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Abstract 20 

 21 

Rewetting dry soils is associated with a burst of microbial activity and mineralization, 22 

which manifests itself as a pulse in soil CO2 emissions, long-known as the Birch effect. In 23 

arid and semi-arid systems, soil CO2 losses upon rewetting at the end of extended dry 24 

periods can contribute a significant fraction to the overall carbon (C) budget. Microbial 25 

biomass is one of the sources of mineralized C, as was demonstrated over 30 years ago 26 

(Kieft et al., 1987). The present paper offers a perspective on how the field has 27 

progressed since the 1987 paper was published in Soil Biology & Biochemistry, what it 28 

means in terms of current concerns about global climate change, and the needs and 29 

potential emphases of future research. Many studies since 1987 have addressed the 30 

origin of this CO2 pulse, finding multiple possible C sources involving both biotic and 31 

abiotic processes. We propose that the magnitude of the rewetting event (∆ψ) 32 

determines the relative contribution from the array of substrates that contribute to the 33 

soil CO2 pulse upon rewetting. The magnitude of the CO2 pulse is likely  related to soil 34 

physical characteristics and to the size of the available C pool, which is partly controlled 35 

by plants. Further, the relative contributions of the mechanisms generating soil CO2 36 

pulses upon rewetting are likely to be modified by climate change. To understand and 37 

predict the magnitude of soil CO2 pulses upon rewetting, we advocate continued cross-38 

disciplinary research involving soil microbial ecology, soil physics, soil chemistry, as 39 

well as increased integration and recognition of the importance of plant-soil interactions 40 

in controlling the soil C pools contributing to soil CO2 pulses.  41 
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Introduction 42 

   43 

The ecology of soil rewetting is especially relevant to drylands, which include arid, 44 

semi-arid and dry sub-humid subtypes. Drylands represent 45% of terrestrial surface (i.e. 45 

66.7x106 km2) and carry 39% of the world population (Prăvălie, 2016; Huang et al., 2017; 46 

Plaza et al., 2018). Soil wet-up is particularly important for terrestrial ecosystems in 47 

Mediterranean and savanna climates that experience sustained periods of very low or no 48 

rainfall, followed by significant rainfall. Mediterranean climates (dry summers and wet 49 

winters) occur between 30° and 45° latitude and are found in Africa, Europe, western 50 

South America, Southwest and West Australia, and western North America, for a total area 51 

of ~3x106 km2. Savanna climates occur between and 25° and 30° latitude, and include 52 

almost half the surface of Africa, large areas of Central & South America, eastern India, 53 

southeast Asia, eastern and northern Australia, totaling ~33x106 km2. 54 

Rewetting of dry soil can have global consequences. At the ecosystem scale it 55 

results in a large soil CO2 efflux pulse, also known as the Birch effect, named after H.F. 56 

Birch who reported mineralization peaks upon rewetting soils in East Africa (Birch, 57 

1958). However, the phenomenon had already been documented 35 years earlier by soil 58 

microbiologists (Waksman and Starkey, 1923; Winogradsky, 1924). Its putative 59 

mechanisms at the soil microbial scale started gaining attention in the 1980s (Bottner, 60 

1985). The sudden increase in microbial activity upon rewetting triggers a burst in carbon 61 

(C) and nitrogen (N) mineralization (Miller et al., 2005; Xiang et al., 2008; Borken and 62 

Matzner, 2009; Dijkstra et al., 2012). The amount of C emitted due to rain pulses is 63 

comparable in magnitude to the net annual CO2 exchange of many terrestrial ecosystems 64 

(Xu et al., 2004). In ecosystems that are characterized by distinct dry-wet seasons, the CO2 65 

pulses associated with rewetting can represent a large part of the annual C budget (Jarvis 66 
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et al., 2007; Ma et al., 2012; Rey et al., 2017). For example,  following intense rainfall, up 67 

to 20 % of the annual CO2 flux from soil to atmosphere occurred in an African savanna 68 

ecosystem (Fan et al., 2015). While a rapid change in soil water potential results in an 69 

overall microbial reactivation, it exposes soil microorganisms to a radical change in 70 

environmental conditions. The soil dry-down and subsequent rewetting provide such an 71 

extreme change in microbial environment, that bacterial and fungal death commonly 72 

results (Blazewicz et al., 2014; Blazewicz et al., 2020). 73 

The 1987 study by Kieft et al.  was designed to investigate the fate of soil microbial 74 

biomass C after the rapid rewetting of a dry soil. Using two Californian soils from a 75 

