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Abstract 

Background: In the last two decades, recurrent epizootics of bluetongue virus and Schmallenberg virus have been 
reported in the western Palearctic region. These viruses affect domestic cattle, sheep, goats and wild ruminants and 
are transmitted by native hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae). Culicoides dis-
persal is known to be stratified, i.e. due to a combination of dispersal processes occurring actively at short distances 
and passively or semi-actively at long distances, allowing individuals to jump hundreds of kilometers.

Methods: Here, we aim to identify the environmental factors that promote or limit gene flow of Culicoides obsoletus, 
an abundant and widespread vector species in Europe, using an innovative framework integrating spatial, population 
genetics and statistical approaches. A total of 348 individuals were sampled in 46 sites in France and were genotyped 
using 13 newly designed microsatellite markers.

Results: We found low genetic differentiation and a weak population structure for C. obsoletus across the country. 
Using three complementary inter-individual genetic distances, we did not detect any significant isolation by distance, 
but did detect significant anisotropic isolation by distance on a north-south axis. We employed a multiple regression 
on distance matrices approach to investigate the correlation between genetic and environmental distances. Among 
all the environmental factors that were tested, only cattle density seems to have an impact on C. obsoletus gene flow.

Conclusions: The high dispersal capacity of C. obsoletus over land found in the present study calls for a re-evaluation 
of the impact of Culicoides on virus dispersal, and highlights the urgent need to better integrate molecular, spatial and 
statistical information to guide vector-borne disease control.
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Background
During a vector-borne disease outbreak, a precise 
understanding of the dispersal capacity of the vector 
species is key to implementing appropriate control strat-
egies in order to limit the spread of the disease. Dipteran 

dispersal is known to be impacted by the composition 
and configuration of the landscape. When the dispersal 
of an organism is favored by a landscape characteristic 
(“environmental factor”) the latter can be categorized as 
a conductance factor [1]. On the contrary, when dispersal 
is limited by a landscape characteristic, the latter can be 
categorized as a resistance factor [1, 2]. However, some 
types of dispersal allow organisms to overcome resistance 
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factors, as is the case for “stratified dispersion”. Culicoides 
dispersal is described as stratified, due to a combination 
of dispersal processes occurring actively at short dis-
tances, and passively or semi-actively at long distances 
[3].

Northern Europe experienced very sudden and rapid 
outbreaks of bluetongue virus (BTV) in 2006–2008 
and Schmallenberg virus (SBV) in 2011–2012 [4]. Both 
viruses have spread very quickly and widely across the 
whole western Palearctic region transmitted by native 
Culicoides species. Culicoides obsoletus has been identi-
fied as the main vector species responsible for the trans-
mission of BTV and SBV to wild and domestic ruminants 
in the western Palearctic region [5–7]. Culicoides obsole-
tus is a very widespread species, which is able to breed in 
a wide range of habitats [8, 9]. BTV spread is facilitated 
by favorable conditions for midge activity and viral rep-
lication, and the environmental and climatic drivers of 
BTV transmission in Europe have been suggested [10–
14]. For example, high ambient temperatures reduce the 
incubation period of the virus [15], whereas high precipi-
tation and wind speeds can reduce Culicoides flight activ-
ity [16–18].

Previous mark-release-recapture studies on Culicoides 
species showed that the post-release dispersal distance 
traveled during two nights ranges from 1 to 2.5 km, and is 
linked to the gradual search for hosts or oviposition sites 
[19]. The maximum recapture traveled distance recorded 
was 6 km for Culicoides mohave in a particular desert 
landscape [20]. Yet, the potentially high dispersal capac-
ity of Culicoides and the high mortality of adults when 
they are manipulated represent practical limitations 
in the context of mark-release-recapture procedures. 
Many studies have reported a correlation between dis-
ease movement and wind-borne transport of Culicoides 
during outbreaks [3, 18, 21–26]. In 2017, Sanders et  al. 
attempted to quantify Culicoides dispersal over land, 
and demonstrated through a capture-mark-recapture 
study that 84.4% of flights of more than 1 km took place 
downwind, while only 15.6% of flights were made upwind 
[27]. The introduction of BTV serotypes by wind-borne 
infected Culicoides has been demonstrated from north-
ern Africa to southern Europe [28], from Kenya to 
Southwest Indian Ocean islands [29], from Sardinia to 
the Balearic Islands [25], from France to Corsica [30], in 
Ireland [31], and in the UK [32]. Most of these studies 
were supported by modeling analyses in which dispersal 
trajectories were evaluated by atmospheric dispersion 
models over water bodies [31, 33–37]. Culicoides disper-
sal over land has been investigated less than its disper-
sal over water [38], and little attempt has been made to 
link the former to environmental factors. Given the high 
dispersal capacity and the stratified dispersal pattern of 

Culicoides, it is crucial to determine inland connectivity 
among populations and to identify the potential environ-
mental factors that promote or limit gene flows between 
them.

