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sur la Santé humaine, F-59000 Lille, France ; nicolas.beauval@chru-lille.fr (N.B.); delphine.allorge@univ-lille.fr 

(D.A.); anne.garat@univ-lille.fr (A.G.) 
4 CHU Lille, Unité fonctionnelle de Toxicologie, F-59000 Lille, France ; 
5 Université de Lorraine, LIBio, F-54000 Nancy, France; frederic.borges@univ-lorraine.fr (F.B.) 
6 STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, Rennes, France ; 

gwenael.jan@inrae.fr (G.J.) 

* Correspondence: benoit.foligne@univ-lille.fr; Tel.: +33-621741015  

$ These authors contributed equally to this work. 

 

Abstract: Hazardous toxic metals, such as lead and cadmium, and to a lesser extent alumi-

num, are extensively recognized as detrimental for health following ingestion within food 

and water, or following inhalation. Gut and food-derived microbes, by interacting with 

heavy metals, may actively or passively modulate their bioavailability inside the gut, ei-

ther by adsorption or by sequestration. Such a bioremediation within the gut implies the 

selection of safe microbes, based on their specific capacities to immobilize metals. We in-

vestigated the metal removal ability of 225 bacteria toward the potential harmful trace 

elements lead, cadmium and aluminum in vitro, using Inductively Coupled Plasma Mass 

Spectrometry analysis. Interspecies and intraspecies comparisons were addressed and 

discussed among bacteria from the phylum Firmicutes, which are mostly lactic acid bac-

teria, including Lactobacillus spp, with some Lactococcus, Pediococcus and Carnobacterium 

representatives, Actinobacteria as well as Proteobacteria. The effect on mixture of lead and 

cadmium was also investigated. Although the purpose of such a screening is so far not to 

elucidate each of the various strain specific- and metal dependent- mechanisms of heavy 

metal removal, we identified potential bacteria which are able to alleviate Pb(II) and Cd(II) 

concerns in order to propose performing candidate probiotics for metal xenobiotic biore-

mediation. 

Keywords: Bioremediation; gut microbiota; lactic acid bacteria, Enterobacterales; lead; cadmium; 

aluminum; Probiotics; ICP-MS;  

 

1. Introduction 

Hazardous toxic metals, such as lead and cadmium, and to a lesser extent aluminum, are non-essential and non-

biodegradable elements, which are extensively recognized as detrimental for health. They are a cause for several 

toxicological concerns, either (i) as poisoning after acute environmental exposure, (ii) or following long-term 

contamination at low doses throughout the food chain or (iii) by inhalation. Considering the human (and animal) 
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exposome, heavy metals and other related detrimental elements may enter the body by the oral route after inhalation 

or ingestion of contaminated drinking water, beverages and food. These metals first interact with the digestive tract and 

its ecosystem and may further accumulate within target tissues ensuing blood distribution [1,2]. 

Lead (Pb) is a widespread heavy metal ion considered as ‘probably’ carcinogenic according to the American 

Environmental protection agency (EPA) and the international agency for research on cancer (IARC), as group 2A 

substances. Chronic Pb exposure leads to anemia, increase of blood pressure, persistent vomiting and neuropsychiatric 

disorders, including encephalopathy, delirium, convulsions and even coma in severe cases [3,4]. Of note, children are 

highly susceptible to Pb exposure, which may cause mental retardation [5] and recent studies suggest that childhood 

Pb exposure is a risk-factor of developing neurodegenerative diseases in adulthood [6]. Pb accumulates mostly in liver, 

kidneys and bones. Safe drinking water should contain less than 10 µg.L-1 Pb, a threshold that is very often exceeded 

[7].  

Cadmium (Cd) is classified as a group I carcinogenic compound by IARC [8]. Cd is nephrotoxic and may induce 

various health concerns, comprising kidney tubular damage, as well as skeletal damages (osteoporosis), brain and testis 

impairments [9–11]. Other Cd-related concerns such as metabolic diseases and contribution to respiratory infection 

susceptibility have also recently been suggested [12,13]. A Cd intake level of 23.2 μg/day, which is less than half the safe 

intake stated by the current  guidelines, may increase the risk of chronic kidney disease, mortality from heart disease, 

cancer of any site and Alzheimer's disease [14]. Moreover, epidemiological studies examining the adverse effects of co-

exposure to Cd and Pb have shown that Pb may enhance the nephrotoxicity of Cd and vice versa. In addition, Cd is also 

involved in the modulation of inflammatory responses [15], including in the gastrointestinal tract [16]. Perinatal and 

early life exposure to Cd is involved in poor birth outcomes and has adverse effects on neurodevelopment and 

metabolism functions of the child [17]. 

