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A B S T R A C T

The quality of crop establishment is affected by several biotic and abiotic factors. The adverse impact of these
factors can be mitigated through crop management practices. Development of practical management solutions
may help farmers to reduce their production costs and thus increase yield. Here, we report practical and sus-
tainable methods that aim at improving the establishment quality and yield of three key cereal crops viz. maize,
rice and wheat, particularly suitable for drought-prone regions. We found that some new methods including
printed sowing, variable-rate seeding, night-time sowing as well as other relatively old methods such as bed- and
raised-bed sowing, mulching, incorporation of organic matters into the seedbed etc. allow to improve crop
establishment and yield while increasing water use efficiency and reducing greenhouse gas emissions. However,
there is no a ‘one-size-fits-all’ method to improve cereal crop establishment and that the potential adoption of
such methods by farmers may be affected by a number of factors, including the farm size and the crop type. We
highlight that the methods presented herein have been successfully tested only for maize, rice and wheat and
across limited pedo-climatic conditions. Consequently, there is a knowledge gap about the potential of these
methods to implement for a broader range of crops and cropping systems across drought-prone regions of the
world. This will finally improve our understanding of the overall effectiveness of these methods in fostering crop
establishment, early stand development and yield.
1. Introduction

Crop establishment consists of three sub-phases: sowing to seed
germination, seed germination to seedling emergence, and seedling
emergence to initial competition among young plants [1]. A high quality
of crop establishment and subsequent crop stand development are key
objectives for farmers to ensure a good crop productivity. Several biotic
stresses such as soil-borne pathogens [2,3] and animal pests [4,5] attack
seeds and seedlings both in pre- and post-emergence phase. Likewise,
abiotic stresses such as drought [6] or mechanical obstacles including a
soil surface crust [7] and soil clods can negatively affect the quality of
field crop establishment with severe economic consequences for farmers.

More specifically to abiotic stresses, water stress represents the most
important constraint for a successful crop establishment and subsequent
crop performance across many regions of the world [6–9]. While drought
represents the most important and frequent limiting factor for crop
establishment and subsequent performance across semi-arid [10,11] and
Mediterranean [12] regions, this stress has become increasingly frequent
R. Lamichhane).

29 August 2020; Accepted 15 No
evier B.V. This is an open access a
even across other regions of the world, especially under ongoing climate
change. The Fifth Assessment Report of the Intergovernmental Panel on
Climate Change highlights that both quantity and quality of water will
change across many parts of the world, in particular across semi-arid
regions where the water availability depends on precipitation amounts
and evaporation rates, that further restrict local water availability [13].

Seed technology has markedly improved in the last decades that have
resulted in improved seed germination ability and seedling vigor even
under high-risk drought conditions. A number of methods have been
developed and used to alleviate the effect of drought stress including pre-
sowing seed treatments such as hydro- [14] or osmo-priming [15] of
seeds or post-sowing field inoculations with plant growth promoting
rhizobacterial strains [16]. While all these technologies allow to improve
seed germination and emergence rates, not all farmers benefit from these
technologies due to their relatively high production costs. This is espe-
cially true for field crops such as cereals that are characterized by low
profit margin. Therefore, low-cost seedbed preparation and sowing
methods that improve seed germination, seedling emergence and stand
vember 2020
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Table 1
Mean day and night soil temperatures and moisture at different depths measured
from 24th May to 20th June 2018 in a plot in Auzeville experimental site (43.53
�N, 1.58 �E), southwestern France (Source: Lamichhane et al. [57]).

Time Mean soil moisture (%)� SD Mean soil temperature
(�C)� SD

�3 cm �5 cm �10 cm �3 cm �5 cm �10 cm

Day 14� 3 19� 2 24� 1 25� 3 24� 3 23� 2
Night 13� 2 18� 2 24� 1 19� 1 19� 1 20� 1
Significance level NS NS NS *** *** ***

SD: standard deviation, NS: not significant; ***P < 0.001.
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development can result useful for field crop farmers across drought-prone
regions. The quality of seedbed preparation may largely depend on a
number of factors including cropping systems, soil texture, time of har-
vest and seedbed preparation and the type of machinery used for field
operations [17,18].