Mediterranean-type climate, Kieft and his colleagues found a net loss of microbial biomass 76 

C upon rewetting, that could be due to the death of microbial cells or the rapid 77 

decomposition of the microbial solutes; the authors favoured the latter explanation. 78 

Mechanisms of C loss, the nature of the lost C, and changes in microbial community 79 

composition or relation to biogeochemical functioning were not investigated. However, 80 

by opening the microbial ‘black box’ in the general context of dry-wet cycles, this study 81 

brought attention to the large influence that rapid increases in soil water content can 82 

exert on microbial and terrestrial ecosystem functioning. Exploration of the processes 83 

comprising the Birch effect has been a particularly active field of research lately, as global 84 

change impacts precipitation cycles worldwide. In many regions, especially under 85 

Mediterranean climates, more extreme climate conditions increase the contrast between 86 

dry and wet conditions to which ecosystems are exposed. It has been more than three 87 

decades since the Kieft et al. study was published; here we provide a perspective on the 88 

current status of the field, its importance in the context of global change, and areas in need 89 

of more research.  90 

 91 
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What is wet-up and where does it occur?  92 

We use the term wet-up to describe a real or simulated precipitation input of liquid 93 

water to dry soil causing a large and rapid change in soil water potential (∆ψ). The 94 

magnitude of the change in water potential is a determinant of the size of the resulting 95 

soil CO2 efflux pulse (Lado-Montserrat et al., 2014).  Here we suggest that the addition of 96 

liquid water to a very dry soil causes CO2 pulses that differ not only in rate/magnitude but 97 

also in available carbon sources and impact on microbial physiology and survival 98 

depending on the magnitude of the water potential increase. Since soil wet-up includes a 99 

prominent biological component, we focus on the biologically active zone of the soil, i.e. 100 

between 0 and ~50 cm depth; this zone can experience rapid rewetting from very dry 101 

conditions, depending on presence of macropores, surface cracking, and soil texture. 102 

While we will not concentrate on other inputs of moisture in this article, it is important to 103 

note that in arid and semi-arid ecosystems, several other processes can introduce 104 

moisture to dry surface soil. For example, surface litter decomposition occurs in response 105 

to fog and dew events and even as a result of high relative humidity, particularly in 106 

combination with UV-mediated degradation of exposed surface litter (Dirks et al., 2010; 107 

Jacobson et al., 2015). Adsorption of water from atmospheric humidity has been 108 

demonstrated to extend into soil (perhaps to a depth of 5 cm) over a range of atmospheric 109 

relative humidity (20-60%) and to stimulate CO2 production (McHugh et al., 2015). Thus, 110 

transient episodes of decomposition at or near the soil surface occur in arid and semi-arid 111 

ecosystems in response to non-precipitation events (fog, dew, sorption from atmospheric 112 

humidity) and can drive CO2 fluxes that are significant in ecosystem C budgets (Dirks et 113 

al., 2010). Recognition and understanding of the importance of these alternative means of 114 

increasing soil moisture (non-rainfall) has developed over the past 30 years and are 115 

important advances in the subject.  116 
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We present a perspective that primarily addresses rewetting dynamics of soil near 117 

the soil surface and in the rooting zone of shallow-rooted plants. Under laboratory 118 

conditions, drying-rewetting cycles resulted in the release of “old” C from soil layers 119 

below 20 cm (Schimel et al., 2011). While macropore flow of incident rain water might 120 

result in the wet-up of soil deeper than 20 cm, rapid rewetting of soil by rainfall will be 121 

most important near the surface of soil and generally play a less important role in the 122 

mobilization of deep old soil carbon. 123 

 124 

C released upon rewetting: origin and mechanisms 125 

The CO2 pulse upon rewetting typically exhibits a pattern of very high rates during 126 

the first minutes and hours after rewetting and this response  declines over time (Kim et 127 

al., 2012). The origin of the CO2 pulse upon rewetting soil can be both abiotic and biotic. 128 