Aluminum (Al) has no known physiological function and accumulates in the liver, kidneys, bones, testis, as 

well as in the brain and nervous system where it exhibits toxicity in humans and animals [18,19]. Al has also been 

suggested to be involved in neurological disorders such as Alzheimer’s disease, autism spectrum disorders and multiple 

sclerosis [20]. Considering the digestive tract, Al induces epithelial barrier dysfunction, abdominal pain and 

inflammation [21,22] and is highly suspected to be involved in inflammatory bowel diseases [23–25]. Al has adverse 

effects on reproduction [26], and in utero exposure has negative impacts even at low concentrations [27]. 

Collectively, ingested metal xenobiotics may also contribute to dysbiosis by targeting the host’s gut microbiota and the 

corresponding key functions on intestinal homeostasis [16,28]. Hence, metal contaminants may indirectly alter the host’s 

health following subtle microbial changes within the gut [29,30], affecting intestinal integrity and possibly contributing 

to a broad range of metabolic and/or chronic immune diseases and other neurological disorders. 

In turn, gut microbes also interact with metals inside the gut, either by biotransformation, or by sequestration. 

It is clear that microorganisms can actively, or passively, control bioaccessibility and further bioavailability of heavy 

metals [31]. We and others have previously demonstrated the overall role of the gut microbiota as a barrier towards 

heavy metal dissemination, using germ-free mice [2,32] or broad spectrum antibiotics [33]. However, not all bacteria 

may have the same capacities to limit toxic metal bioavailability. Whereas the use of environmental bacteria as 

biosorbents for heavy metals has been widely employed to remove metals from contaminated soils and wastewaters 

[34], introducing bioremediation within the gut requires the selection of safe microbes based on their specific capacities 

to immobilize metals [35]. Food grade bacteria as well as gut-isolated microorganisms are thus the best candidates to 

be screened in order to alleviate metal toxicity, regarding their ecological niches [36]. In this context, lactic acid bacteria 

(LAB) have demonstrated obvious performances, showing efficient binding and/or internalization of metals in vitro [37–

41], especially cadmium and lead. 
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Although such LAB-mediated metal removal capacity was partly shown to be strain-dependent, scarce studies 

have explored species and strains diversity. Only few restricted types of LAB are generally analyzed in distinct and 

designed heterogenous studies among lactobacilli, enterococci and Weissella spp [41,42] together with dairy 

propionibacteria and bifidobacteria [38,43]. In addition, such properties were rarely sought in non-lactic acid bacteria, 

with a limited number of evaluations in few proteobacteria species (E. coli) and gut-isolated anaerobic bacteria 

(Akkermansia muciniphila, Faecalibacterium prausnitzii and Oscillibacter ruminantium single strain isolates) [33,44]. Other 

genera showing noticeable detoxification potentials in vitro, such as Pseudomonas, Stenotrophomonas or Bacillus, are not 

appropriate for intestinal compartment targeting. Only LAB such as L. plantarum, L. casei, L. rhamnosus and L. delbrueckii 

strains have been so far selected in vitro and confirmed to have detoxification abilities in vivo. Various selected food 

microbes can thus prevent the absorption of heavy metals in the gut (and dissemination in various tissues) and remove 

them upon defecation. Promising proofs of concept of efficacy were demonstrated in preclinical models of acute and 

chronic heavy metal toxicity in mice for lead [33,45,46], cadmium [47,48] and aluminum [49,50]. 

Cell surface associated compounds of probiotic lactobacilli sustain the strain-specificity dogma of strain’s 

functionality [51]. The mechanism responsible for binding of metals to bacterial cell wall is highly suggested to depend 

on the huge variety of surface molecules of individual bacterial species and strain [52], including teichoic and 

lipoteichoic acids and peptidoglycan. In line, considering other binding site alike S-layer proteins, cell surface proteins 

and polysaccharides, we can question the distinct biosorbent properties of other Gram positive and Gram negative 

bacteria. 

Here, we thus addressed the variability, among species and strains, by analyzing the ability of bacteria to 

remove the potential harmful trace elements lead, cadmium and aluminum in vitro. The purpose here is not to elucidate 

the mechanism of biosorption or bioaccumulation by plotting adsorption isotherms, but rather to compare the intrinsic 

aptitudes to cope with heavy metals among bacteria from the phylum Firmicutes, Actinobacteria and Proteobacteria. It 

comprises many LAB (99), several bifidobacteria (11), dairy propionibacteria (21), and cutibacteria (4), together with 

other gut-friendly bacteria such as Enterobacterales (90). This study thus aims to explore the strain diversity and the 

metal dependency of the overall toxic metal removal capacity of various food and gut bacteria. It also serves to identify 

the best candidates for preclinical assays and further veterinary and clinical applications. 

2. Materials and Methods 

2.1. Chemicals, reagents and instruments 

Chemicals and reagents were purchased from Sigma–Aldrich Chemical (Saint-Quentin-Fallavier, France), unless 

otherwise stated. Ultrapure water corresponds to PURELAB Option-Q; Veolia Water (Antony, France). Ultraflex III 

MALDI-TOF/TOF instrument and Flex Analysis software were from Bruker Daltonik GmbH (Bremen, Germany). 

