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Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to
olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their
specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various
model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the
olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity
is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental condi-
tions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience.
Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available
literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation
is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators
such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be
analyzed.
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Introduction

Many insect species predominantly rely on olfaction for intra-
and interspecific communication and searching food. Olfaction is
of particularly high importance in night- or dim-light active spe-
cies and for social communication as in social insects. The mul-
titude of available olfactory cues in the natural environment com-
bined with limited size of the nervous system and the resulting
neuronal processing capacities render neuronal plasticity and
modulation as major factors to optimize the use of neural sub-
strate (Dukas 2008; Gadenne et al. 2016; Groh and Rössler
2020). However, the complexity of the nervous system can also
set limits for behavioral and ecological plasticity (Bernays 2001).

This finally promotes fitness of an insect in a given ecological
and evolutionary context (Agrawal 2001).

Plasticity in insect olfactory systems occurs at multiple levels,
for example as a function of physiological state, in response to
environmental factors, social interactions, and experience.
Whereas most of the literature on the mechanisms of olfactory
plasticity and modulation in insects concentrated on the central
nervous system (CNS), recent work has also shown modulation
already at the olfactory receptor level within olfactory sensory
neurons (OSNs) on the antennae, for example, as a function of
odor exposure (Tsitoura and Iatrou 2016; Guo et al. 2017;Wicher
2018). Furthermore, modulation of OSN sensitivity due to expe-
rience has been described, for example, in male moths (Guerrieri
et al. 2012) and due to feeding and maturity in female mosquitoes
and blood-feeding bugs (Gadenne et al. 2016 and references there-
in (Davis 1984; Grant and O’Connell 2007; Siju et al. 2008;
Reisenman 2014)). Within the CNS, several levels of plasticity
have been identified. We will summarize here mainly the most
recent results from studies on plasticity and modulation within the
primary and secondary olfactory centers in the brain—the anten-
nal lobes (ALs) and the mushroom bodies (MBs).

Similar to other sensory systems, various mechanisms are
involved in olfactory plasticity, and recent methodological
advances provide increasing access to study these
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mechanisms. At the molecular level, the expression of genes
associated with olfactory reception and genes coding for
neuromodulators and hormones and their receptors can vary
in status- or context-dependent manners (Gadenne et al.
2016). At the cellular level, neuronal elements have been iden-
tified physiologically and anatomically, and various parame-
ters of their activity were monitored to showmodulation (e.g.,
Neupert et al. 2018). New technology allows to detect the
presence of neuromodulators within individual neurons or
small populations of neurons, such as biogenic amines, neu-
ropeptides, and hormones (Ly et al. 2019).

Mechanisms of olfactory plasticity have specifically been
studied in Drosophila melanogaster, due to the available ge-
netic tools. As literature onD. melanogaster has been recently
reviewed (e.g., Sayin et al. 2018; Amin and Lin 2019; Boto
et al. 2020), we concentrate here on other experimental insect
models, mainly moths and social Hymenoptera, with a focus
on their specific ecological context, because a vast amount of
literature is available in these two classical models for olfac-
tory plasticity. We do, however, also include occasional ref-
erences to further insect species such as locusts, blood-feeding
insects, and aphids, because we would like to emphasize and
promote the importance of comparative investigations in this
field. In order to illustrate neuronal mechanisms, we will pro-
vide here an integrative view of olfactory plasticity in a be-
havioral and ecological context emphasizing the importance
of structural neuronal plasticity and neuromodulation in
olfaction.

State-dependent plasticity and modulation

Responses to intra- and interspecific volatile olfactory stimuli can
be modulated as a function of the physiological state. Depending
on the role of an olfactory cue or signal, the age, reproductive or
feeding state, but also the circadian rhythm can influence the
sensitivity of the olfactory system to certain olfactory stimuli.
Such modulation is mostly caused by an interplay between hor-
mones, neuropeptides, and biogenic amines, acting at the periph-
eral or the central olfactory levels (for review see Gadenne et al.
(2016)). As an example, the titer of the biogenic amine serotonin
(5HT) within the AL varies in a circadian fashion in male moths,
which is correlatedwithALneuron and behavioral responsiveness
to sex pheromone or host plant volatiles (Kloppenburg et al. 1999;
Gatellier et al. 2004). However, circadian modulation of olfactory
sensitivity seems to be primarily modulated at the peripheral level
and has been reviewed earlier (Gadenne et al. 2016).

Reproductive state

The reproductive state, i.e., either the mating state or the
capacity to reproduce, has important effects on the re-
sponses to pheromones or volatile host cues. In the male