Abiotic processes include solubilization of carbonates (depending on carbonate 129 

concentration in soils), CO2 displacement from the soil pores to the atmosphere by water, 130 

as well as the quantitatively low degassing of CO2 dissolved in rain and soil degassing due 131 

to the decrease in barometric pressure over time (Lee et al., 2004; Barnard et al., 2015). 132 

However, in non-carbonate-rich soils, abiotic processes generate less CO2 than do the 133 

biotic processes, which are the main contributors of the soil CO2 pulse upon rewetting. 134 

The nature and sources of the C compounds that are mineralized upon rewetting a dry 135 

soil has been extensively explored and somewhat fervently argued. Here we highlight the 136 

most prevalent sources and mechanisms that fuel the C mineralization pulse: compatible 137 

solutes; microbial necromass; changes in water film connectivity; sustained extracellular 138 

enzyme activity during dry-down; C desorption from mineral surfaces; and disruption of 139 

aggregates. Each of these is discussed below. 140 
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Compatible solutes, accumulated by microbial cells in response to drying, were 141 

suggested by Kieft et al. (1987) as candidate compounds fueling the soil CO2 efflux pulse; 142 

this substrate pool was also addressed by later studies (Halverson et al., 2000; Fierer and 143 

Schimel, 2003; Schimel et al., 2007). Soil microorganism accumulation of compatible 144 

solutes within their membrane-bound cells reduces cell dehydration, but cells are 145 

required to rapidly dispose of them upon rewetting, or face membrane rupture 146 

(plasmoptysis). These processes will release solutes, such as proline, glutamine, glycine 147 

betaine, and trehalose into the soil (Kempf and Bremer, 1998; Halverson et al., 2000; 148 

Welsh, 2000; Warren, 2019) and these can be assimilated and mineralized rapidly by 149 

other microorganisms. Some of the earlier studies focusing on the intracellular 150 

accumulation of compatible solutes as soil gets drier,  found no evidence for osmolytes as 151 

a significant C-source (Boot et al., 2013; Kakumanu et al., 2013). More recent  evidence 152 

(Warren, 2014; Warren, 2016) for this mechanism however provides some support. 153 

While some studies detected no increased amount of compatible solutes in the soil upon 154 

rewetting (Williams and Xia, 2009; Warren, 2014), recent studies have reported an 155 

accumulation of osmolytes in microbial communities during dry periods (Chowdhury et 156 

al., 2019; Malik et al., 2019; Slessarev et al., 2020). The elusive nature of osmolytes may 157 

be related to: (i) their low residence time in the soil, as they are produced and consumed 158 

at measurable rates even in moist soils (Warren, 2019), albeit at lower rates than in dry 159 

soils (Warren et al, unpubl. data); and (ii) their probable specificity to a microbial 160 

community. Some microbes may not accumulate compatible solutes and instead undergo 161 

passive water loss, especially under conditions of rapid drying (Potts, 1994). Possible 162 

fates of these plasmolyzed cells are death from water loss, death upon rewetting, or 163 

survival of both desiccation and re-wetting.   164 

 165 
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Microbial death due to the rapid water potential increase (from very negative 166 

values to zero or nearly zero) upon rewetting was also invoked by Kieft et al. (1987) as a 167 

possible source of C substrates. Dead microbial cells can provide mineralizable substrates 168 

upon rewetting a dry soil, arising from cells that died during the previous dry-down 169 

period or as a direct result of the rewetting. Evidence for this mechanism has been 170 

presented by measuring gross rates of bacterial death and growth upon rewetting 171 

(Blazewicz et al., 2014; Blazewicz et al., 2020). High bacterial mortality was documented 172 

to have occurred within the first three hours after a rewetting event. The authors noted 173 

that some of the mortality is likely to have occurred during the dry-down process but the 174 

microbial necromass remained largely intact until the wet-up event. 175 

Bacteriophage predation may also contribute to cell death after rewetting. Phages 176 

infect a large proportion of soil bacteria (Williamson et al., 2007) and can become lytic 177 

when soil conditions become favorable for the growth of their hosts (Williamson et al., 178 

2017). Indeed, viral abundance in the soil has been shown to be correlated with soil water 179 

content (Williamson et al., 2005), possibly due to the effects of soil water content on 180 

bacterial numbers as well as on the adsorption of viruses in the soil (Zhao et al., 2008). 181 