Determinations of metal concentrations in diluted samples were performed using Inductively Coupled Plasma - Mass 

Spectrometry (ICP-MS) THERMO ICAPTM Qc (Thermo Scientific, Courtaboeuf Cedex, France). 

 

2.2. Bacterial strains collections and culture conditions 

A set of 225 bacterial strains of distinct origins was used in this study. Lactic acid bacteria (LAB) mostly came from the 

well characterized DSM and ATCC collections previously used for comparative genomics of lactobacilli and associated 

genera [53].  

Propionibacteria sampling consists of 21 P. freudenreichii strains from the Centre International de Ressources 

Microbiennes-Bactéries d’Intérêt Alimentaire collection (CIRM-BIA; STLO, INRAE, Rennes, France), previously 

characterized throughout comparative genomics for immunomodulatory potentials [54].  
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Most Escherichia coli strains belong to the ECOR standard reference strains of E. coli collection [55]. The later 

includes isolates from a variety of hosts and geographic regions, covering A, B1, B2, D, and E phylogroups, and were 

kindly provided by Dr Laurent Debarbieux (Institut Pasteur Paris). Other E. coli type strains or characterized as 

adherent- and invasive pathovars (AIEC) were described previously [56]. Strains of Serratia marcescens (Db10, JUb9, 

SM25, SM38 and SM45) were kindly provided by Dr Elizabeth Pradel [57]. Some cheese-derived Hafnia alvei strains 

(Gb01, E215, 920 and Grignon) were described elsewhere [58]. Finally, few bacterial strains (9 Bifidobacterium species, 4 

Cutibacterium acnes, 2 Enterobacter, 2 Hafnia alvei and 5 Klebsiella) were sourced from historical clinical gut or fecal samples 

of human origin, food or as re-isolates from commercial probiotics products (Bb12 and Morinaga) belonging to the 

Faculty of Pharmacy of Lille (FPL) collection, University of Lille. Identification of those strains were determined by 

selective media and the species level was confirmed using matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) and are referenced by internal FPL numbers.  

Strains of Lactobacillus and associated genera (Fructobacillus, Leuconostoc, Lactococus, Pediococcus, and Weissella) 

were cultivated statically in MRS (de Mann, Rogosa and Sharpe medium), Carnobacterium and Staphylococcus in BHI 

(Brain heart Infusion) at 30 or 37 °C, according to their optimal growth. Bifidobacteria were grown anaerobically using 

anaerobic generator packs (GENbaganaer, Biomérieux, France) in MRS supplemented with 0.1% (w/v) L-cysteine 

hydrochloride. P. freudenreichii strains were grown at 30 °C under microaerophilic conditions, without agitation, in YEL 

(Yeast Extract Lactate medium) [59]. Strains of Enterobacterales (Enterobacter, Escherichia, Hafnia, Klebsiella and Serratia) 

were grown in LB (Luria Bertani medium) at 37 °C without shaking. Bacterial cultures duration ranged from overnight 

to 72h depending on the bacterial strain in order to reach the stationary phase. 

 

2.3. Metal-removal capacity assays 

(See also Preamble) 

Eight mL of stationary phase bacterial cultures were standardized at optic density (OD) 600 nm of 2.5 and washed 

twice in Ringer’s solutions. Pellets were further suspended with 8 mL of the corresponding ion’s metal solutions (Ringer, 

pH 7.0) at 25 ppm (PbCl2, AlCl2) or 1 ppm (CdCl2) and gently mixed using a rotary agitator (12 rpm), at room 

temperature for 1h. Samples were then centrifuged and washed twice before metal quantification by inductively 

coupled plasma mass spectrometry (ICP-MS). The pellets were suspended in 500 µL of 70% nitric acid, and heated at 

98°C for 15 minutes. The samples were finally diluted in mQ water and further assessed by ICP-MS method. For each 

strain, a percentage of chelation/removal capacity is defined as the ratio of residual metal mass quantitated in the pellet 

toward the initial amount in the incubation medium. All assays were performed in triplicate, corresponding to three 

distinct bacterial cultures. 

 

2.4. Statistical analyses  

GraphPad Prism was employed for graph preparation and statistical evaluation. All analyses were performed by 

comparing experimental groups with their respective controls in the nonparametric, one-way analysis of variance (the 

Mann-Whitney U test) or a two-tailed Student t test, as appropriate (GraphPad Prism, version 6.0, GraphPad Software 

Inc, San Diego, CA, USA). Quantitative variables were quoted as the mean +/- standard error (SD). Data with p values 

≤ 0.05 were considered to be significant. 