Classic approaches to studying the impact of land-
scape on gene flow generally use population-based 
sampling and are often based on a limited number of 
sampled populations [29, 39]. However, Culicoides, 
like other dipteran species, are not spatially structured 
into separate populations and must be considered as 
a continuum of individuals heterogeneously distrib-
uted across a landscape. In order to identify the envi-
ronmental factors that have an impact on the dispersal 
of Culicoides, an individual approach is more relevant 
as it avoids the misinterpretation of inter-population 
genetic distance [40]. Indeed, the individual approach 
in landscape genetics aims at maximizing the number 
of sampling sites, and thus brings much greater statisti-
cal power to the detection of spatial patterns of genetic 
differentiation and the environmental factors that cause 
them [41]. In addition to the analysis of inter-individ-
ual genetic distances, population genetic structure can 
also be investigated, e.g. using gold standard Bayesian 
clustering methods. However, if isolation by distance 
occurs, these clustering analyses could overestimate the 
actual number of genetic clusters [42]. It is therefore 
important to also incorporate a visualization approach 
into the analytical workflow [43]. Mapping averaged 
pairwise information (MAPI) allows the visual compar-
ison of genetic dissimilarity with some environmental 
factors, and also the development of working hypoth-
eses. On the other hand, it is also necessary to use sta-
tistical analyses of genetic and environmental distances 
as a complement to MAPI.

The aims of the present study are to determine the 
inland connectivity of populations of a main vector 
species at large geographical scales and to identify the 
environmental factors that promote or limit gene flows 
between Culicoides populations in France. For this pur-
pose, we characterized 13 microsatellite markers dedi-
cated to C. obsoletus. We propose a complementary 
framework integrating multiple approaches which can 
be applied more generally to the study of gene flow and 
its links with environmental factors.

Methods
Culicoides obsoletus sampling and morphological 
identification
The data set analyzed in the present study is composed 
of 368 individual female biting midges collected in 46 
sites in France in April 2011, using the national sur-
veillance network for Culicoides populations or local 
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complementary collections (Additional file 1: Table S1). 
Collections were made overnight using Onderstepoort 
Veterinary Institute light traps set up at farms near 
cattle or sheep. All insects were stored in 70% etha-
nol. Morphological identification to species level was 
carried out in the same way as described in a previous 
study [44] under a binocular microscope using available 
identification keys [45].

DNA extraction, amplification, sequencing and sequence 
analyses
DNA was extracted from a total of 368 individuals belong-
ing to the C. obsoletus species complex, and cytochrome 
c oxidase (COI) was amplified and sequenced following 
the procedure detailed in Mignotte et  al. [44]. To ensure 
that only C. obsoletus individuals were included in the final 
data set [46], sequence assignation was run according to 
Mignotte et  al. [44] (the reference COI sequences used 
for specific assignment of all individuals are available in 
Additional file 2: Table S2). All COI sequences were then 
aligned using the multiple sequence comparison by log-
expectation algorithm [47] implemented in the software 
package GENEIOUS version 6.0.5 (Biomatters, http://
www.genei ous.com). In order to estimate unbiased gene 
flow of C. obsoletus, only individuals identified as such 
were used for further analyses.

Development of microsatellite markers
Microsatellite markers were defined by next-genera-
tion sequencing following a similar protocol to the one 
described by Morillo et al. [48]. Culicoides obsoletus sam-
ples from France and the UK (Additional file 3: Table S3) 
were used as biological material to prepare a paired-end 
DNA library (Illumina Nextera technology) by using the 
Nextera DNA Sample Kit (ref. GAO9115; Illumina, San 
Diego, CA). The sequencing was performed on a MiSeq 
Sequencer [2 × 300-base pair (bp) read mode]. In order 
to maximize the length of the sequences, an assembly 
of the 2,299,075 reads was performed with the ABySS 
assembler [49]. The simple sequence repeat (SSR) loci 
search of di- and trinucleotide motifs was done with the 
MIcroSAtellite identification tool [50]. Primer design was 
done with the Primer3 software [51]. Among the 82,276 
SSRs identified, primers were designed for 43,676 SSRs, 
of which 15,888 were dinucleotides, 23,656 were trinu-
cleotides, and 4132 contained complex SSR motifs. For 
the SSR screening, we selected 3135 primer pairs flanking 
dinucleotide SSR motifs with a minimum of 12 repeats 
and amplifying fragments between 150 and 300  bp in 
length and a half-denaturation temperature close to 55 
°C. We screened a set of 30 primer pairs and optimized 
both polymerase chain reaction (PCR) and multiplex 
PCR conditions.