Viral diffusion/advection is also enhanced by soil wetting, increasing the chances of virus-182 

host encounter and attachment.  At this time, however, there is no direct evidence for wet-183 

up-associated predation as a significant mechanism of cell death and labile C input. 184 

Similarly, eukaryotic predation may contribute to microbial mortality upon soil wetting, 185 

but, to our knowledge, this has not been demonstrated. 186 

Upon rewetting a dry soil, microorganisms have to access and then metabolize 187 

organic substrates. Connectivity of soil water films is gradually lost as soils dry and this 188 

restricts diffusional access to substrate (Manzoni et al., 2012) but enhances bacterial 189 

coexistence and diversity (Carson et al., 2010) by limiting competitive exclusion (Wang 190 
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and Or, 2013; Šťovíček et al., 2017b). Conversely, rewetting a soil restores water film 191 

connectivity (Smith et al., 2017), providing conditions for highly competitive and mobile 192 

microorganisms to access substrates and to thrive, thereby generating a soil CO2 efflux 193 

pulse (see modelling study by Evans et al., 2016).  194 

Another possible source of substrates during rewetting requires sustained 195 

extracellular enzyme activity during dry-down (Miller et al., 2005; Schimel et al., 2017). 196 

The reduction in microbial activity as soils dry can lead to a net increase in substrate that 197 

may become available to soil microorganisms upon rewetting (Lawrence et al., 2009; 198 

Zhang et al., 2014; Fraser et al., 2016). However, a recent study found no evidence for 199 

sustained exoenzyme activity in drying soils (Homyak et al., 2018).  200 

Soluble organic compounds in the soil can associate with minerals, particularly 201 

during dry periods (Qualls, 2000). Upon rewetting, the desorption of organic compounds 202 

from mineral surfaces can become a source of C (Blankinship and Schimel, 2018) as 203 

changes in pH and ionic strength can directly affect organic matter-mineral binding 204 

(Clarke et al., 2011; Newcomb et al., 2017).  205 

In dryland ecosystems, photodegradation of surface litter increases the 206 

breakdown of carbon compounds to substrates that can be metabolized by 207 

microorganisms upon rewetting (Austin and Vivanco, 2006; Baker and Allison, 2015; Day 208 

et al., 2018). Although photodegradation alone cannot explain differences in 209 

decomposition rates across an aridity gradient (Brandt et al., 2010), it enhances soil CO2 210 

emissions upon soil rewetting (Ma et al., 2012). 211 

Disruption of organic matter occlusion in soil aggregates is another physical 212 

consequence of rewetting that can enhance substrate availability. Rewetting a dry soil can 213 

break up aggregates, exposing organic substrates that were previously occluded (Denef 214 
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et al., 2001a; Cosentino et al., 2006; Borken and Matzner, 2009; Navarro-García et al., 215 

2012).  216 

Modeling has provided solid insight into the mechanisms that drive the soil CO2 217 

pulse associated with rewetting. Most modeling studies have focused on the sources of 218 

soil organic matter at a large scale (Lawrence et al., 2009) and were not designed to take 219 

into account the biophysical mechanisms at the pore-scale. The gap between pore physics, 220 

soil organic matter cycling and microbiology has been bridged, using empirical models 221 

and simplified model systems (Moyano et al., 2013; Manzoni et al., 2016; Tecon and Or, 222 

2017), yet challenges remain (Baveye et al., 2018). Recent modeling efforts support the 223 

coexistence of physical as well as microbiological processes as drivers of the rewetting 224 

soil CO2 pulse (Zhang et al., 2014; Evans et al., 2016; Šťovíček et al., 2017b; Yan et al., 225 

2018). 226 

The question of which C sources fuels the Birch effect has been under discussion 227 

for many decades. It is an important topic in the context of global change, as rainfall 228 

patterns and amounts change in areas around the globe, potentially impacting the C 229 

budget of ecosystems (Kim et al., 2012; Vargas et al., 2012).  230 

 231 

Soil microbial response 232 

Ascribing the CO2 released upon rewetting to a particular source of C can be akin 233 

to the Indian parable of six blind men examining an elephant, each of them failing to 234 

consider the multiple facets of the objective truth while experiencing it from their own 235 

limited perspective. Many C sources contribute to the soil CO2 pulse upon rewetting 236 