3. Results 

3.1. Preamble 
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We first ensured that our methods were reliable and appropriate enough to screen distinct bacterial strains for 

their ability to remove selected metals. It has been previously shown that many factors may influence the levels of metal 

binding by bacteria, such as contact time, temperature, pH, and salt concentration of metal solutions, as well as washing 

buffers and inoculum size [37,60,61]. Thus, several key parameters were defined to mimic the gut environment unless 

fixed for convenience, e.g. temperature. The binding evaluation was thus done in physiological saline buffer (Ringer’s 

solution), at a neutral pH (7.1) and at room temperature (22 +/-2 °C), in time-separated and bacterial culture triplicates 

to test reproducibility. Lead and aluminum concentration at 25 ppm were retained as a realistic dose to evaluate metal 

sequestration, whereas a lower dose of 1 ppm of cadmium was necessary to allow discriminant selection of strains. 

Indeed, cadmium at 25 ppm was not appropriate to identify clear differences among bacteria and most strains had very 

low cadmium binding capacity in a first pre-screening step (data not shown), below 5% of removal capacity. 

Consequently, only the most promising strains (over 5%) were further assessed at 1 ppm. Of note, these doses for Pb, 

Cd and Al correspond to similar orders of magnitude reported previously [41,44,50,52]. We thus ranked strains 

according to removal capacity as weak, low, moderate and high, respectively for 0-25%, 26-50%, 51-75% and 76-100% 

for Pb, whereas narrower intervals of 0-10%, 11-20%, 21-30% and over 30% correspond to Cd and Al.  

The screening of bacterial strains is based on the residual metal fraction robustly associated to the pellets. However, 

we also confirmed the stability and irreversibility of binding, in order to discriminate strains from weak to strong metal 

binding capacity for both lead and cadmium. In this aim, we performed two serial cycles of washes (consisting in two 

cycles of pellet resuspension in metal-free solutions followed by centrifugation). Indeed, the residual quantity of metal 

in the second and last wash samples were very low or undetectable and considered as negligible. This is illustrated by 

selected examples of strains with distinct binding efficiency on supplementary figure 1A and 1B. However, binding of 

aluminum to bacteria was more labile and appeared partly reversible after rinsing, although the test using 2 wash steps 

is quite reproducible (supplementary figure 1C). Consequently, aluminum binding is somewhat overestimated in our 

assay but allows to discriminate strains and may reflect the intrinsic capacity of bacteria to interact with the metal in 

physiolocal conditions, i.e. the gastrointestinal tract. 

 

3.2. Lactic acid bacteria (LAB) exhibit variable lead removal capacities  

Among the 99 individual lactic acid bacteria strains tested for their capacity to remove Pb(II) salts at 25 ppm, 

most (>2/3) were able to immobilize an average of 50% to up to 90% of this metal in solution (Figure 1A) while others 

part showed moderate or quite weak biosorption potentials. When considering only the genus Lactobacillus, covering 

65 distinct species and 76 strains, the removal capacity of lead ranged from 6% +/- 2.5 to 92% +/- 8.5. No particular 

consistency could be identified at the species level and some strains belonging to the same species could show extremely 

different properties such as L. acidophilus, L. casei, L. paracasei L. rhamnosus (Figure 2A). The two strains of L. fermentum 

were particularly efficient in lead removal, whereas 2 L. plantarum strains were unexpectedly poor lead biosorbers 

(Figure 2B). 

The lead removal capacity is also variable among strains from other genus comprised within the LAB. 

Carnobacterium spp and Pediococcus spp, together with Leuconostoc and Fructobacillus members as well as the Weissella spp, 

demonstrated substantial lead removal properties (Figure 2C). Such potential is not related to the intrinsic shape of 

bacteria (i.e. rods or cocci) because the 3 enterococci and 4 pediococci tested were quite good metal biosorbers (> 50%) 

while Lactococcus lactis and 4 distinct strains of Staphylococcus aureus were not (mostly < 30%) (Figure 2D). 
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Figure 1. Pb(II) removal capacity of bacteria from distinct taxonomic phyla. Panel (A): Lactic acid bacteria. Panel (B) 

Actinobacteria, comprising bifidobacteria, propionibacteria and cutibactera. Panel (C): Proteobacteria, as Enterobacterales. 

Metal removal capacities were expressed as % of initial metal quantity in solution as mean +/- SD of three determinations. 

They are represented by colored heat maps as weak (0 to 25%), low (26 to 50), moderate (51 to 75%) and high (76 to 100%) 

performing bacterial strains, respectively in pale green, blue, orange and red, to remove lead.  
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Figure 2. Pb(II) removal capacity of distinct strains of lactic acid bacteria. Panel (A): Selected examples of 5 couples of 

strains from the species with distinct performances. Panel (B): Selected examples of 2 couples of strains from the species 

with similar performances. Panel (C): Selected examples of 4 groups of strains from the same genus with distinct perfor-

mances. Panel (D): Selected examples of strains from 4 groups of cocci with distinct performances. Values are mean +/- SD 

of three determinations. Different letters indicate the significant differences (P< 0.05) among the strains. 