Microsatellite genotyping and loci filtering
Microsatellite makers were amplified by multiplex PCR 
with the Type-it-Microsatellites kit (Qiagen, Valencia, 
CA) according to the protocol described in the manu-
facturer’s manual and the annealing temperature given 
in Additional file  4: Table  S4. Standard conditions for 
PCR amplification included an initial denaturation step 
at 95 °C for 5 min, 35 cycles of denaturation for 30  s 
at 95 °C, annealing for 1 min at variable temperature 
(Additional file 4: Table S4) and elongation for 1 min at 
72 °C, followed by a final elongation of 5 min at 72 °C. 
Fragments were separated on an Applied Biosystems 
3500xL Genetic Analyzer. Allelic size allocations for all 
individuals and microsatellite markers were performed 
using the program GeneMapper version 5 (Applied 
Biosystems, Life Technologies) with double blind read-
ing to limit the potential interpretation bias from the 
reader.

A first validation of the polymorphisms of these 30 
markers was carried out by amplifying and genotyping 48 
individuals from various locations within the species geo-
graphic range. Then 13 loci showing good genetic profiles 
and clear allelic size variability were characterized as pol-
ymorphic markers and were selected for further analyses 
(Additional file 4: Table S4).

The previously extracted DNA of the 368 C. obsoletus 
was then amplified and genotyped at these 13 micros-
atellite loci. Genetic variability parameters, such as the 
number of alleles per locus, the allele size range, and 
the observed and expected heterozygosity were esti-
mated per locus, and per population over the entire 
dataset using the R packages ggplot [52], poppr [53] and 
mmod [54]. Short allele dominance can be a source of 
heterozygote deficiency in a microsatellites data set [55, 
56]. In order to avoid such bias, Spearman’s correlations 
rank between the size of the alleles and their frequen-
cies were calculated in R [55]. Null allele frequencies 
were estimated using the R package PopGenReport [57], 
and a Bonferroni correction was applied to all matched 
tests to take into account potential biases associated 
with multiple comparisons [58]. Correlation between 
FIS and null alleles was calculated in R, and loci with sig-
nificant correlations were removed. The presence of an 
imbalance in genetic binding between each pair of loci 
was tested by Fisher’s exact test performed with the R 
package poppr [53]. The same R package was used along 
with the pegas R package to identify potential gaps in 
the panmictic matching regime. For this purpose, we 
performed chi-square tests to compare the observed 
heterozygosity deficits to the expected heterozygosity 
under the Hardy-Weinberg equilibrium with a signifi-
cance threshold of 5%. We also calculated the fixation 
index (FIS) [59].

http://www.geneious.com
http://www.geneious.com
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Genetic clustering analyses
In order to determine the most likely number of genetic 
clusters (K) and the probability of assignment of each 
individual to these clusters, we used the Bayesian clus-
tering methods implemented in the program STRU CTU 
RE (version 2.3.4) [60] and GENELAND (version 4.5.0) 
[61]. The algorithm implemented in STRU CTU RE infers 
genetic clusters that minimize deviations from Hardy-
Weinberg equilibrium. In STRU CTU RE, we specified the 
following settings: correlated allele frequency, an admix-
ture model, and a locprior model. These options respec-
tively allow one to (i) assume that allele frequencies are 
similar among populations; (ii) estimate for each individ-
ual the probability that it belongs to each K cluster; and 
(iii) use sampling locations as prior information to assist 
the clustering, which is particularly suitable when there 
is weak genetic structuring [62]. We performed ten inde-
pendent runs for each value of K varying from 1 to 10. 
Each run consisted of a burn-in of 100,000 iterations in 
the Markov Monte Carlo chain (MCMC) and a station-
ary phase of 1,000,000 iterations in the MCMC. The most 
probable number of clusters was inferred with the ∆K 
method  (Evanno et al. 2005), via the STRU CTU RE Har-
vester web platform [64]. This ∆K value is a way to deter-
mine the inflection in the [ln P(D)] curve. The clustering 
resulting from the Bayesian inference was transposed 
into percentages of assignment of each individual to the 
K inferred clusters and plotted on a map.

GENELAND also uses a Bayesian algorithm to infer 
population genetic clusters while taking into account 
the spatial position of individuals, making it a spatially 
explicit clustering method. The most probable number 
of clusters was also determined by running the algo-
rithm with K ranging from 1 to 10. The analysis was 
based on 1,000,000 MCMC iterations with a thinning 
of 1000, maximum rate of the Poisson process fixed to 
100, maximum number of nuclei in the Poisson-Voronoi 
tessellation fixed to 300 and a burn-in of 100. We used 
the R package graphics to produce a distribution map 
of genetic structure resulting from STRU CTU RE and 
GENELAND analyses.