The objective of this paper is to briefly highlight and discuss key
methods that help improve the establishment quality and yield of three
key cereals, viz. maize, rice and wheat, especially across drought-prone
regions of the world with low annual or growing season rainfall. We
focused only on these three crops as the methods reported in this paper
have been successfully tested only for these cereals and especially across
soil moisture limited conditions. To this aim, we used the following
keywords for literature research alone or in combination: “precision
sowingþ emergence”, “precision sowingþwater use efficiency”, “night-
time sowing þ emergence”, “biodegradable field mulching þ emer-
gence”, “sowing methods” “seedbed preparation”, “stand development”
on Web of Science.

2. Sowing methods that help improve crop establishment and
yield

Precision farming is modern concept for the precise management of
water, seeds, fertilizers and other agricultural inputs as farmers can use
precision technologies to know and manage the variations within their
fields [19]. Key precision sowing methods useful in relation to crop
establishment are discussed below.

2.1. Printed sowing

More specifically to precision sowing (also known as precision
planting or prescribed farming), this technique allows to reduce seed rate
per unit surface and labor costs thereby reducing production costs.
Compared to high-value crops, such as vegetables or industrial crops,
seed costs for field crops and especially for cereals are lower. However,
seed costs may be an important issue when farmers use high quality
certified seeds. An example is hybrid rice for which seeds costs represent
an important production cost for farmers [20]. Therefore, it is important
to reduce the seed rate used for this crop without affecting the crop
productivity. In addition, for rice there is a need for an alternative crop
establishment method that replaces manual transplanting with lower
labor inputs. A recent study [21] from China showed that printed sowing,
which consists in pasting seeds to paper, reducing the seed rate by up to
6% compared with manual sowing. Rice plots sown with this method
provided higher seedling quality, larger panicle size, higher spikelet
filling percentage, higher above-ground biomass, and higher harvest
index compared with manually sown plots. This technique may result
useful to a large number of farmers worldwide. This technique, especially
when applied under rainfed cropping systems may significantly decrease
production costs for farmers.

2.2. Variable-rate seeding

Variable-rate seeding is another method that has potential to reduce
crop input costs in areas of low productivity and increase yields in areas
of high productivity [22]. This is possible by optimizing seed inputs
spatially by matching seeding rate with productivity zones within a field
using a variable rate capable planter [23]. This method is particularly
useful when variation within a given field is identified on various data
layers such as historical emergence rates and stand development, yields,
soil properties, topography and/or aerial imagery [24]. An example of a
field with variation is that with summits and toe slopes. In such a case,
the use of a lower seeding rate in the summits, with shallow soils (lower
productivity area), and a higher rate in the toe slopes, with deeper soils
(higher productivity area), would maximize grain yields while mini-
mizing costs. The seeding rate however depends on crop species to be
sown. Seeding rates for maize can be increased in high productivity zones
2

and decreased in low productivity zones, while it may be the opposite for
other crops. Allen [25] compared the productivity of different maize
seeding rates across different sites with severe water deficit throughout a
growing season with a different precipitation gradient in the Northern
Great Plains (USA). The authors did not found a positive correlation
between the seeding rate and grain yield.