moth Agrotis ipsilon, behavioral responses to the female-
emitted sex pheromone are inhibited transiently after mat-
ing. This plasticity seems to originate from a decrease in
sensitivity of AL neurons to the sex pheromone, probably
through the implication of ecdysteroids, whereas antennal
detection of the sex pheromone does not change after
mating (for review see Gadenne et al. (2016)). More re-
cently, differences in the occurrence of a few neuropep-
tides, such as insulin-like peptides, have been found be-
tween brains and more specifically ALs of mated and
unmated male A. ipsilon, indicating a potential role in
post-mating sex pheromone response inhibition (Diesner
et al. 2018). In another noctuid moth, Spodoptera
littoralis, behavioral inhibition of male sex pheromone
responses after mating rather originates from modulation
in OSNs (Kromann et al. 2014). In the same species, an
increase in antennal sensitivity to host plant volatiles has
been shown in females after mating (Martel et al. 2009;
Saveer et al. 2012). Mating-dependent plasticity of pe-
ripheral sensitivity to fruit odors and sex pheromones
has also been investigated in different fruit fly species.
In female Drosophila suzukii, mating causes strong up-
and downregulation of olfactory genes within the antenna.
In parallel, female antennae increased their sensitivity to
isoamyl acetate significantly after mating, which is coher-
ent with the attractant role of this compound emitted by
fresh fruit to mated females (Revadi et al. 2015; Crava
et al. 2019). In Ceratitis capitata, sensitivity of antennae
and palps to pheromone components emitted by sexually
mature males, which attract both males and females, de-
creases after mating in both sexes (Sollai et al. 2018).
However, the mechanisms leading to mating-induced
changes in antennal sensitivity are unknown so far. In
the hymenopteran parasitoid wasp Nasonia vitripennis,
females are attracted to a male-emitted sex pheromone,
and the mating-induced lack of behavioral pheromone re-
sponses seems to be mediated by dopamine, as virgin
females injected with dopamine did not respond any more
to the pheromone and mated females injected with a do-
pamine antagonist continued to respond (Lenschow et al.
2018). However, appetitive learning leads to recovery of
sex pheromone attraction in these females (Lenschow
et al. 2018). Concerning changes in olfactory sensitivity
depending on the reproductive state in social insects, very
little information is available. In the ant Harpegnathos
saltator, a reduction in antennal sensitivity to queen-
produced cuticular hydrocarbons, involved in inhibiting
workers from reproduction, has been revealed in female
workers becoming reproductive substitute queens called
gamergates (Ghaninia et al. 2017). However, this repre-
sents a special case within social Hymenoptera that may
be limited to ponerine ants in which mature workers retain
the potential to mate and reproduce.
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Feeding state

The effect of the feeding state on olfactory sensitivity has
mainly been investigated in blood-feeding insects. The ex-
pression of olfactory genes in the antennae and responses of
OSNs are modulated after a blood meal in, e.g., mosquitoes,
tsetse flies, and triatomine bugs. This leads to reduced behav-
ioral responses to host cues, but increased responses to alter-
native signals, such as odors emitted by oviposition sites, or
aggregation pheromones in bugs (e.g., Rinker et al. 2013;
Taparia et al. 2017) (for review see also Gadenne et al.
(2016)). Recently, also a role of neuropeptides in the brain
has been revealed to contribute to feeding-dependent modula-
tion of olfactory sensitivity in blood-feeding and herbivorous
diptera. In the mosquito Aedes aegypti, the abundance of two
peptides within the ALs, short neuropeptide F2 (sNPF-2) and
allatostatin-A-5 (AstA-5), increased 24 and 48 h after a blood
meal and systemic injection of both neuropeptides mimicked
the host-seeking inhibition effect of a blood meal in unfed
females, thus downregulating responses to food odor (Christ
et al. 2017). In the oriental fruit fly,Bactrocera dorsalis, sNPF
has been shown to be involved in feeding state-dependent
antennal sensitivity to a host plant odor, but in this case up-
modulating responses to food odor. When sNPF gene expres-
sion was inhibited via RNAi, the sensitivity to the odor de-
creased in starved flies, which normally exhibit a high sensi-
tivity (Jiang et al. 2017). In D. melanogaster, sNPF also con-
tributes to starving-induced improved responses to food odor
at the receptor neuron level and changes odor representation in
the AL, resulting in more robust food-search behavior (Root
et al. 2011). A more general nutritional effect on olfactory
sensitivity has been identified in D. melanogaster: when fed
with a high fat diet, antennal sensitivity to various odors de-
creased. This was correlated with a decreased expression of
the olfactory co-receptor Orco (Jung et al. 2018). A big chal-
lenge now is to unravel how peripheral and central nervous
modulation interact in feeding state-dependent changes of ol-
factory sensitivity.

Plasticity and modulation related to age
and environmental conditions
during development

Environmental conditions during development in
non-social insects

Several insect species change their lifestyle and phenotype
depend ing on envi ronmenta l condi t ions dur ing
postembryonic development and accordingly modify their ol-
factory communication skills. Locusts, for example, strongly
change their lifestyle as a function of population densities
during development. When densities exceed a certain

threshold, the insects change from a solitary to a gregarious
lifestyle (Simpson and Sword 2008). This phase change
causes not only behavioral but also morphological and phys-
iological modifications. Among others, the olfactory system is
strongly modified: gregarious locusts have less olfactory sen-
silla on the antennae than solitary locusts, along with a lower
discrimination ability for food sources (Greenwood and
Chapman 1984; Ochieng et al. 1998). This correlates with a
smaller relative size of the ALs in relation to the volume of the
entire brain and to the midbrain in gregarious compared to
solitary locusts, even though the total brain size is much larger
in gregarious locusts (Ott and Rogers 2010). Whereas the
anatomy of AL projection neurons did not show any obvious
differences between the two phases, solitary adult females
possessed a higher proportion of AL neurons responding to
two components of the egg-laying aggregation pheromone
(Anton et al. 2002). In addition, AL neurons in solitary third
instar nymphs respondedmore frequently to phenylacetonitril,
the major component of the adult aggregation pheromone
(Ignell et al. 1999). Interestingly, opposing attraction
(gregarious) and repulsion (solitary) behavior of the aggrega-
tion pheromone are mediated by octopamine and tyramine,
respectively (Ma et al. 2015). Phase switch in locusts does
not only modify the olfactory system and its sensitivity but
also influences associative food odor learning. Gregarious lo-
custs do not acquire new olfactory aversions, contrary to sol-
itary locusts (Simoes et al. 2016).