Computation of genetic distances and mapping genetic 
dissimilarity
We computed three complementary inter-individual 
genetic distances. The first inter-individual genetic dis-
tance is based on a factorial correspondence analysis 
(FCA) performed with the program GENETIX version 
4.05.2 [65]. The first ten FCA axes were used to calculate 
an Euclidean distance between all individuals using the 
R package ecodist [66], hereafter called the “FCA” dis-
tance [67]. The second inter-individual genetic distance is 

Rousset’s distance (aR), [68], which corresponds to FST/(1 
− FST), but for pairs of individuals. We used the SPAGeDi 
1.5 program [69] to compute aR genetic distance. The 
third inter-individual genetic metric is Loiselle’s kinship 
coefficient (LKC) [70], which, unlike FCA and aR that are 
measures of genetic dissimilarity, is an index of similarity 
[71]. We used the R package fields [72] to investigate iso-
lation by distance by performing linear regressions and 
Mantel tests between inter-individual genetic distances 
and log-transformed geographic distances with R pack-
age fields [72]. Mantel tests [73] were performed with the 
R package vegan [74]. Inter-individual genetic distances 
were mapped using the program MAPI [43]. The method 
implemented in MAPI allows the visualization of spatial 
variation in genetic dissimilarity. It can also define areas 
where genetic dissimilarity is significantly lower or higher 
than expected by chance [43]. MAPI analyses were based 
on 1,000 permutations and an α-value of 0.05.

Impact of environmental factors on genetic differentiation
We investigated the potential impact of several envi-
ronmental factors on the genetic differentiation of C. 
obsoletus. In practice, we tested the association between 
matrices of pairwise genetic distances (see above) and 
matrices of environmental distances. These environ-
mental distances were computed using the program 
Circuitscape 4.0.5 [75, 76] and were based on distinct 
environmental rasters (i.e. geo-referenced grids of envi-
ronmental values) either treated as potential resistance 
(R) or conductance (C) factors:

 i. Host densities: European index of distribution of 
roe deer (C) [77], European index of distribution of 
red deer (C) [77], global cattle, sheep and goat dis-
tributions in 2010 (C) [78].

 ii. Terrestrial habitat: mean global elevation in 2010 
(R) [79] and type of landscape cover (urban area, 
grassland, forest areas and croplands) (R). The four 
distinct land cover rasters (resolution: ∼ 1000  m) 
were generated from the Corine Land Cover 2012 
raster (http://www.eea.europ a.eu; resolution: ∼ 
100 m) (Additional file 5: Fig. S1).

 iii. Meteorological and climate data: mean surface 
temperature (R), mean precipitation (R), and mean 
wind speed and direction (C). We used two alter-
native rasters for each variable: April 2011 mean 
and 2000-2010 mean. Surface temperatures were 
obtained from monthly day and night land sur-
face temperature means [80]. Precipitation and 
wind rasters were obtained from monthly means 
of precipitation, wind speed and the U and V com-
ponents of wind (components of the horizontal 

http://www.eea.europa.eu
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wind towards the east and north) from the Euro-
pean Centre for Medium-range Weather Forecasts 
(Era5 Interim, http://www.ecmwf .int) over 10 years 
(2001–2010). Wind U and V components were 
used to compute prevailing meteorological wind 
direction (in degrees). Map and arrowheads indi-
cating the mean wind direction over the 10 years at 
each raster pixel were generated with the R package 
rWind (Additional file 6: Fig. S2) [81].

A so-called null raster was also created and used as a 
negative control, i.e. a raster on which environmental dis-
tances computations correspond to a proxy of geographi-
cal distances. The null raster is a uniform raster with all 
cell values equal to 1. As in Dellicour et  al. [84], three 
values of k (10, 100 and 1000) were used to modify the 
potential impact of the environment on the resistance/
conductance value. We used multiple regression on dis-
tance matrices (MRDM) coupled with commonality anal-
yses [82] to identify unique and common contributions of 
predictors to the variance in the environmental distance 
(response variable). All the analyses were carried out with 
the R packages ecodist [66] and yhat [83]. In addition, we 
also performed univariate analyses by comparing (i) the 
determination coefficient R2 obtained from the linear 
regression of genetic distances on distances computed on 
the environmental raster, and (ii) the determination coef-
ficient R2 obtained from the linear regression of genetic 
distances on distances computed on the null raster. Only 
the environmental factors associated with a R2 higher 
than that obtained from the linear regression based on 
environmental distances computed on the null raster 
were selected for the multivariate analyses (MRDM-com-
monality analyses) [84]. The same criteria used to iden-
tify suppressors were used for the multivariate analysis as 
in the commonality analyses descriptions [80, 81]. These 
suppressors allow one to select environmental variables 
that are more explanatory than the geographical distance 
alone. An environmental variable is considered to be a 
suppressor if the regression coefficient and correlation, 
or the unique contribution and the common contribu-
tion, are of opposite signs [85].

Anisotropic isolation by distance
Anisometric isolation by distance is a method used to 
identify directional gene flow and orientation at which 
the accumulation of genetic differentiation is the great-
est. Thus the notion of anisotropy applied to isolation by 
distance means that the intensity and significance of iso-
lation by distance varies according to the direction con-
sidered. In order to identify directional gene flows, we 
must calculate the projected distance between two sam-
pling sites. The angle between sites was calculated using 

the R package geosphere [86] and transformed from 
degrees to radians. The set of angles between 0 and 360 
were then tested as angles that maximize isolation by dis-
tance. The great-circle geographic distance between sam-
pling sites was computed with the R package fields and 
then log transformed [72]. The projected distance matrix 
was calculated for each angle between all sampling sites, 
using the formula below. When calculating the projected 
geographical distance as a function of the angle between 
populations, dAB is the geographical distance between 
population A and B and aAB is the angle between popula-
tions A and B. 