(Unger et al., 2010; Evans et al., 2016). Apart from carbonate solubilization, CO2 emissions 237 

from the soil upon rewetting are driven by coupled biophysical or biochemical 238 
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mechanisms, in which soil microorganisms act as catalysts, conditional upon whether or 239 

not they have access to substrate.  240 

In arid and semi-arid systems, adaptation to cyclic dry-down and rewetting 241 

enables soil functions to be carried out under alternating contrasting environmental 242 

conditions. Soil microorganisms seem to have evolved life strategies related to prolonged 243 

dry periods followed by rapid rewetting (Placella et al., 2012; Barnard et al., 2013; Evans 244 

and Wallenstein, 2014). At the seasonal scale, microbial strategies during dry-down differ 245 

from strategies during rewetting (Evans et al., 2014). Soil microorganisms that are able 246 

to sustain activity longer as soils dry down may access easily degradable organic matter 247 

under less intense competitive conditions, while the other microorganisms that are not 248 

able to maintain activity under dry conditions have already entered a state of reduced 249 

activity, or even dormancy (including formation of spores). This mechanism could 250 

support the existence of taxa (e.g. bacteria belonging to the Sphingomonadaceae, 251 

Comamonadaceae and Oxalobacteraceae; Aanderud et al., 2015) that are present in low 252 

relative abundance in the soil (Lennon and Jones, 2011; Meisner et al., 2018). The 253 

duration of the dry period can affect the response to subsequent rewetting (Barnard et 254 

al., 2015), especially in microbial communities that have not evolved in  contrasting dry-255 

wet conditions (Meisner et al., 2015; Meisner et al., 2017). For example, in soils where 256 

microbes are not adapted to drought or cyclic dry periods, a lag period before exponential 257 

microbial growth has been detected, the duration of which depended on the intensity of 258 

drying (Meisner et al., 2017). Indeed, altered precipitation patterns before rewetting 259 

impacted not only the community structure of the microorganisms that were active upon 260 

rewetting, but also of those that were not, as they were recruited into the active bacterial 261 

pool (Engelhardt et al., 2019).  262 
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The importance of microbial death as a source of C for the CO2 pulse has been 263 

measured using quantitative 18O stable isotope probing. Upon rewetting a soil from a 264 

Mediterranean climate, initial bacterial growth was detected in select taxa dominated by 265 

Proteobacteria (Azotobacter, Pseudomonas, Vibrio) and Firmicutes (Streptococcus, 266 

Clostridium, Mycoplasma) while mortality was taxonomically widespread (Blazewicz et 267 

al., 2020). In addition, the density-dependence of growth upon rewetting contrasted with 268 

density independence of mortality, supporting the hypothesis that population-level 269 

biological interactions, such as competition and predation, likely controlled the growth 270 

rates of taxa but not their death (Blazewicz et al., 2020). 271 

 272 

A number of studies have shown differential sensitivity of soil bacterial taxa to dry-273 

down and rewetting; this differential sensitivity is conserved at phylum and class 274 

phylogenetic groupings (Lennon et al., 2012; Placella et al., 2012; Barnard et al., 2013, 275 

2015; Engelhardt et al., 2018). This phylogenetic coherence reflects the evolutionary 276 

roots of microbial tolerance to drying and rewetting in microorganisms that are 277 

indigenous to and more common in semi-arid soil systems. The functional response of 278 

arid and semi-arid systems to dry-wet cycles can thus be expected to be deterministic and 279 

predictable (Averill et al., 2016). The two flagship phyla are Actinobacteria, which are 280 

commonly abundant in arid soils and include many taxa that are resistant to low moisture 281 

conditions (Goodfellow and Williams, 1983; Zvyagintsev et al., 2007) and Acidobacteria, 282 

a versatile group  that can be adapted to changing environments (Eichorst et al., 2018); 283 

taxa from the Acidobacteria group have been found to dynamically track soil water 284 

conditions, flourishing rapidly upon rewetting (Placella et al., 2012; Barnard et al., 2013). 285 