Many aphid species change their dispersal capacities by
producing winged morphs when population density increases,
plant quality decreases, or stress factors such as enemy attacks
occur (Braendle et al. 2006). The formation of wings in par-
thenogenetic aphid females improves their dispersal capacities
and allows them to colonize new habitats more easily than
wingless females. It is known for several aphid species that
the sensory equipment of winged individuals is more elabo-
rate than that of wingless aphids: besides differences in eye
morphology (Ishikawa and Miura 2007; Kollmann et al.
2010), they possess longer antennae and more olfactory or-
gans, so-called rhinaria, on their antennae (Shambaugh et al.
1978; Miyazaki 1987). A recent study has found evidence that
also primary sensory centers in the brain, i.e., visual neuropils
and ALs, are larger in winged females than in wingless indi-
viduals of the pea aphid, Acyrthosiphon pisum (Gadenne et al.
2019). The available genome for this aphid species should
allow in the future to pinpoint neuromodulators and their re-
ceptors involved in the structural (and probably physiological)
changes between winged and wingless females.

Variations of postembryonic brood care in social
insects

Cooperative brood care is a hallmark feature of insect socie-
ties, and differential conditions during postembryonic brood
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development may affect the adult phenotype (Weaver 1957).
For example, in the honeybee, the reproductive status and
development of the female castes (queen-worker
polymorphism) are induced by differential larval feeding and
mediated via an epigenetic mechanism involving royal jelly
produced in the hypopharyngeal glands (Kucharski et al.
2008). Queens develop from fertilized eggs that are genetical-
ly not different from those that develop into workers, but they
develop faster, are larger, live much longer, and differ mark-
edly in their adult behavior, including olfactory-guided behav-
iors. For example, honeybee queens do not respond to their
own mandibular pheromone bouquet, and in sterile workers,
the response to the queen pheromone is both age- and stage-
dependent (Vergoz et al. 2009). Interestingly, the effects of
queen mandibular pheromone are mediated by a single com-
ponent (homovanillyl alcohol) that has high chemical similar-
ity with dopamine and acts on brain dopamine receptors that
modulate aversive olfactory learning (Vergoz et al. 2009). The
postembryonic pupal development in the two female castes
shows marked differences. The ALs develop much faster
(by about 4 days) in queens compared to workers, and the
same applies to synaptogenesis in olfactory sub-regions with-
in secondary olfactory centers in the MBs (Groh and Rössler
2011). Whereas the number of olfactory glomeruli in the adult
AL is only slightly smaller in queens, the spatial arrangement
and sizes of individual glomeruli show marked differences in
queens compared to workers. Differences in the AL and MB
phenotypes are even more pronounced in ants comprising
permanent worker castes, especially in leaf-cutting ants
(Kelber et al. 2010; Groh et al. 2014). For example, in Atta
vollenweideri, the development of trail pheromone–specific
macroglomeruli is worker size-dependent, and the overall
number of glomeruli in a specific AL glomerular cluster (T4
cluster) may differ by more than 50 glomeruli in minor vs.
major workers (Kelber et al. 2010). Whether this marked AL
polyphenism in the female worker castes is a sole effect of
differential feeding still needs to be investigated. Whereas
minor workers engage as fungus gardeners inside the nest,
large workers leave the nest as foragers and search for profit-
able food sources using primarily olfactory cues.
Consequently, the behavioral responses to trail pheromone
were also shown to be worker size-dependent (Kleineidam
et al. 2007).

In addition to controlled feeding of larvae, many social
insect species provide controlled climate conditions (reviewed
by, e.g., Seeley and Heinrich (1981)), which have conse-
quences for metamorphic development including the forma-
tion of olfactory centers in the brain. Experimental manipula-
tions in the honeybee have shown that accurate temperature
control is required for proper development of olfactory sub-
regions in the MBs (Groh et al. 2004, 2006). Slight deviations
(1 °C) from the optimal temperature range (36 °C ± 0.5 °C)
lead to deficits in synaptic maturation in olfactory input

regions of the MBs. The resulting synaptic changes correlate
with inferior olfactory learning and memory capabilities or
changes in the timing of foraging (Tautz et al. 2003; Jones
et al. 2005; Becher et al. 2009). Furthermore, bees raised at
lower temperatures performed less well in associative olfacto-
ry memory tasks, and they differed in dance-communication
performance and undertaking behavior compared to bees
raised at higher temperatures within the range of naturally
occurring temperatures in the brood area. Similarly, in
Camponotus ants, workers control the temperature of pupae
to specific temperature ranges during postembryonic meta-
morphic development by brood carrying behavior. Ant nurses
respond to changes in the ambient temperature by placing the
brood to nest compartments with the appropriate temperatures
following circadian rhythms (Roces and Núñez 1989;
Falibene et al. 2016). Also in ants, suboptimal temperature
regimes affect proper development of olfactory synapses in
the MBs (Falibene et al. 2016). Most interestingly, ants that
had experienced diverging brood temperature regimes exhibit
differences in their stimulus response thresholds for adult
brood carrying behavior, most likely due to changes in senso-
ry thresholds (Weidenmüller et al. 2009). Taken together, dif-
ferential environmental influences caused by variations of
brood care conditions during postembryonic metamorphic de-
velopment affect olfactory circuits in the brain and have con-
sequences for a range of adult olfaction-related behaviors. The
above forms of plasticity, therefore, represent interesting cases
of metaplasticity (Abraham 2008), meaning that olfactory
plasticity induced by brood care conditions affects adult be-
havioral plasticity in social insect colonies. However, how
exactly changes in olfactory circuits are causally linked to
changes in complex olfactory behavior (both at the individual
and colony levels) still requires further investigations.