A linear regression of the genetic distances on the pro-
jected geographical distances obtained for each angle was 
then performed. The angle that maximizes the R2 of this 
regression with a positive regression coefficient was con-
sidered as the angle maximizing the isolation by distance 
signal [87]. In order to confirm this analysis with a similar 
but complementary approach, we evaluated the direc-
tion that maximizes the correlation between geographic 
and genetic distance using the PASSaGE program and a 
bearing analysis. The workflow summarizing the genetic 
analyses is described in Additional file 7: Figure S3.

Results
Characterization of microsatellite markers and genetic 
diversity
A total of 368 COI sequences of C. obsoletus were 
obtained after the DNA barcoding step (Additional 
file  3: Table  S3), and 368 C. obsoletus from 46 popula-
tions were genotyped with 13 microsatellite loci (Addi-
tional file 4: Table S4). A filter was also applied to exclude 
missing data. Individuals with more than 10% missing 
data were excluded from the analysis, i.e. 20 individuals. 
Loci OBSms25 and OBSms26 had the highest propor-
tion of null alleles with 56% and 22%, respectively, but 
also the highest FIS values of 0.691 and 0.357, respec-
tively (Additional file  8: Table  S5). The expected het-
erozygosity, which varied from 0.918 (OBSms5) to 0.404 
(OBSms29), was always higher than the observed het-
erozygosity, which varied from 0.872 (OBSms13) to 0.197 
(OBSms25), reflecting a heterozygous deficit (Additional 
file 8: Table S5). To ensure that all markers provided inde-
pendent information, linkage disequilibrium between 
each pair of loci was tested. After Bonferroni correc-
tion, no significant linkage disequilibrium was observed 
between any loci. The OBSms25 locus was also the only 
locus with more than 5% missing data. Thus, only mark-
ers with a null percentage lower than 10% were kept for 
the final analysis. In view of the high proportion of null 
alleles and the strong correlation between FIS and the 

(1)log(|dAB ∗ cos(aAB)|)

http://www.ecmwf.int
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rate of null alleles (r = 0.947, p > 0.001), the OBSms25 
and OBSms26 loci were excluded from the analysis. 
No significant correlation between allele size and allele 
frequency was found for any of the 11 remaining loci 
(Additional file  8: Table  S5). The genetic resolution of 
microsatellite markers depends on the number of mark-
ers and their polymorphisms. All 11 selected loci were 
therefore polymorphic (Additional file  8: Table  S5), and 
the number of alleles present at a given locus varied from 
40 for OBSms5 to nine for OBSms29. No significant iso-
lation by distance was detected with the different inter-
individual genetic distances, aR (R2 < 0.001, p = 0.439; 
Additional file  9: Fig. S4), LKC (R2 < 0.001, p = 0.992; 
Additional file 9: Fig. S4), and FCA (R2 < 0.001, p = 0.361; 
Additional file 9: Fig. S4).

Clustering analyses and mapping of genetic distances
The Bayesian analysis performed with STRU CTU RE 
revealed a low genetic structuring of C. obsoletus. Mean-
while, the exact number of genetic clusters was not 
clearly defined, the optimal value of K was 2 (Additional 
file 10: Fig. S5), i.e. the co-existence of two genetic clus-
ters was the most likely statistically (Fig. 1). The assign-
ment of individuals to the different clusters revealed a 
weak genetic structuring of the populations. Although 
the assignment of a total of 284 out of the 348 Culicoides 
individuals to a genetic cluster was well supported (Q 
> 0.90), no clear association between spatial clustering 
and distribution was observed, i.e. there was no asso-
ciation between Culicoides sampling location and the 
genetic cluster distributions. However, a west-east tran-
sect seemed to emerge, as samples collected on this tran-
sect were more frequently assigned to cluster 1, contrary 
to the north-south transect which was more frequently 
represented by cluster 2. Genetic clusters inferred by 
GENELAND and STRU CTU RE (K = 2) were consist-
ent with these results, both clusters being found at all the 
sampling sites (Fig.  1a, b). Results for the second opti-
mal K value (K = 4) of the STRU CTU RE program gave 
a similar impression, reinforcing the conclusion that the 
populations are genetically weakly structured (Additional 
file  11: Fig. S6). Additional STRU CTU RE analysis was 
carried out with only loci OBSms 4, 11 and 28, which are 
at Hardy Weinberg equilibrium, and no additional struc-
ture was detected using only these loci (data not shown). 
Genetic dissimilarity resulting from MAPI analyses with 
the aR genetic distance showed a non-homogeneous 
pattern of dissimilarity. The maximum inter-individ-
ual genetic dissimilarity was 0.182 and the lowest was 
0.002. The south of France was the most genetically dis-
similar region. The center of France was also a zone of 
strong inter-individual dissimilarity, while eastern France 
showed low genetic dissimilarity. Another area spanning 

from the Paris region to the Alsace (northeastern France) 
showed low genetic dissimilarity (Fig. 1c, d). MAPI analy-
ses with FCA inter-individual genetic distance showed 
a homogeneous genetic dissimilarity. However, almost 
none of the areas were significantly genetically dissimilar 
in MAPI analysis with the three genetic distances used.