Dry-down typically increases the relative abundance of the present or potentially active 286 

thick-walled, Gram-positive, high G+C content, spore-forming, and EPS-producing 287 
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bacterial groups (e.g. Actinobacteria, Firmicutes) but decreases that of thin-walled, Gram-288 

negative or fast-growing groups such as Acidobacteria, Verrucomicrobia or Chloroflexi 289 

(Placella et al., 2012; Angel and Conrad, 2013; Barnard et al., 2013; Maestre et al., 2015; 290 

Zhou et al., 2016; Šťovíček et al., 2017a; Ochoa-Hueso et al., 2018). Upon rewetting, 291 

different bacterial groups respond on a variable timeframe that likely reflects their ability 292 

to have formed spores during the dry period, thus being potentially ready for a quick 293 

response and rapid growth (Keijser et al., 2007; Placella et al., 2012; Barnard et al., 2013; 294 

Sinai et al., 2015). Taxon-specific growth documented by quantitative stable isotope 295 

probing has shown that members of the Bacillales order of Firmicutes grew within 3h of 296 

rewetting a dry Mediterranean soil, followed in the first 24h by β-proteobacteria of the 297 

Burkholderia order (Blazewicz et al., 2020). Fungi generally display an overall greater 298 

resistance to desiccation-hydration cycles than bacteria (Bapiri et al., 2010; Curiel Yuste 299 

et al., 2011; Barnard et al., 2015), likely due to their hyphal network structure and 300 

frequent mutualistic strategies (de Boer et al., 2005), which complement other drought-301 

resistance traits that can also be found in bacteria, such as production of extracellular 302 

polymeric substances (EPS) and heat-shock proteins (Crowther et al., 2014). As a 303 

consequence, the fungal community displays a higher stability than the overall bacterial 304 

community during dry-down and subsequent rewetting (de Vries et al., 2018). 305 

In temperate climates, contrasting dry and wet conditions arise during a period of 306 

drought, i.e. water limitations outside the normal climatic envelope. Since the temperate 307 

soil biosphere may not be well-adapted to these extreme conditions, its response to 308 

drying and rewetting is expected to be more stochastic and less predictable than that of 309 

highly-adapted arid and semi-arid systems, although a trait-based phylogenetic 310 

framework could help predict microbial responses (Lennon et al., 2012; Amend et al., 311 

2016). Drought legacy experiments have shown that in some systems having been 312 
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exposed to past drought conditions can shape the response of soil microbial communities 313 

to subsequent drought or rewetting (Bouskill et al., 2013; Göransson et al., 2013; Hawkes 314 

et al., 2017; Meisner et al., 2018), with consequences that can extend to soil processes 315 

(Evans and Wallenstein, 2012; Martiny et al., 2017) as well as plant communities (Lau and 316 

Lennon, 2012; Meisner et al., 2013; Kaisermann et al., 2017). 317 

The intensity and duration of dry conditions determine the response of soils to 318 

rewetting (Zhang et al., 2019). After a severe dry period, soil rewetting triggers a larger 319 

CO2 pulse (Xu et al., 2004; Cable et al., 2008; Göransson et al., 2013; Barnard et al., 2015), 320 

which is consistent with a greater loss of C in carbon-rich ecosystems that experience 321 

more pronounced dry-wet events (Canarini et al., 2017). Under extreme conditions (i.e. 322 

dry soil for a long period of time or large ∆ψ), maintaining metabolic functions upon 323 

rewetting may become more challenging than under more favorable conditions and there 324 

may be a greater frequency of microbial death and subsequent larger relative 325 

contribution of compatible solutes to the soil CO2 pulse. However, the speed of dry-down 326 

should also be considered. When dry-down is slow, more compatible solutes accumulate 327 

in the soil relative to depolymerization products generated by exoenzymes (Warren, 328 

2016). In addition, microbial production of extracellular polymeric substances (EPS), 329 

such as exopolysaccharides, can both retain water during soil drying and slow down 330 

rewetting of the habitats of microbial cells. (Roberson and Firestone, 1992).  331 

Maximum compatible solute concentration in soil microbes occurred at relatively 332 

high ψ (-5 MPa) under slow dry-down conditions (Warren, 2016), compared to the 333 

estimated -14 MPa at which microbial activity ceases in the soil (Manzoni et al., 2012). 334 