Variable-rate seeding technology can also be combined with GPS-
based precision irrigation system that enables farmers to apply water and
other agriculture inputs more precisely and at desired position. All this
finally improves the crop establishment, water use efficiency and crop
productivity [26]. Prasad et al. [27] revealed that smart precision
farming along with system model can predict the area best suited for
particular crop plantation by analyzing the variations present within
fields. Various modern approaches such as IRRISAT and Mod are
employed for the saving of water under water limited areas [28]. Water
electronics module is modern precision technique that can be used for the
precise application of water under water deficit zones. For instance, this
method resulted in 12–21.7% water saving in alfalfa under different field
capacities [29]. Variable-rate seeded can be coupled with variation-rate
irrigation that can reduce deep water percolation losses and conserve soil
moisture within a particular field [30]. This finally helps increase the soil
moisture within a field thereby improving crop establishment and
productivity.
2.3. Night-time sowing

Across regions characterized by frequent dry and hot environmental
conditions, night-time tillage and sowing can be a simple and effective
agronomic practice to improve seed imbibition, germination and the
subsequent emergence. Seedbed moisture is the most important limiting
factor affecting crop emergence across these regions [31]. This is espe-
cially true when crops are sown in previously prepared seedbeds without
the presence of crop residues on the soil surface and during the day in the
presence of sunlight and high diurnal temperature and/or strong dry
winds that lead to temporal moisture variation in near-surface conditions
[32]. Water loss due to soil evaporation is higher in the upper soil ho-
rizon; the sowing depth of field crops generally ranges from 1 to 5 cm,
depending on the seed size and sowing conditions [33]. In general, the
mean seedbed temperatures are lower during the night compared with
those of the day (Table 1), due to the absence of evaporation and soil
desiccation. Under this condition, soil moisture during night-time in hot
and dry periods may last relatively longer for almost 10–12 h. This pro-
vides opportunity for seeds to speed-up the seed imbibition process and
foster germination and emergence rates.

Recently, Khan et al. [34] investigated the effectiveness of night-time
sowing of maize hybrids on crop emergence and subsequent performance
in an arid area of Pakistan. The authors showed that night-time tillage
and sowing significantly reduced time to accomplish seed germination
and seedling emergence and improved their final rates and crop yield,
compared with day time tillage and sowing. Further studies are needed to
confirm whether the effectiveness of night-time tillage and sowing on
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crop establishment differ from one pedo-climatic conditions to another
and among crop species. Moreover, more research is needed to pinpoint
whether the effectiveness of night-time sowing is high independent of the
type of tillage and if no-till attenuates the benefits of sowing during the
night. In addition, limits of this method need to be assessed including the
difficulty to work during night and the associated labour cost. No-till
represents the best way to improve water use efficiency in arid or
semi-arid regions, by reducing evaporation, especially when the soil is
covered by mulch, compared with conventional tillage. In addition, weed
infestation problem is better managed with tillage and farmers tend to
practice tillage across these regions. Indeed, the benefits of photocontrol
(i.e. weed control by night-time tillage) in reducing the emergence of
different weed seeds requiring light for germination is another reason for
farmers to perform night-time tillage [35]. Nevertheless, Juroszek et al.
[36] suggested that the delayed soil desiccation process in night-time
tilled plots may promote unexpected weed germination which may
affect crop productivity. Therefore, the effect of night-time tillage and
sowing on weed growth and their consequent impact on crop produc-
tivity need further attention.

The paucity of information in the literature does not allow us to un-
derstand whether there is a significant difference between the day and
night-time soil moisture, during hot and dry growing seasons. Recently,
we measured seedbed temperature and moisture at the �3, �5, and �10
cm soil horizon in a field site located in Auzeville (43.53 �N, 1.58 �E),
Southwestern France, from late May to late June (Fig. 1). Our data sug-
gest no statistically significant differences between the day and night soil
Fig. 1. Dynamic of mean seedbed moisture (a) and temperatures (b) at different soil
May to 20th June 2018 in a plot sown in Auzeville experimental site (43.53 �N, 1.5
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moisture at these soil horizons (Table 1). In contrast, the average seedbed
temperatures across these soil horizons during the day time were
significantly higher than those registered during the night-time (Fig. 1).
However, late spring season is not the hot and dry period of the year in
Southwestern France or southern Europe in general. Therefore, the same
variables of the seedbed weather should be measured during hot and dry
periods of the year (i.e. summer) across these regions. The moisture level
has been reported to affect seed reserve utilization and seedling growth
in wheat [6] that may have an important impact on emergence of crops
sown during summer across dry summer regions. Therefore, regions with
hot and dry cropping seasons may benefit from either from no tillage at
all or night-time tillage and sowing due to relatively higher soil moisture
at the sowing depth compared with the day time. Across semi-arid re-
gions, this might be due to dew formation and water vapor absorption
[37] which would merit further investigation.
2.4. Bed and raised-bed sowing