Adult maturation and polyethism

There is ample evidence that early adult development modu-
lates behavioral, peripheral, and central nervous olfactory sen-
sitivity to pheromones in various insects, but also to non-
pheromonal odors. During early adult life, increasing antennal
responses to pheromones or kairomones have been shown to
correlate, for example, with increased odorant receptor ex-
pression in mosquitoes or increased hormone receptor expres-
sion in a noctuid moth (Bigot et al. 2012; Bohbot et al. 2013).
At the CNS level, the age-dependent modulation of attraction
behavior and AL neuron sensitivity to sex or aggregation
pheromones in moths and locusts has been shown to depend,
among others, on juvenile hormone titers (for review see
Gadenne et al. (2016)). In various insects, morphological
changes have been observed in primary and secondary olfac-
tory centers associated with age-dependent increases in olfac-
tory sensitivity to specific cues or changes in olfactory learn-
ing and memory performance (e.g., Huetteroth and

152 Cell Tissue Res (2021) 383:149–164



Schachtner 2005; Tomé et al. 2014). These age-dependent
changes in olfactory sensitivity, at least in moths, have been
shown to be independent of experience.

Adult behavioral maturation and the associated changes in
sensory experience affect the olfactory system in social in-
sects. Various studies revealed substantial effects of sensory
experience on the development of the AL particularly mor-
phological aspects of individual olfactory glomeruli and their
responses to odorants in the AL of honeybees (Winnington
et al. 1996; Jernigan et al. 2020). Calcium-imaging experi-
ments suggest that the odor responsiveness of AL glomeruli
in honeybee workers increases during the first days of adult
life (Wang et al. 2005). Studies in D. melanogaster indicate
that activity-related volume increases in olfactory glomeruli
are mainly caused by an increase in synaptic density within
the glomeruli, most likely mediated via local interneurons
(Devaud et al. 2003; Sachse et al. 2007). Some of the related
changes in olfactory circuits were assigned to age, but the
temporal flexibility of task-related changes in adult behavior
(adult polyethism) adds another level of complexity of olfac-
tory plasticity in social insects that needs to be studied in more
detail in the future.

In addition to the AL, robust structural changes associated
with adult behavioral maturation were observed in olfactory
input regions of the MBs, as reported by several studies in
social Hymenoptera (e.g., honeybee (Withers et al. 1993;
Durst et al. 1994; Fahrbach et al. 1998; Groh et al. 2012;
Scholl et al. 2014; Muenz et al. 2015), ants (Gronenberg
et al. 1996; Kühn-Bühlmann and Wehner 2006; Stieb et al.
2010, 2012)). The cellular processes underlying these volume
changes involve massive outgrowth of Kenyon cell (KC) den-
drites and, at the same time, pruning of presynaptic boutons
within microglomerular synaptic complexes (Farris et al.
2001; Stieb et al. 2010; Groh et al. 2012; Muenz et al.
2015). Dendritic expansion is the main cause for the volume
increase in the MB calyx during the transition from nursing to
foraging. The overall result of this structural plasticity is an
increase in the olfactory projection neuron to KC synaptic
divergence of olfactory circuits by about 33% (the number
of KC dendritic profiles forming synapses with one
p ro j e c t i on neu ron bou ton ; Groh e t a l . 2012 ) .
Pharmacological stimulation suggests that the underlying pro-
cesses are promoted by activity in muscarinic cholinergic
transmission during foraging experience (Ismail et al. 2006).
Sensory exposure was also shown to play an important role in
this olfactory plasticity in leaf-cutting ants (Falibene et al.
2015). A combined anatomical and patch-clamp study in
D. melanogaster confirmed that structural plasticity of olfac-
tory MB input synapses is induced by sensory activation
(Kremer et al. 2010). Interestingly, aged honeybee queens
exhibit an increase in the relation of olfactory versus visual
input synapses in the MB calyx (Groh et al. 2006). More
recent studies revealed that social experience influences the

number of MB olfactory input synapses in worker bees
(Cabirol et al. 2017, 2018). However, a major problem with
manipulations of the social environment is that too many var-
iables (e.g., pheromonal, tactile, visual) may change at the
same time and, in most cases, are difficult to control. This
problem, for example, became evident while studying the in-
fluence of the primer pheromone ethyl oleate on maturation of
the olfactory circuits in the honeybee brain (Muenz et al.
2015). Ethyl oleate is present at high concentrations on the
cuticle of experienced foragers, sensed by OSNs on the anten-
nae of nurse bees, processed in the AL (Muenz et al. 2012),
and finally causes a delay in adult behavioral maturation
(Leoncini et al. 2004). Future cohort experiments using more
tightly controlled sensory manipulations and high-resolution
anatomical and behavioral analyses are needed to dissect the
changes in olfactory circuits caused by differences in sensory
or social experience in order to find the mechanisms how they
affect adult olfactory behavior (Groh and Rössler 2020).
Winter bees (the last generation of bees in fall) might be a
valuable model for studying adult olfactory plasticity in the
future, as they live much longer than summer bees and start to
resume foraging in the next spring after staying in the hive
during the entire winter. The winter bee model may help to
dissect more clearly effects of age and sensory experience.
The molecular mechanisms underlying structural neuronal
plasticity of olfactory circuits are still unknown. A gene ex-
pression study (Becker et al. 2016) revealed several genes that
might be associated with epigenetic regulation of neuronal
plasticity during behavioral maturation of the honeybee, and
GTPase activities were correlated with the nurse-forager tran-
sition (Dobrin and Fahrbach 2012). However, in both cases, it
remained unclear how the molecular changes causally link to
structural plasticity in olfactory circuits, which opens an im-
portant field for future studies. Recent studies on changes in
the activity of immediate early genes following odorant expo-
sure are highly promising in this respect (reviewed in
Sommerlandt et al. (2019)).