Thus, compatible solute accumulation can only protect indigenous soil organisms from 335 

dry down events of limited magnitude. 336 
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The physical effects of rewetting on soil aggregates are expected to become 337 

relevant once the point at which large soil aggregates become disrupted is reached (Lado-338 

Montserrat et al., 2014). Rewetting aggregates with a large ∆ψ would enable access to C 339 

pools that were previously inaccessible, i.e. occluded organic matter. How big an upshock, 340 

i.e. the size of ∆ψ, is required to access occluded organic matter? As water travels down 341 

the soil profile, the vapor phase front likely influences microbial cell metabolism, but 342 

liquid water is required to disrupt soil aggregates. Does the disruption threshold depend 343 

on the size of ∆ψ or is it an absolute threshold of ψ (i.e. soil water potential falling below 344 

the threshold during dry-down and rising above it upon rewetting)? While the dryness 345 

reached by the soil can play a role, the size of ∆ψ seems to be the most relevant parameter 346 

(Xu et al., 2004; Chowdhury et al., 2011; Lado-Montserrat et al., 2014). Estimating this 347 

parameter could provide a metric of sensitivity of ecosystems to intense dry periods. Soil 348 

CO2 emission rates before rewetting are significantly negatively correlated with the post-349 

rewetting rates (Kim et al., 2012) and can be predicted from rewetting-related changes in 350 

soil moisture (Rey et al., 2017). Thus, the soil water content within the preceding years 351 

could possibly be used as a proxy to estimate the relative contribution of rewetting events 352 

to the overall C budget in systems that experience seasonally dry climatic conditions. 353 

Moreover, the speed of soil rewetting frames the impact of the event; this would depend 354 

on soil physico-chemical characteristics, among which texture (including preferential 355 

flow paths) and soil salinity are important (Cable et al., 2008; Chowdhury et al., 2011) as 356 

well as EPS content which can influence soil repellency as well as speed of rewetting 357 

(Seaton et al., 2019).  358 

We propose that: (i) all the previously discussed substrates potentially contribute 359 

to soil CO2 pulse upon rewetting, but that their relative contributions depend on climate, 360 
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soil type and magnitude of water potential upshock ∆ψ; and (ii) exceeding a threshold in 361 

dry-wet ∆ψ is required to mobilize occluded organic matter (Fig. 1).  362 

 363 

Importance of plants 364 

Plants are the primary contributors to the quantity and quality of C entering soil 365 

and the size and composition of the available C pool controls the magnitude of the CO2 366 

pulse.  Many of the studies investigating the nature of the C fueling the CO2 pulse upon 367 

rewetting were undertaken in systems that were devoid of live plants at the time of 368 

rewetting (Borken and Matzner, 2009). This reflects the fact that wet-up studies, and the 369 

∆ψ associated with substantial CO2 pulses, require extremely dry soils, in which annual 370 

plants are generally no longer alive. However, the plants that were present during a 371 

growing period immediately preceding the dry-down may affect the microbial response 372 

to rewetting as: (i) labile C pools support CO2 pulses ; (ii) above- and below-ground litter 373 

from semi-arid ecosystems can generate a large and labile pool of soil organic C that is 374 

present during the dry season ; and (iii) the presence of plants can impact the number and 375 

size of soil aggregates (Blankinship et al., 2016).  Thus, plants may have been absent in 376 

many studies due either to the soil-centric focus of the researchers and the question, or 377 

due to the absence of living plants at the time of rewetting. For example, in Mediterranean 378 

systems the annual plant cover is often dead by the end of the dry season, when the first 379 

rains constitute the largest soil water potential upshocks. 380 

Nevertheless, plants matter, whether dead or alive. Dry episodes can take place 381 

during the growing season without killing plant cover. In systems in which live plants are 382 

present, dry-wet cycling directly impacts plant-derived soil labile C inputs, both in their 383 

quantity, generally increasing exudation under moderate drought but having a more 384 

variable effect under intense drought (Preece and Peñuelas, 2016), and quality (Preece 385 
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and Peñuelas, 2016; Gargallo-Garriga et al., 2018), with consequences on ecosystem 386 

functioning (Oikawa et al., 2014; Canarini and Dijkstra, 2015; Williams and de Vries, 387 