 

3.3. Actinobacteria cover distinct lead biosorption potentials  

Within the phylum of Actinobacteria, bifidobacteria exhibit very poor or extremely high lead removal capacities, 

depending on the species and related strains (Figure 1B), some strains reaching the value of nearly 90% whereas other 

could only bind 6.6% of the solubilized lead. This is not related to the species, as distinct B. longum strains may exhibit 

up to 10-fold higher binding capacities than others, i.e. 6.75% +/- 0.9 versus 65.4% +/- 7.2 (p < 0.001). Surprisingly, none 

of the Propionibacterium freudenreichii strains from dairy origins was able to alleviate the concentration of lead salts, 

characterized by an average of 10.25% +/- 4.4 of binding. In contrast, 4 Cutibacterium acnes strains (previously referenced 

as Propionibacterium acnes), showed a binding of 41%, 44%, 49%, and 56.8%, respectively. 

L.
 a

ci
do

ph
ilu

s 
D
SM

 2
00

79

L.
 a

ci
do

ph
ilu

s 
N
C
FM

L.
 c
as

ei
 D

S
M

 2
00

11

L.
 c
as

ei
 B

L2
3

L.
 p

ar
ac

as
ei
  D

S
M

 2
02

58

L.
 p

ar
ac

as
ei
  D

S
M

 5
62

2

L.
 rh

am
no

su
s 
ATC

C
 5

31
03

 (G
G
)

L.
 rh

am
no

su
s 
ATC

C
 9

59
5

0

25

50

75

100

b

a

c

b b

b

c c

P
b

 r
e

m
o

v
a

l 
c

a
p

a
c

it
y
 (

%
)

L.
 fe

rm
en

tu
m

 D
SM

 2
00

55

L.
 fe

rm
en

tu
m

 F
PL 

19
12

4

L.
 p

la
nt

ar
um

 D
SM

 1
32

73

L.
 p

la
nt

ar
um

 L
p1

15
0

25

50

75

100 a
a

b
b

P
b

 r
e

m
o

v
a

l 
c

a
p

a
c

it
y
 (

%
)

W
. c

on
fu
sa

 D
SM

 2
01

96

W
.h
al
ot
ol
er

an
s 
D
SM

 2
01

90

W
. v

iri
de

sc
en

s 
D
SM

 2
04

10

C
. d

iv
er

ge
ns

 V
41

C
. i
nh

ib
en

s 
W

N
13

59

C
. m

al
ta

ro
m

at
ic
um

 L
M

A28

C
. m

al
ta

ro
m

at
ic
um

 D
SM

20
34

2

C
. m

al
ta

ro
m

at
ic
um

 A
TC

C
 3

55
86

P. a
ci
di
la
ct
ic
i D

SM
 1
99

27

P. c
la
us

se
ni
i D

SM
 1
48

00

P. e
th
an

ol
id
ur

an
s 
D
SM

 2
23

01

P. i
no

pi
na

tu
s 
D
SM

 2
02

85

P. p
ar

vu
lu
s 
D
SM

 2
03

32

Le
. m

es
en

te
ro

id
es

 D
SM

 2
03

43
 

F. f
ru

ct
os

us
 D

SM
 2
03

49

0

25

50

75

100
a

b

b

a

ac
bc

ac

bc

a

b

c

ab

ab

a

bc

P
b

 r
e

m
o

v
a

l 
c

a
p

a
c

it
y
 (

%
)

E. f
ae

ca
lis

 F
PL 

O
81

53

E. f
ae

ca
lis

 F
PL 

19
11

1

E. f
ae

ca
lis

 F
PL 

19
12

6

Lc
. l
ac

tis
 M

G
13

63

P. a
ci
di
la
ct
ic
i

P. e
th

an
ol
id
ur

an
s

S. a
ur

eu
s 
FPL 

08
14

6

S. a
ur

eu
s 
FPL 

08
14

7

S. a
ur

eu
s 
FPL 

08
14

8

S. a
ur

eu
s 
FPL 

08
14

9

0

25

50

75

100

a a a

b

c

d

be

b

d

b

P
b

 r
e

m
o

v
a
l 
c
a
p

a
c
it
y 

(%
)

A B

C D

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2021                   doi:10.20944/preprints202101.0541.v1

https://doi.org/10.20944/preprints202101.0541.v1


 

 

 

3.4. Enterobacterales are moderate performers for lead chelation 

We evaluated 90 strains belonging to the class of Gamma-Proteobacteria and to the order of Enterobacterales, 

comprising 68 E. coli strains from the ECOR library, extended to 5 other E. coli strains showing either probiotic properties 

(E. coli Nissle 1917), pathobiont traits such adherent and invasive capacities e.g. LF82 and NRG857C or no particular 

criterion from a physiological point of view (E. coli K12). In addition, other genera were considered, with 5 dairy isolates 

of Hafnia alvei, 2 Klebsiella spp, 2 Enterobacter spp and 5 Serratia marcescens strains from clinical collections, as commensal 

prototypes. The lead removal capacity of all the Enterobacterales strains tested was quite uniform (54.14% +/- 6.7), 

demonstrating moderate and consistent values for enteric Gram-negative bacilli. Indeed, nearly 90% of the strains 

showed lead removal capacities between 45 and 65%. Only 2 E. coli strains and a single Hafnia alvei representative were 

able to immobilize lead up to 75% from a 25 ppm lead solution. 