The rather drastic interior-forager transition in social in-
sects correlates with changes in diverse neuromodulators and
hormones (Hamilton et al. 2016). For example, variations
were found in biogenic amine levels (reviewed in Kamhi
and Traniello (2013)), juvenile hormone (Robinson 1987;
Bloch et al. 2002; Dolezal et al. 2012), and vitellogenin
(e.g., Amdam and Omholt 2003). However, the causal links
of these modulators and hormones, especially how they affect
specific sensory pathways, including the olfactory pathways,
and/or individual behavioral modules, are still discussed con-
troversially (reviewed in Hamilton et al. (2016)). In recent
years, studies on social Hymenoptera began to focus on the
large and diverse group of neuropeptides as potential modu-
lators of behavioral pattern transitions (Takeuchi et al. 2003;
Brockmann et al. 2009; Pratavieira et al. 2014; Schmitt et al.
2015, 2017; Han et al. 2015; Gospocic et al. 2017). For
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example, in the desert ant Cataglyphis fortis, tachykinin was
shown to express age- and behavioral state-related changes
associated with task transitions (Schmitt et al. 2017). In the
ponerine ant Harpegnathos saltator, corazonin was identified
as an important driver of behavioral changes (e.g., worker-
specific hunting behavior) associated with the transition of
female workers into reproductive substitute queens
(Gospocic et al. 2017). Neuropeptides have a specifically high
potential to mediate a variety of specific or highly localized
modulatory actions on neuronal circuits associated with dif-
ferent behavioral patterns, as they represent a very large and
diverse group of messenger molecules that may act both as
neurohormones or neuromodulators (e.g., reviewed by
Schoofs et al. (2017); Nässel and Zandawala (2019)). Future
localization analyses of stage-specific changes in the spatial
distribution of individual neuropeptides within primary and
secondary olfactory centers combined with functional analy-
ses using manipulation experiments appear highly promising
in understanding the role of neuropeptides in age- and stage-
specific plasticity of olfactory behaviors and circuits.

Context-dependent plasticity andmodulation

Behavioral responses to olfactory signals are modulated by
various environmental factors, including different sensory
cues emitted by conspecifics, for example, social interactions
(see following paragraphs), or other organisms, as well as
abiotic factors, such as climate, and pollutants. Such modula-
tion and plasticity can occur at different levels within the ol-
factory system, starting from the periphery in OSNs, and, in
many cases, results in changes within the AL, and especially
the MBs (Fig. 1).

Immediate sensory environment

The presence of different sensory stimuli in the immediate
environment of an insect can alter responses to a given olfac-
tory stimulus through interactions of the odorants at the pe-
ripheral and/or central level. Even though this type of interac-
tion needs not necessarily fall into the category of modulation,
we would like to include them here, because they might inter-
fere or provide the basis for some cases of experience-
dependent plasticity. A prominent example is the interaction
between sex pheromones and plant-emitted volatiles in male
moths. A flower volatile, heptanal, for example, reduces re-
sponses to the sex pheromone within the macroglomerular
complex of the AL in the noctuid moth A. ipsilon both at the
input and output level (Deisig et al. 2012) but also results in an
improved temporal resolution of pheromone pulses by AL
output neurons (Chaffiol et al. 2014). When the two odors
are presented with a time shift, the responses of AL neurons
to the sex pheromone are delayed as compared to a

simultaneous application (Dupuy et al. 2017), which corre-
lates with delayed behavioral responses. In another noctuid
moth, Helicoverpa armigera, calcium imaging revealed a re-
duced increase of intracellular calcium levels when stimulated
with a blend of sex pheromone and complex plant odors as
compared to individual odor application (Ian et al. 2017). On
the other hand, synergistic responses to a mixture of sex pher-
omone and a volatile originating from the larval host plant,
pear ester, were reported in the AL of the codling moth Cydia
pomonella and well correlated with behavioral responses
(Trona et al. 2013). In the noctuid moth S. littoralis, host plant
volatiles enhance the selectivity for conspecific pheromone
blends (Borrero-Echeverry et al. 2018), but nothing is known
so far about the underlying neural mechanisms.

Non-host volatiles or herbivore feeding-induced volatiles
have been shown in several insects to reduce responses to
pheromones. One example is the response to aggregation
pheromones in bark beetles, which is inhibited by non-host
volatiles or volatiles emitted by attacked host trees, originating
from inhibition within the OSNs on the antennae (Zhang et al.
1999; Jactel et al. 2001; Andersson et al. 2010). In several
moth species, non-host plant volatiles also modulate male
sex pheromone responses, but again, interactions have only
been investigated at the antennal level (Party et al. 2009, 2013;
Faraone et al. 2013; Binyameen et al. 2013; Hatano et al.
2015; Wang et al. 2016). Signals emitted by herbivore-
attacked plants can also modulate the attractiveness of host
plants for female moths searching for an oviposition site.
Females of the tobacco hawk moth, Manduca sexta, prefer
undamaged host plants above herbivore-damaged plants, in
which enhanced emission of (−) linalool renders the signal
less attractive (Reisenman et al. 2013). This correlates with
inhibitory interactions between two AL glomeruli specific for
the two linalool enantiomers in female M. sexta (Reisenman
2005). How exactly odor responses are modulated in the pres-
ence of other volatiles at the different levels of the olfactory
pathway is still a matter of debate. In the peripheral system,
direct chemical interactions, competition for binding sites, and
interactions within co-localized neurons might be possible
(Renou 2014). At the CNS level, additional interactions via
separate input channels have to be considered (Renou and
Anton 2020).

There is also evidence for the modulation of sex phero-
mone responses within the AL by mechanical stimulation of
the antennae in the noctuid moth S. littoralis with a clean air
puff (Han et al. 2005). This indicates that modulation of ol-
factory responses occurs as a function of antennal
mechanosensory detection, which can result from air move-
ments in the environment or from feedback of flight activity.
Auditory and olfactory inputs also interact in the case of sex
pheromone responses in moths when predatory bats emit ul-
trasound signals. Behavioral responses to the ultrasound sig-
nals depend on the quality of the sex pheromone stimulus
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(Skals et al. 2005). Other sensory modalities, such as vision
and taste, are also known to modulate/modify olfactory-
guided behavior, but these interactions rather occur within
secondary olfactory centers such as the MBs, for example,
as shown in moths and honeybees (Balkenius and Balkenius
2016; Strube-Bloss and Rössler 2018).