2019). Dry-wet cycles can also affect plant N uptake, hydraulic redistribution (Fu et al., 388 

2018) and trapping of windblown soil particles (Ravi et al., 2010), which all likely interact 389 

with major processes involved in the soil CO2 pulse upon rewetting (Wang et al., 2015). 390 

Root exudation is of particular relevance, as it not only provides a direct labile C source 391 

for soil microorganisms, but can also contribute to shaping the root microbiome (Naylor 392 

and Coleman-Derr, 2017; Hartman and Tringe, 2019), a major driver of the soil CO2 pulse 393 

upon rewetting.  394 

Dry soils as well as those subject to infrequent watering events can hamper plant-395 

microbial coupling by impeding the transfer of recent photo-assimilates from the roots to 396 

soil microorganisms (Ruehr et al., 2009; Fuchslueger et al., 2014; Engelhardt et al., 2018; 397 

Karlowsky et al., 2018). This may be due to reduced rhizodeposition rates (but see Preece 398 

and Peñuelas, 2016) or to challenging microbial access to rhizodeposits under diminished 399 

water film connectedness (Moyano et al., 2013; Fuchslueger et al., 2014; Tecon and Or, 400 

2016; von Rein et al., 2016; Karlowsky et al., 2018). The plant-microbial interaction 401 

component of the mechanisms underlying the soil CO2 efflux pulse upon rewetting may 402 

also vary with depth (Engelhardt et al., 2018).  403 

Few experiments have addressed rewetting events during the spring in 404 

Mediterranean systems, when the plants are still alive, actively growing and the high flux 405 

of rhizodeposits to the soil exerts a strong influence on soil microbial activity (Curiel Yuste 406 

et al., 2007; Ma et al., 2012). The seasonal component of microbial response to changes in 407 

water availability has been documented in several studies (Cruz-Martínez et al., 2009; Bell 408 

et al., 2014; Zhao et al., 2016). The plant-microbial interaction component of the soil CO2 409 
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pulse after rewetting may vary seasonally and experiments exploring rewetting after dry 410 

spring periods could provide a valuable perspective. 411 

We propose that the origin of the C released upon soil rewetting (Fig. 2) is mainly 412 

controlled by three factors: the magnitude of the rewetting upshock (∆ψ), soil physical 413 

characteristics, and ecosystem productivity (NEP). The ∆ψ controls the pool of microbial-414 

derived C, i.e. compatible solutes and dead cells. Soil physics controls pore connectivity, 415 

which in turn controls access to microbial- and plant-derived C. NEP controls the pool of 416 

plant-derived labile C which determines much of the soil enzyme pool. 417 

Dry-wet cycles can impact soil C stabilization both positively and negatively 418 

(Bailey et al., 2019). A few dry-wet cycles increase the turnover of aggregates (i.e. as they 419 

are broken down then formed again), releasing inter-aggregate particulate organic matter 420 

and decreasing stabilization of fresh organic matter within the aggregate structure (Denef 421 

et al., 2001b). However, aggregates become slake-resistant with time, and more dry-wet 422 

cycles result in increased microaggregate stability (Denef et al., 2001a; Rahman et al., 423 

2018). Dry-wet cycles increase microbial biomass C turnover, as microbial C lost through 424 

microbial death is replaced. Recent studies have proposed that enhanced microbial 425 

turnover under dry-wet cycles could result in an increased contribution of previously 426 

stable organic matter to microbial C  (Lopez-Sangil et al., 2018; Schimel, 2018). 427 

 428 

Conclusion 429 

The large CO2 pulse that is produced by rapid rewetting of very dry soil results 430 

from biological, physical and chemical mechanisms. The past 30+ years of research in this 431 

area provides an excellent example of integration across the subdisciplines of soil science. 432 

We suggest that significant future advances on the topic will be facilitated by greater 433 

inclusion and recognition of plant-microbe soil interactions.  434 
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Figure legends 851 

 852 

Figure 1. Proposed mechanisms fueling soil CO2 efflux pulse upon rewetting. 853 

 854 

Figure 2. Main drivers (gray) of the mechanisms releasing CO2 upon rewetting a dry soil, 855 

involving interactions between soil microorganisms (blue, center), plants (green, left) and 856 

soil physico-chemical properties (red, right).  857 
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