 

3.5. Bacteria-mediated cadmium removal capacity is phylum, genus and strain specific 

As explained in the preamble, the dose of 25 ppm is not appropriate to discriminate bacterial strains with respect 

to binding of cadmium Cd(II). Nor is it relevant to mimic realistic contamination events. Here, we thus addressed the 

ability of several bacteria to lower cadmium salts from 1 ppm solution. Among the 95 LAB strains tested, most of them 

(around 90%) exhibited weak or low cadmium removal properties, below the value of 20% of binding (Figure 3A). 

Interestingly, few strains comprising 3 Pediococcus spp, a Carnobacterium divergens and to a lesser extent a single L. 

rhamnosus and a Leuconostoc mesenteroides have cadmium binding capacities over 25% and up to 50% +/- 15.7 for a P. 

acidilactici isolate.  

Considering the phylum of Actinobacteria, bifidobacteria are characterized by variable binding of cadmium, 

depending more on the strain than on the species. Indeed, B. breve strains removal capacity ranged from 6.2% +/- 0.6 to 

40.7% +/- 6.7 (p<0.01) and B. longum strains from 3.6% +/- 1.7 to 18.9% +/- 5.8 (p<0.01) Most of the Propionibacterium 

freudenreichii strains were consistently weak cadmium biosorbers, whereas C. acnes strains were distinctly either low or 

moderate in their overall capacity to remove cadmium (Figure 3B). Lastly, near all members of the 60 Enterobacterales 

tested were weak or low cadmium chelators, except for 4 E. coli strains i.e. ECOR 64, ECOR 66, E. coli LF82 and E. coli 

Nissle having moderate cadmium removal potential (respectively 24.2% +/- 3.6, 21.2% +/- 5.6, 20.5% +/- 2.2 and 25.2% 

+/- 3.5) (Figure 3C). 

 

3.6. Bacteria-mediated aluminum removal capacity is also genus and strain dependent  

As a matter of fact, Al(III) from aluminum chloride solution can also distinctly bind to bacteria, depending on 

their origin and phylogenic diversity. Aluminum removal capacity by LAB is discrepant from various species, ranging 

from 5 to 28% of 25 ppm solutions with an average of 14.8% +/- 4.7 (Figure 4A). Similarly, the ability of bifidobacteria 

and propionibacteria to bind aluminum is quite weak and rarely exceed 10% (8.9% +/- 2.8 and 9.4% +/- 2.6, respectively). 

Strains of Cutibacterium acnes were more efficient and showed moderate binding levels (means of 24.3% +/- 4.7) (Figure 

4B). In contrast, representatives of Enterobacterales exhibited usually higher values for this phenotype, ranging from 

12% up to 30% and a median value of 20.4% +/- 4.7 (Figure 4C). Few E. coli strains were particularly favorable, i.e. 

ECOR37, ECOR40, ECOR50 and ECOR64, ranging from 25 to 30 %, whereas the overall Hafnia and Serratia strains seem 

to be less promising, below 15%. 
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Figure 3. Cd(II) removal capacity of bacteria from distinct taxonomic phyla. Panel (A): Lactic acid bacteria. Panel 

(B) Actinobacteria, comprising bifidobacteria, propionibacteria and cutibactera. Panel (C): Proteobacteria, as Enterobac-

terales. Metal removal capacities were expressed as % of initial metal quantity in solution as mean +/- SD of three deter-

minations. They are represented by colored heat maps as weak (0 to 10%), low (11 to 20), moderate (21 to 30%) and high 

(over 100%) performing bacterial strains, respectively in pale green, blue, orange and red, to remove cadmium. 
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Figure 4. Al(III) removal capacity of bacteria from distinct taxonomic phyla. Panel (A): Lactic acid bacteria. Panel (B) 

Actinobacteria, comprising bifidobacteria, propionibacteria and cutibactera. Panel (C): Proteobacteria, as Enterobacterales. 

Metal removal capacities were expressed as % of initial metal quantity in solution as mean +/- SD of three determinations. 

They are represented by colored heat maps as weak (0 to 10%), low (11 to 20), moderate (21 to 30%) and high (over 100%) 

performing bacterial strains, respectively in pale green, blue, orange and red, to remove aluminum. 
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L. salivarius  DSM 20555

