

performance for topsoil particle-size distribution with four sampling strategies and with a 421 

decreasing number of training points. We demonstrated a threshold of sampling density, and 422 

that sampling with a density less than about 1 profile per 2 km2 could lead to a substantial 423 

decrease in the performance accuracy. This result is significant, considering that the density 424 

recommended for conventional soil mapping at 1:250,000 is 1 profile per 20 km2, which is 10 425 

times smaller. We showed that sampling strategies based on covariates or coordinates with 426 

cLHS did not produce different results from random sampling when the number of training 427 

samples was large.  We showed that increasing the number of training samples produced 428 

better improvements in the predictions maps when using QRF models compared to ordinary 429 

kriging. We conclude that the main limitations of DSM prediction accuracy are the amount of 430 

data collected in the field and high-quality covariates. Future DSM activities should focus on 431 

gathering more field observations. However, increasing the number of training points may in 432 

some cases not be worth considering the gain in accuracy that can be achieved. 433 

 434 
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