Investigating the impact of environmental factors
Univariate regressions revealed a significant positive 
association of FCA genetic distances with cattle distri-
butions for k = 100 (Q = 0.009, p = 0.001) and k = 1000 
(Q = 0.029, p = 0.001), with sheep distributions for k = 
100 (Q = 0.002, p = 0.002) and for k = 1000 (Q = 0.006, 
p = 0.001), with elevation for k = 100 (Q = 0.001, p = 
0.005) and for k = 1000 (Q = 0.001, p = 0.006), and with 
grassland for k = 100 (Q = 0.009, p = 0.001) and for k = 
1000 (Q = 0.011, p = 0.001) distances (Additional file 12: 
Table S6). Similarly, aR inter-individual genetic distances 
were significantly associated with distances computed 
from elevation for k = 100 (Q = 0.00018, p = 0.006) and 
for k = 1000 (Q = 0.00038, p = 0.007), with grassland for k 
= 100 (Q = 0.001, p = 0.001) and for k = 1000 (Q = 0.002, 
p = 0.001) and with urban areas for k = 100 (Q = 0.004, 
p = 0.001) and for k = 1000 (Q = 0.007, p = 0.001) ras-
ters (Additional file 12: Table S6). However, no significant 
association was found between LKC genetic distance and 
the environmental distances (Q values always < 0).

Multivariate regressions revealed a significant posi-
tive association of FCA inter-individual genetic dis-
tance with cattle distributions for k = 1000 (r = 0.1733, 
p <0.001) and with grassland for k = 1000 (r = 0.1080, p 
<0.001) (Table 1; Additional file 12: Table S6). Also, mul-
tivariate regressions did not reveal any significant posi-
tive association of aR inter-individual genetic distances 
with environmental distances. All environmental factors 
were considered as suppressors when using aR to meas-
ure inter-individual genetic distances. Cattle distribution 
(k = 1000) with FCA inter-individual genetic distance was 
the only environmental factor that showed a unique con-
tribution to the variance in the dependent variable higher 
than 1% (U = 0.02) (Additional file 12: Table S6).

Anisotropic isolation by distance
Globally, correlation between the genetic distance and 
the distance along the bearing θ, dθ, changed as a func-
tion of  bearing θ. Anisotropic isolation by distance 
analyses revealed a significant positive correlation 
between aR and FCA inter-individual genetic distances 
and orientational distances computed along the north–
south orientation and a significant negative correlation 
between genetic distances and orientational distances 
computed along the west-east orientation (Fig.  2a, 
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b). For the analysis with LKC, which is a variable of 
genetic similarity, north–south was the orientation that 
maximized the isolation by distance (Fig.  2c). Bearing 
analyses with PASSaGE software revealed a significant 
distance isolation on the north–south axis with the 

genetic distances aR and FCA (Fig.  3a, b). A negative 
correlation between LKC genetic similarity and geo-
graphical distance was observed on the north–south 
axis (Fig. 3c). 

Fig. 1a–d Genetic clustering and genetic differentiation of Culicoides obsoletus. Results of the genetic clustering analyses performed with 
GENELAND (a) and STRU CTU RE (b), as well as smoothing of pairwise measures performed with mapping averaged pairwise information (MAPI) and 
based on (c) Rousset’s (aR) and (d) factorial correspondence analysis (FCA) inter-individual genetic distances. A specific color has been assigned to 
each genetic cluster in a and b. c, d Genetic dissimilarity is represented by a color scale ranging from red (lower genetic dissimilarity) to blue (higher 
genetic dissimilarity). The black circles indicate the sampling sites
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Discussion
To the best of our knowledge, this is the first extensive 
landscape genetic study carried out on a main vec-
tor species of interest for livestock diseases, C. obsole-
tus. Bayesian clustering analysis revealed a very weak 
genetic structure of C. obsoletus in France, and a low 
level of inter-individual genetic differentiation was 
observed. We assessed the impact of a wide range of 
environmental factors on this pattern. Univariate and 
multivariate analyses highlighted an absence, or a weak 
impact, of most of the tested environmental factors on 
inter-individual measures of pairwise genetic differen-
tiation. No isolation by distance pattern was detected 
at the scale of France with the set of inter-individual 
genetic distances used. However, an anisotropic isola-
tion by distance analysis revealed significant distance 
isolation on the north-south axis (Additional file  13: 
Figure S7).