Abiotic environmental factors

A major anthropogenic factor influencing the insect olfactory
system are insecticides remaining in the environment for a
long time. Especially sublethal doses of neonicotinoid insec-
ticides were shown to have negative effects on pollinating
insects, such as honeybees and bumblebees, including de-
creased behavioral responses to attractive olfactory cues and

impaired short-term memory, probably due to increased ex-
pression of nicotinic acetylcholine receptor expression and
increased neural sensitivity to acetylcholine (Desneux et al.
2007; Wright et al. 2015; Cabirol and Haase 2019).
Opposite to decreased olfactory responses, sugar sensitivity
in honeybees increased after treatments with sublethal doses
of the neonicotinoid acetamiprid (El Hassani et al. 2008).
Inversely, in the noctuid moth A. ipsilon, different sublethal
doses of the neonicotinoid insecticide clothianidin were
shown to up- or downregulate the sensitivity of AL neurons
to the sex pheromone, depending on the dose, and in parallel
increased or decreased the behavioral response probability to
the sex pheromone (Rabhi et al. 2014, 2016). In another noc-
tuid moth, S. littoralis, peripheral and behavioral modulation
of sex pheromone responses was caused by sublethal doses of

Fig. 1 Schematic view of the insect olfactory pathway—from the sensory
structures on the antenna to primary (antennal lobe, AL) and secondary
olfactory centers (mushroom body, MB and lateral horn, LH) in the brain,
indicating factors inducing plasticity and modulation at various process-
ing levels. The blue asterisks indicate sites of action of neuromodulators
(biogenic amines, neuropeptides) or hormones and sites for associated
physiological and molecular changes (spontaneous activity, response
threshold, changes in the expression of odorant receptors, changes in
the expression of receptors for modulators or hormones). Red asterisks

indicate sites that have been shown to express structural plasticity in
olfactory neuronal circuits (structural synaptic changes, changes in
axonal/dendritic structure and connectivity, neuropil volume changes).
The blue pathway depicts influences of ascending and protocerebral neu-
ronal systems mediating associative influences (e.g., octopaminergic, do-
paminergic systems). G, olfactory glomerulus; KC, Kenyon cell; LN,
local interneuron; OSN, olfactory sensory neurons; MBON, mushroom
body output neuron; PN, projection neuron
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another insecticide, deltamethrin, a widely used pyrethroid
(Lalouette et al. 2016). So far, it is, however, not known if
the observed modulatory effects of insecticides are caused
directly by receptor-ligand interactions, or if insecticides cause
modifications of neuromodulator levels or expression of their
receptors (Abrieux et al. 2013, 2014, 2016). In addition, py-
rethroid insecticides were shown to disturb the wiring of ol-
factory glomeruli during postembryonic metamorphic devel-
opment in M. sexta (Wegerhoff et al. 2001).

Olfactory plasticity involving learning
and memory

Non-associative experience

Experience has long been known to modify behavioral re-
sponses to olfactory stimuli, and the neuronal and molecular
mechanisms underlying these modifications have been inves-
tigated for many years. Here we will review only recent data
on the role of physiological mechanisms and anatomical long-
term modifications that occur within the olfactory pathway as
a consequence of different forms of learning in insects. As an
extreme case, experience can be acquired during early devel-
opment and influence larval or adult behavior, or, more fre-
quently, during the adult stage that may lead to long-lasting
adaptive changes in olfactory behavior. Even though there are
indications, that larval host plant experience in moths modu-
lates female oviposition behavior and even male partner
choice, so far the neural substrate concerning the transfer of
memories from the larval to the adult stage remains largely
speculative (Anderson and Anton 2014).

Simple forms of non-associative experience modulating
olfactory-guided behavior, such as sensitization and habitua-
tion, have been revealed in many insects. Nevertheless, very
little is known about the neural mechanisms underlying these
forms of learning. Brief exposure to a behaviorally relevant
dose of the sex pheromone in the male moth S. littoralis, on
the other hand, has been shown to modify the expression of an
odorant-binding protein in the antenna and leads to stronger
subsequent OSN responses to the same signal (Guerrieri et al.
2012). However, as physiological and anatomical changes
occur in the AL, too, upon pheromone exposure, we cannot
exclude a feedback to the peripheral system causing this form
of sensitization (Anderson et al. 2007; Guerrieri et al. 2012).
In addition, brief exposure to various behaviorally active sen-
sory signals, including predator sound and different olfactory
stimuli, improved behavioral responses and increased the sen-
sitivity of neurons within the AL to the sex pheromone, rather
than in the antennae in the same moth species (Anton et al.
2011; Minoli et al. 2012). At the same time, the volume of the
macroglomerular complex (MGC) glomerulus, processing in-
formation on the major sex pheromone component, and of the

MB calyces increased in size after brief pre-exposure to these
same stimuli (Guerrieri et al. 2012; Anton et al. 2015).
Attractive and repellent gustatory stimuli also improved sub-
sequent behavioral responses to the sex pheromone, but nei-
ther modified AL neuron responses to the sex pheromone nor
the volume of MGC glomeruli or the MB calyces, indicating
that the behavioral effects might originate from neural modi-
fications in higher brain centers (Minoli et al. 2012; Anton
et al. 2015).