L. satsumensis  DSM 16230

L. selangorensis DSM 13344

L. senioris  DSM 24302

L. senmaizukei DSM 21775

L. sharpeae  DSM 2055

L. similis  DSM 2335

L. thailandensis  DSM 22698

L. versmoldensis  DSM 14857

L. vini  DSM 2065

Lc. Lactis MG1363

Le. mesenteroides DSM 20343 

P. acidilactici  DSM 19927

P. claussenii  DSM 14800

P. ethanolidurans  DSM 22301

P. inopinatus  DSM 20285

P. parvulus  DSM 20332

S. aureus FPL 08146

S. aureus FPL 08147

S. aureus FPL 08148

S. aureus FPL 08149

W. confusa  DSM 20196

W.halotolerans  DSM 20190

W. viridescens DSM 20410
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Because co-exposure to lead and cadmium may commonly happen due to their co-occurrence in food, water and 

environment, we also addressed the respective binding of both elements when these metals were mixed together. We 

thus compared the binding capacity for lead at 25 ppm, cadmium at 1 ppm and for the corresponding mixture (i.e. Pb 

25 ppm and Cd 1 ppm) of a set of arbitrary selected 16 representative Gram positive (Figure 5A) and 16 Gram negative 

bacteria (Figure 5B). Interestingly, the intrinsic removal capacity of bacteria was fairly not influenced by the presence 

of the other metal, except for few strains (out of 32) showing rare but significant lowering of 20 to 40% of the initial 

baseline values (p < 0.05), irrespective of the metal considered. 

 

 

Figure 5. Ability of bacteria to remove lead and cadmium in pure or mixed solutions. Metal removal capacity was 

determined for lead at 25 ppm (black), for cadmium 1 ppm (grey), alone or as mixtures of both (25 ppm lead and 1 ppm Cd) 

for lead (hatched black) and cadmium (hatched grey). Values are expressed as % of initial metal quantity in solution as mean 

+/- SD of three determinations. * indicates the significant differences of mixture (p < 0.05) compared with corresponding metal 

alone. 
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Here, we addressed the metal removal capacity in more than 200 bacterial strains, mostly lactic acid bacteria 

and associated genera, as well as representatives of gut enterobacteria inhabitants. We considered lead, cadmium, 

aluminum, and to a lesser extent, a mixture of lead and cadmium. Of note, all tested bacteria were able to survive at the 

corresponding doses of metals used, i.e. 25 ppm for lead and aluminum and 1 ppm for cadmium (data not shown) and 

as previously described elsewhere for several LAB strains [41]. Considering cadmium, the removal capacity of distinct 

strains was not correlated to the minimal inhibitory concentration (MIC) established at higher doses (data not shown). 

The later suggests that exploring metal tolerance is not appropriate for screening purposes, as also demonstrated for 

lead with various L. plantarum strains [62]. The viability of bacteria is so far not necessary to allow significant metal 

biosorption. Indeed, binding isotherms in the Langmuir model showed that the maximum binding capacity (Qmax) could 

either be significantly higher or lower in boiled or live forms for two probiotic strains (Lactobacillus rhamnosus and 

Propionibacterium freudenreichii) [37]. Others have demonstrated that dead and live bacteria had similar lead and 

cadmium binding capacity (33,37,40,43). However, some slightly higher removal efficiency of lead by living forms could 

be observed, owing to the occurrence of cell-specific intracellular metal accumulation [63].  

Other strategies based on lactobacilli surface characteristics, such as hydrophobicity and electrostatic properties, 

failed to identify relevant selection criteria for lead and cadmium removal [64]. Yet, no rationale is established to select 

strains with high detoxification potential. In our study, we thus empirically characterized the removal metal capacity 

of bacterial living biomasses without a priori, considering the cross-species and strain diversity. We used gut friendly 

(nonpathogenic) bacteria, either originated from intestinal ecological niches or derived from food, mostly regarded as 

Generally Regarded as Safe (GRAS), because safety is essential for further in vivo applications. In contrast with many 

studies exploring the efficiency of metal removal within metal solutions in deionized water, we therefore used Ringer’s 

solution at neutral pH, both for the binding assays and the washing of the pellets in order to achieve isotonicity close to 

biological conditions. Incubation time by bacteria and the distinct metals was set up at one hour to partly mimic the 

food transit time and the possible contact time within the gut.  

Although LAB-mediated metal removal capacity has already been shown to be strain dependent, very few 

studies have explored the cross-species and strain diversity. Only few restricted types of LAB are generally analyzed 

and often in heterogeneous design studies among lactobacilli, enterococci and Weissella spp [41,42]. In line, data 

considering dairy propionibacteria and bifidobacteria are scarce and included a limited number of species and strains 

[38,43]. Studies that comprise proteobacteria are also poorly documented. We have here extended and confirmed the 

huge functional diversity throughout bacterium specimen and the distinct metals for Gram-positive and Gram-negative 

bacteria. Mechanisms of metal removal have been described elsewhere [52,65]. They include ion exchange, chelation, 

adsorption by physical forces and intracellular sequestration and are known to be strain-dependent. The role of 

hydroxyl (from the peptidoglycan), carboxyl and phosphate groups (from surface proteins) influenced by pH and 

specificity and abundance, is assumed to be a key determinant, together with the contribution of capsular 

polysaccharide for metal binding sites. Thus, the overall removal capacity of a single cell is complex and multifactorial. 