Bed sowing of different crops showed significant results in terms of
water saving under water limited areas. For instance, 42.6%, and 31.5%
of water saving was recorded for wheat and rice, respectively, under bed
sowing [38]. Razaq et al. [39] tested raised-bed wheat sowing and found
maximum growth and yield parameters under semi-arid climatic condi-
tions. Likewise, moisture conservation ranging from 23-29% was recor-
ded in raised-bed planting of maize, especially under no-till compared
with conventional system [40].
depths during day and night time. The measurements were conducted from 24th
8 �E), southwestern France (Source: Lamichhane et al. [57]).
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3. Mulching methods that help improve crop establishment and
yield

3.1. Ridge–furrow with plastic film mulching

This method has been reported to provide several benefits compared
with the conventional flat planting pattern. Examples include in maize
[41], and winter wheat [42]. Ridge-furrow system, by collecting, runoff
water in semi-arid areas, helps improve the water use efficiency, and crop
yield (Table 2). This system requires adjusting the plant density, the
distances between ridges and furrows, and their width for different crops.
Li et al. [42] pointed out that winter wheat seedlings were established
faster and more stable in ridge–furrow with plastic film mulching system
than flat planting pattern, and a 40:20 ridge–to–furrow ratio had the
highest crop yield and water use efficiency under rainfed conditions.
3.2. Biodegradable film mulching

In regions with relatively cheaper labor costs, mulching with films is
an important agricultural practice most commonly used for several field
crops including cereals in arid, semi-arid, and sub-humid areas, espe-
cially where irrigation is not available and spring temperatures are low
[43,44]. This technique helps maintain seedbed moisture and increase
seedbed temperature accelerating the seed germination and seedling
emergence process with improved crop performance (Table 2). While
mulching with plastic film is widely practiced by farmers across these
regions, the use of this material is not practical for farmers as it requires
removal after some period from the field with additional labor costs to
bear for farmers. If not removed, the lack of biodegradability of this
material leads to several negative environmental impact including
greenhouse gas emissions [45]. In addition, the presence of plastic ma-
terials in the soil negatively affects soil health [46]. Therefore, replacing
plastic films with biodegradable materials may result practical for
Table 2
Examples of sowing methods that increased crop emergence and final yield of
cereal crops.

Method used Crop Increase in crop
emergence (%)

Increase in
crop yield (%)

Reference

Biodegradable
film/straw

Maize ND 31.77 [60]
Maize ND 27.49 [47]
Maize ND 9.18 [61]
Maize ND 32.19 [62]
Maize ND 27.09 [63]
Maize ND 20.93 [64]
Maize ND 6.88 [65]
Maize ND 13.58 [66]
Maize 8.57 ND [67]
Wheat ND 7.10 [65]

Plastic/
polyethylene
film

Maize ND 29.98 [69]
Maize ND 19.93 [65]
Maize ND 40.57 [60]
Maize ND 40.05 [62]
Maize ND 51.79 [63]
Maize ND 26.09 [66]
Maize ND 18.91 [64]
Wheat ND 24.39 [65]

Optimized planting
pattern

Maize ND 33.35 [68]
Maize ND 17.13 [41]
Maize ND 14.37 [69]
Wheat ND 2.28 [70]
Wheat ND 36.22 [42]

Precision planting Maize ND 6.80 [71]
Rice ND 25.67 [72]
Wheat ND 10.19 [73]
Wheat ND 4.84 [74]
Wheat ND 8.66 [71]

Planter attachment Maize 15.82 ND [75]
Printed sowing Rice ND 10.82 [21]

ND: not determined.
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farmers as it may provide the same benefit while eliminating drawbacks
due to the use of plastic materials.