High level of gene flow between C. obsoletus populations
The low overall inter-individual genetic dissimilar-
ity highlighted by our study reflected the high level of 
gene flow for C. obsoletus, and reinforces what has been 
described previously for other Culicoides species. In 
particular, high levels of gene flow have already been 
observed in France for Culicoides imicola [30] and in 
Australia for Culicoides brevitarsis [88]. Genetic studies 
on C. imicola in Europe revealed a high level of gene flow, 
as reflected by the inference of two large genetic clus-
ters: a “central Mediterranean cluster” including Algeria, 
Sardinia, Corsica, and the Pyrénées-Orientales and Var 
departments of France, and a “western Mediterranean 
cluster” including Morocco, Spain, Portugal and Majorca 
[26]. In North America, similar results were also found 
for Culicoides stellifer. No barriers to gene flow could be 
identified in this species in the southeastern USA [89]. In 
addition, no isolation by distance has been observed at 
the scale of France. Identifying a genetic structure pattern 
is a great challenge when inter-individual genetic dissimi-
larity is low. Although STRU CTU RE performs well at 
low levels of population differentiation (0.02 < FST < 0.10) 
by using prior population and correlated allele frequency 
models [90], when the differentiation is weaker, such as 
in the case of highly dispersed organisms, it may encoun-
ter difficulties [91]. This underlines the importance of 
using complementary tools of visualization approaches 
like MAPI. In addition, the use of an individual approach 
avoids artificially considering individuals grouped into 
populations solely due to the effect of the trapping sites 
[2, 92]. Although our method of analysis seems comple-
mentary and coherent for the detection of genetic struc-
ture, C. obsoletus is not genetically or geographically 
structured at the scale of France.

Livestock densities as potential drivers of C. obsoletus gene 
flow
It is undeniable that high gene flow homogenizes the 
genetic diversity of Culicoides. This can be explained by 
active dispersal and host-seeking movements, as sug-
gested by our results. While the unique contribution 
of the environmental factors tested was very small, the 
contribution of cattle density was the strongest that we 
detected. Host density as a conductance factor for Culi-
coides is obviously consistent with the biology of the 
species. These results are in line with those obtained in 
landscape genetics studies of BTV, which identified dis-
tributions of cattle and sheep as key factors in BTV dis-
persal [13]. In addition, previous studies showed that 
dairy cattle density was negatively correlated with BTV 
spread. Although paradoxical with respect to the previ-
ous conclusions, this could be explained by the fact that 
dairy cattle tend to cluster around the milking parlor and 
move little, and thus form a fixed feed source, which lim-
its the spread of Culicoides. On the contrary, beef cattle 
disperse much more in pastures and thus could encour-
age the dispersal of Culicoides when they seek a source 
of blood [93]. In view of these results, and of the marked 
preference of certain species of Culicoides for cattle [94], 
and of BTV emergence or re-emergence events in cattle 
in the Netherlands in 2006 and in France in 2015 [95, 96], 
it seems crucial to survey and closely monitor the move-
ments of Culicoides in the vicinity of beef cattle farms 
[94].

In addition, it has been shown that BTV spread is 
facilitated at low elevation, i.e. up to 300 m [39, 93]. 

Table 1 Results of multiple regression on distance matrices and 
additional parameters derived from commonality analysis

Pearson’s correlation coefficient (r), significant regression coefficient (β), as well 
as unique (U) and common (C) contributions of environmental distances to the 
variance in the dependent variable are shown; FCA factorial correspondence 
analysis, aR Rousset’s distance 
a Re-scaling parameter used to transform the initial raster file
b The considered environmental raster was treated as a conductance [C] factor
c The considered environmental raster was treated as a resistance [R] factor

ka r β U C

FCA

 Cattle density  [C]b 1000 0.1733 0.1551 0.0221 0.0079

 Grassland  [R]c 1000 0.1080 0.0637 0.0037 0.0079

aR

 Elevation  [R]c 100 0.0254 − 0.9945 0.00044 0.0002

 Elevation  [R]c 1000 0.0291 0.9860 0.00048 0.0004

 Grassland  [R]c 100 0.0448 0.2279 0.00005 0.0020

 Grassland  [R]c 1000 0.0539 − 0.1483 0.00002 0.0029

 Urban areas  [R]c 100 0.0725 − 0.1279 0.00014 0.0051

 Urban areas  [R]c 1000 0.0879 0.2156 0.00049 0.0072
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Altitude, an environmental factor tested in this study, 
failed to explain the inter-individual genetic differentia-
tion of C. obsoletus. Altitude, therefore, does not act as 
a barrier between sampling sites located at relatively low 
altitudes. It would thus be interesting to integrate into 
future studies sampling sites at high altitude, i.e. above 
1000 m, which are feasible habitats for C. obsoletus as it 
has a large altitudinal range [97]. However, it is possible 
that altitude does not directly impact the dispersal activ-
ity of Culicoides, but only the replication or viral infec-
tion of BTV due to low temperature. Culicoides obsoletus 
is an extreme generalist and can take a blood meal from 
a wide range of hosts [98]. The study of phylogenetically 
close but ecologically very different species of Culicoides, 
such as Culicoides chiopterus [99], might then allow the 
identification of very different dispersal patterns and the 
importance of bovine density, C. chiopterus being exclu-
sively dependent on cattle for egg-laying [100].