Associative learning and long-term olfactory memory

Associative learning is very common in a large variety of
insects. As associative learning and memory represent a very
large and rapidly expanding research field, we here mostly
focus on plasticity associated with stable olfactory long-term
memory (LTM), as it has the potential to affect insect behavior
over extended time. The wealth of literature in the field of
associa t ive learn ing and memory, especia l ly in
D. melanogaster, is beyond the scope of this review (for re-
cent reviews, see, e.g., Kahsai and Zars (2011); Guven-Ozkan
and Davis (2014); Sugie et al. (2018); Kacsoh et al. (2019);
Boto et al. (2020)). Even though behavioral and molecular
studies of learning in parasitoid wasps are numerous (for re-
view see Hoedjes et al. (2011); Smid and Vet (2016)), neuro-
biological studies besides D. melanogaster have largely fo-
cused on social insects, which shall be the main topic here.
Nevertheless, associative olfactory learning has been evi-
denced in various other insects, such as moths, locusts,
crickets, and parasitic wasps (e.g., Fan et al. (1997); Hartlieb
et al. (1999); Daly and Smith (2000); Meiners et al. (2003);
Skiri et al. (2005); Costa et al. (2010); Simoes et al. (2016)),
but the underlying neurobiological mechanisms are unex-
plored except for a few rare cases (Cayre et al. 2007;
Cassenaer and Laurent 2012). Among the social insects, the
honeybee has proven a very valuable model for the study of
plasticity related to long-term memory (> 24 h) (e.g., Menzel
(1999); Müller (2000); Menzel and Giurfa (2001); Menzel
et al. (2007)). Experience-related changes in the activity of
glomeruli were described in the AL of the honeybee using
calcium-imaging techniques indicating that changes in olfac-
tory responses persist over extended time periods after asso-
ciative learning at this early sensory processing level (Rath
et al. 2011). The robust and well-studied proboscis extension
response is a favorable behavioral paradigm for classical con-
ditioning to study olfactory LTM in detail. Using sequential
associative conditioning, bees can be trained to memorize the
association between a sugar reward and an odor over extended
time (> 3 days up to weeks, months, or lifetime). The reward
or punishment pathways for appetitive and aversive olfactory
learning have been linked to ascending and brain
octopaminergic and dopaminergic modulatory systems—
mainly via their influences on odor responses at the level of
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the MBs, but also at the levels of the AL and lateral horn (LH)
(Mauelshagen 1993; Hammer and Menzel 1995; Okada et al.
2007; Tedjakumala et al. 2014; Jarriault et al. 2018). Whereas
the majority of modifications due to associative LTM are lo-
calized at the CNS level, physiological plasticity associated
with LTM has nevertheless also been evidenced at the anten-
nal level. Expression of olfactory receptors known to bind the
learned odor compounds was significantly downregulated af-
ter associative learning, and electroantennogram responses
were significantly reduced in honeybees which had formed a
LTM, compared to control bees (Claudianos et al. 2014). The
feedback mechanism towards the CNS, however, remained
unclear in this case. At the CNS level, the formation of a stable
olfactory LTM was shown to be transcription-dependent and
to involve structural synaptic changes in olfactory circuits at
the input of the MBs (Hourcade et al. 2010). Only bees that
had received paired stimulation of the conditioned (odor
pulse, CS) and unconditioned stimulus (sugar water, US),
and that were not injected with the transcription inhibitor ac-
tinomycin D (ActD) after training, had retained a stable LTM
when they were tested with the CS after 3 days. Most inter-
estingly, stable LTM formation after 3 days was associated
with an increase in synaptic complexes within olfactory com-
partments of the MB calyces. This effect was absent in neigh-
boring visual input regions. Naïve bees, i.e., bees that had
received unpaired stimulation and paired stimulated bees that
had received ActD, were unable of memory retrieval and did
not show any changes in synaptic densities. The authors con-
clude that growth of new synapses may be involved in stable
LTM in the insect brain, similar to what has been found in the
mammalian brain (Abraham et al. 2019). Compared with syn-
aptic pruning following sensory exposure as described above,
associative olfactory learning and the formation of
transcription-dependent stable LTM resulted in a volume-
independent increase of synaptic complexes in olfactory com-
partments of the honey bee MBs (Groh and Rössler 2020).
This suggests that the increases in densities of synaptic
boutons after associative LTM formation may represent a
form of learning-related (Hebbian) structural plasticity in
MB-calyx microcircuits. Transcription-independent memo-
ries, such as early long-term memory, did not lead to any
detectable structural changes in olfactory circuits. Multiple-
trial conditioning leading to LTM has previously been shown
to depend on intracellular calcium levels, which indicates a
role of calcium in structural plasticity associated with stable
LTM (Perisse et al. 2009). In the same line (Scholl et al. 2015),
using RNAi knockdown and pharmacological manipulation
in the MBs showed that CaMKII is required for the formation
of both early and late olfactory LTM, indicating that the
calcium-dependent “learning protein” might be involved in
triggering structural synaptic plasticity. The above studies
suggest that olfactory LTM is associated with structural
changes in olfactory circuits in the MBs. However, we have

to keep in mind that structural changes in olfactory synaptic
circuits themselves may be part of a memory trace, but wheth-
er they are actually required for memory storage and retrieval
remains to be determined.

A similar effect was observed in leaf-cutting ants, in that
case after aversive olfactory learning of odors associated with
unsuitable plant material for cultivating the underground sym-
biotic fungus maintained by the ants (Falibene et al. 2015).
The formation of an aversive olfactory LTM leads to an in-
crease of the synaptic densities in olfactory (not visual) cir-
cuits of the MBs, whereas pure sensory exposure resulted in
synaptic pruning. Whereas the increase of synaptic boutons
may also represent a form of Hebbian plasticity, pruning of
synapses after pure sensory exposure may lead to adjustments
in MB circuits resulting in homeostatic regulation to a drasti-
cally changing olfactory sensory input.