4. Incorporation of organic matters improving crop
establishment and yield

4.1. Crop residues

Crop residues improve soil physical properties, control weeds and
conserve soil moisture that finally improve crop establishment and yield
performance (Table 2). For instance, wheat residues have increased
improved water holding capacity, humus content of soil, increased the
rainfall water infiltration and ultimately moisture conservation within
soil [47]. In maize production, wheat residues proved to be beneficial in
terms of improved water use efficiency and consequent crop productiv-
ity, under semi-arid climatic conditions [48]. Crop residue mulching
retained 7.7% higher soil moisture content in wheat production under
sandy loam soil [49].

Straw strips mulch on furrows is another innovative practice widely
adopted in field crop productions across semi-arid regions of China. This
technique improves soil moisture conservation, which is attributed to
increased infiltration during heavy rains, decreased soil temperature and
water evaporation from soil surface [50,51]. Seed germination is
enhanced due to the presence of straw mulch on furrows providing
optimal soil moisture required for seed imbibition. Finally, double blank
row mulching has been reported to improve wheat growth and yield as it
optimizes soil temperature and increases water content into the soil
across water limited areas of northern China [51].

4.2. Farmyard and poultry manure

Besides crop residues, integration of farmyard manure into the
seedbed is a sustainable practice that increases soil water-holding ca-
pacity with lower need for irrigation. For instance, the incorporation of
manure into ridges and furrow planting systems increased the soil
moisture content and, ultimately, maize productivity under semi-arid
regions of China [52]. Farmyard manure (5 tha-1) along with tied
ridging improved maize crop stand and productivity in semi-arid regions
of Eastern Kenya even under rainfed conditions [53].

5. Decision support tools and modeling that help improve crop
establishment and yield

The sowing date is mainly dependent on air temperature, seedbed
temperature, andmoisture status, especially under rainfed conditions. An
optimal planting date exposes the whole crop to the best environmental
conditions across its growth phases and will eventually result in the
highest crop yield. Because the sowing date mainly depends on these
climatic variables, it may differ from year to year, especially under
ongoing climate change. Thus, determination the best time for sowing is
difficult to identify through field experiments that requires long-term
experiments across several locations [54].

Crop models are important decision support tools to determine
optimal sowing dates [54–59]. Adnan et al. [54] used CERES-maize crop
model for optimizing sowing dates in Northern Nigeria and suggested the
optimum sowing dates. For example, in the northern Guinea Savanna, the
best planting dates were mid to late July to obtain the highest crop yield.
Dobor et al. [55] applied 4M crop model to estimate optimal sowing
dates for maize and winter wheat and showed that, due to climate
change, sowing date of maize in future (2071–2100 period) shifts ~12
days earlier while planting date of winter wheat changes ~17 days later.
All this shows the usefulness of crop models in decision making by
farmers to adjust their crop managements based on weather forecast that
finally help improve crop establishment and yield.
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6. Conclusions and perspectives

The increasing need to improve crop productivity while reducing the
negative environmental impact of agricultural practices calls for the
development and testing of easy-to-use, environmental-friendly and cost-
effective methods readily applicable by farmers. This paper summarizes
both relatively old as well as newmethods that have potential to improve
establishment and yield performance of maize, rice and wheat across
drought-prone regions of the world. However, the methods presented
herein have been successfully tested only for these cereals, and across
limited pedo-climatic conditions and cropping systems. Thus, there is
further need to test these methods for a broader range of crops and
cropping systems across drought-prone regions of the world. This is
because every cropping system is different, and farmers have to adapt
their agronomic practices not only based on their cropping systems but
also on pedo-climatic conditions. This will finally improve our under-
standing of the overall effectiveness of these methods in fostering crop
establishment, early stand development, and subsequent crop
productivity.
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