Anyway, although many variables such as culture conditions, culture medium types and growth phase are involved, 

independently of the core and individual specific bacterial genes, the comparative genomic among lactic acid 

bacteriacan additionally be used help to identify specific genes amplifying or lowering factors for metal removal. 

We found that LAB and bifidobacteria have generally moderate to high lead removal capacities, whereas dairy 

propionibacteria consistently have weak performances. Gram negative bacteria have almost low to moderate aptitudes 

to immobilize lead. We could identify good candidates toward lead among lactobacilli, and bifidobacteria, as previously 

described for L. sakei, L. delbruckii, L. fermentum and B. bifidum strains [45]. In line with our results, Weissella and 

Pediococcus spp were also described with high levels of lead removal [41]. To our knowledge, we first describe the 

promising potential of Carnobacterium spp. Out of 220 strains, only five were identified with high capacity to interact 
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with cadmium, comprising a B. breve, a L. sakei, a Carnobacterium divergens and two Pediococcus strains, suggesting that 

some LAB not generally considered as probiotics may have interesting properties for cadmium bioremediation 

purposes. In contrast with previous reports [45,48], the few strains of L. rhamnosus and L. plantarum from our set of 

bacteria exhibited poor lead and cadmium lowering properties. Again, metal removal capacities are highly strain-

dependent and yet cannot be generalized at the species taxonomic level. Interestingly, among the 20 strains of 

Propionibacterium, all are weak chelators for both lead and cadmium, although they demonstrated very strain-specific 

surface proteins and exopolysaccharide production abilities, related to various immunological functional properties 

[66].  

Existing data on aluminum removal capacity by bacteria are quite rare and have only reported potentials for L. 

plantarum and L. reuteri strains [50], exceeding the % of removal we could reach in our study (25%) in a similar 

experimental design. Noticeably, Enterobacteria demonstrated more consistent and higher capacities for aluminum 

removal than LAB and Actinobacteria. 

Another interesting and promising result from our study is the overall maintenance of the removal capacity of 

a selected strain when both cadmium and lead are applied together. This encourages us to select strains with shared 

high lead and cadmium removal capacities. In line, synergistic issues to question the impact of mixture of strains on a 

single (or a mixture of) metal(s) have also to be explored [67].  

The proof of concept that some bacterial strains which possess high in vitro metal removal capacities can also 

have these potentials in vivo in models of acute and chronic poisoning in mice [33,45–48,50], rats [67] and humans [68] 

has been clearly demonstrated. The first screening step we described here needs to be further assessed in vivo 

considering the physiology of the gastrointestinal tract in the presence of other essential metals, trace elements and 

organic molecules. Experimental protocols in preclinical models must include negative controls by comparing strains 

with poor and high removal capacities, in order to ensure the intrinsic contribution of the selected bacteria as a 

detoxification tool. In order to develop probiotics for toxic metal removal, appropriate strains and even cocktails of 

several bacteria should clearly be evaluated. On the one hand, the interaction with other bacteria inhabiting the intestine 

has also to be considered, as the baseline role of resident commensal microbiota is a key factor [33]. On the other hand, 

distinct strategies used to modify the gut microbiota, including the prebiotics, may also interfere with bacteria and 

heavy metal equilibrium [69]. Because heavy metals influence the structure, the diversity, and the functionality of the 

gut microbiota [29] (including heavy metal sequestration), the bidirectional relationship of dysbiosis and heavy metals 

in various pathologies, and the interconnected use of probiotics with multipurpose functions, is highly complex [28] 

and will need to be integrated for a personalized medicine perspective [70].  

 

5. Conclusion  

Collectively, our results revealed the huge bacterial diversity in terms of ability to remove metal such as lead, 

cadmium, aluminum, or a mixture of lead and cadmium, in vitro. By exploring the cross-species and strain diversity of 

lactic acid bacteria, bifidobacteria, propionibacteria and enterobacteria, we underlined the strain- and metal- 

dependency of bacterial metal removal. These results open new perspectives: (i) to define probiotic candidates, with a 

wide and long history of safe use, to be considered as a dietary therapeutic strategy against heavy metal 

contamination.This may be valuable both to counteract low dose accumulation and chronic toxicity and/or to alleviate 

heavy metal poisoning, concomitantly with conventional chelation, antioxidant and anti-inflammatory therapies in 

human and veterinary developments, and (ii) to understand the role of some resident gut microbes in the toxic metal 

balance within the gut microbiota. 
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Supplementary Materials: The following are available online at httpps://www. xxx, Figure S1: Selected examples of 

bacterial strains with distinct metal removal efficiency demonstrating the accuracy of the assays for lead (A), cadmium 

(B) and aluminum (C). Metals were quantified in the binding supernatant, in the two washing buffers, and in the final 

bacterial pellet.  
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Figure S1: Selected examples of bacterial strains with distinct metal removal efficiency demonstrating the accuracy of the assays 

for lead (A), cadmium (B) and aluminum (C). Metals were quantified in the binding supernatant, in the two washing buffers, 

and in the final bacterial pellet. 
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