Physiological access to plasticity of olfactory circuits in the
MBs is sparse, except for few calcium-imaging studies sug-
gesting physiological plasticity at the olfactory projection
neuron-to-KC synapses and electrophysiological recordings
revealing spike-timing-dependent plasticity at mushroom
body output neuron synapses (Faber et al. 1999; Szyszka
et al. 2008; Cassenaer and Laurent 2012). Learning-related
olfactory plasticity was also revealed by intracellular record-
ings and calcium imaging of GABAergic neurons in the hon-
eybee forming recurrent circuits from the MB output to the
input (Grünewald 1999; Haenicke et al. 2018). Similarly, re-
cordings revealed olfactory plasticity in another type of MB
extrinsic neurons (Haehnel and Menzel 2012). However, as
intracellular recordings and calcium imaging are limited to
short-term recording times, it is difficult or rather impossible
to monitor changes over extended periods, for example, after
associative conditioning.More recent studies employing long-
term recordings (over several hours to days) of MB extrinsic
or MB output neurons via multiple thin wire tetrodes emerged
as a feasible approach to monitor learning- and memory-
related long-term changes in olfactory circuits. In the honey-
bee, multi-unit recordings can even be combined with olfac-
tory conditioning experiments using the proboscis extension
response (Strube-Bloss et al. 2012). This technique also opens
up possibilities to look into multimodal (olfactory-visual) in-
teractions and their role in context-specific influences on ol-
factory perception (Strube-Bloss and Rössler 2018).

Outlook

Amajor conclusion from previous studies is that plasticity and
modulation occur at all levels of the insect olfactory pathway.
Whereas some drivers of plasticity like internal programs,
age- and status-/stage-specific causes of plasticity, seem to
act at both peripheral and central levels, experience-
dependent plasticity like learning and memory as well as
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multimodal interactions preferentially, but not exclusively,
occur at higher central levels, particularly the MB. The mech-
anisms by which sensory and modulatory influences target the
different levels of the olfactory pathway are comparably well
understood for learning and memory in the MBs (especially
from work in D. melanogaster and the honeybee on dopami-
nergic or octopaminergic modulation). Much less, however, is
known for other modes of plasticity including bottom-up and
top-down influences of olfactory memory. This clearly needs
more intense investigations in the future, for example, efforts
to understand distributed forms of plasticity and to identify the
major neuromodulators, for example, within the large family
of neuropeptides. Furthermore, we need to find causal links
between changes in gene expression or epigenetic regulation,
messenger molecules, and their action on identified neuronal
circuits all the way up to how plasticity in these circuits mod-
ulates behavior. In addition, we need more information on
local modulatory interactions, such as between different olfac-
tory glomeruli in the AL, recurrent pathways within the MBs,
or interactions (bottom up and top down) between primary
and secondary olfactory centers (MB, LH, and AL). In that
respect, MB output neurons (MBONs) might play a key role
in mediating such interactions. Integrative and multidisciplin-
ary approaches at different levels are necessary to fully under-
stand the mechanisms underlying age-, status-, and state-
specific changes in olfactory processing and perception.

Another important perspective is to investigate the role of
multimodal interactions, aiming towards understanding multi-
sensory, context-dependent plasticity influencing olfactory per-
ception. Here the role of the MBs has been highlighted, but the
function of other protocerebral neuropils, like the function and
potential interactions with lateral horn neurons, is still largely
unexplored in most insects. Recent advances in high-resolution
insect neuronal brain atlases that started in D. melanogaster
(Dolan et al. 2019) will help to explore plasticity in these brain
areas. The potential role of the lateral horn in memory formation
should be explored in future studies, as another recent study in
D. melanogaster already showed that specifically context-
dependent LTM appears to be mediated by lateral horn neurons
after only single trial conditioning (Zhao et al. 2019).

In evolutionary terms, variations in olfactory plasticity between
different insect species provide a promising source of knowledge
to understand their efficient adaptation to the environment. Insects
represent by far the most abundant group of animal species with
highly diverse lifestyles. Because of this rich species diversity and
the multitude of evolutionary adaptations across insect taxa, it will
be most important to promote comparative research on plasticity
in the olfactory system of diverse insect species. This includes
classical model insects like D. melanogaster, using the powerful
geneticmanipulations available, but equally important, non-model
insect species should be investigated to reveal insight into novel
modes of plasticity in their olfactory systems and behaviors.
Further investigations on the two focus groups of this review,

moths and social Hymenoptera, with rich knowledge on their
olfactory systems, behaviors, and their plasticity, are specifically
important from an applied point of view, because they include
both important pest species, but also beneficial (pollinator) species.
Understanding olfactory plasticity in these insects will largely
contribute to efforts of environmentally acceptable control of pest
insects and to improve protection of beneficial species. To study
non-model insects, novel tools likeCRISPR/Cas9manipulation of
gene expression already started to become very helpful.
Comparative mechanistic approaches are highly important in fu-
ture research aimed at understanding the role of olfactory plasticity
in the dynamics of adaptation of insect species under global
change. Pre-adaptations for high levels of olfactory plasticity
may allow speciesmore easily to invade newhabitats in the course
of climate change. Olfactory plasticity is also an important feature
from an ecological point of view. We should investigate how
different lifestyles and interactionswithin trophic networks as well
as with the abiotic environment influence plasticity. Studies on the
mechanistic nature and role of such differences between closely
and distantly related insect species with similar or different life-
styles, habitat preferences, and olfactory behaviors provide a rich
ground for future comparative research on the causes and conse-
quences of olfactory plasticity.

There is still a long way to go until we fully understand the
powerful mechanisms and influences of olfactory plasticity
and modulation on insect behavior and their ecological con-
sequences. Both the experimental accessibility and rich diver-
sity of insects clearly promise exciting future advances in this
important field of research.
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