Long‑range dispersal of C. obsoletus
The most genetically dissimilar individuals were mainly 
from the southernmost populations of the sampling area. 
Multiple non-exclusive lines of argument might explain 
the significant anisotropic isolation by distance observed 
on a north–south axis in France.

a b c

Fig. 2a–c Results of anisotropic isolation by distance analyses. Polar plots show the correlation between geographical projected distances by angle 
and inter-individual genetic distances [aR (a), Loiselle’s kinship coefficient (LKC) (b), and FCA (c)]. The set of angles between 0 and 360 were then 
tested as angles that maximize isolation by distance. The projected distance matrix was calculated for each angle between all sampling sites, using 
the formula in the Methods. A linear regression of the genetic distances on the projected geographical distances obtained for each angle was then 
performed. The angle that maximizes the R2 of this regression with a positive regression coefficient was considered as the angle maximizing the 
isolation by distance signal

a

b

c

Fig. 3 Bearing analysis: correlation between genetic [aR (a), LKC (b), 
and FCA (c)] and geographical distances as a function of the angle 
between sampling sites. Circles indicate significant values, crosses 
indicate non-significant values. E East, W west, S south, N north; for 
other abbreviations, see Figs. 1 and 2
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First, the significant anisotropic isolation by distance 
could be explained by wind dispersal. Dispersion phe-
nomena caused by wind currents, mainly over seas, have 
already been established for Culicoides [3, 18, 21–25, 30]. 
The resultant dispersal events can be described as passive 
and active, respectively, because recapture was achieved 
downwind and upwind of the prevailing wind direc-
tion [19], although the activity of Culicoides, and thus 
its active dispersion, is reduced when the wind speed is 
higher than 3 m/s [16]. Examination of the map of the 
average wind directions in France over the last 10 years 
provides potential explanations for this. It can be seen 
that the southernmost sampling sites (with the most dis-
similar individuals) are located in an area where the wind 
direction is different from that in the rest of France. It 
should be noted that the diffusion of BTV, and thus the 
dispersion of Culicoides, has already been associated 
with wind direction. For example, 2% of BTV infections 
occurred at distances greater than 31 km [101, 102] dur-
ing the 2006 epizootic. The south of France was initially 
sampled; however, poor conservation of Culicoides DNA 
did not allow us to perform barcoding and microsatel-
lite genotyping of these populations. A study of this geo-
graphical area could thus complete the findings of the 
present study and potentially identify a stronger genetic 
structure. This would make it possible to decide whether 
the premise of differentiation observed in the present 
study is due to an older phylogeographic structure, dif-
ferent wind dispersion in this geographical area, or a 
random pattern. It is also questionable whether the indi-
cations of very weak genetic structure could be due to 
differences in genetic diversity between the southern and 
the northern populations. Lower genetic diversity in the 
north could then be a sign of an expansion process that 
contradicts the interpretation of large-scale dispersion 
[103, 104]. Indeed, the spatial expansion of a population 
is generally accompanied by gradients of reduction in the 
genetic diversity of the population during the expansion 
process, caused by serial founder effects, which create a 
genetic bottleneck through a founding event [105, 106]. 
Population sampling at the same scale could allow com-
parison and estimation of genetic diversity.

Second, anisotropic isolation by distance may be due to 
an artifact of the sampling methods used. Indeed, if the 
extent of the sampling varies depending on direction, the 
distances projected from the angles may represent differ-
ent distance distributions and lead to the over-representa-
tion of the values of strong genetic metrics in the direction 
of the scatter plot and the hit of positive correlation sig-
nals. Moreover, the absence of correlation does not neces-
sarily mean more gene flow but an absence of isolation by 
distance, which can also result from a strong drift and thus 
less gene flow; a drift which depends on both dispersion 

and population sizes. It is therefore essential to use as a 
complement—as we have done here and with which we 
have achieved a similar result—an approach that weights 
the geographical distances between populations according 
to their orientation with respect to a given angle axis pass-
ing through the barycenter, as implemented in PASSaGE.

Considerations for future work
Our results underline the importance of the methodologi-
cal development of wind dispersal models for Culicoides 
not only over water but also on land. However, studies of 
landscape genetics remain indispensable and complemen-
tary in order to improve the accuracy of predictive models 
for Culicoides dispersal over land through the integration 
of meteorological, landscape and activity-based parameters 
previously tested and validated in landscape genetics work-
flows. In addition, population sampling of the same species 
at the European level, i.e. sampling in a very large proportion 
of the known range of the species, is necessary to observe 
more marked structuring at the European level and to esti-
mate more precisely the gene flow. For example, C. imicola 
in Europe is structured into two large genetic clusters, the 
European central cluster and the European western cluster 
[26]. Moreover, the phylogeographic history of C. obsoletus 
in view of its geographical distribution throughout Europe 
and North America has only been little explored. On the 
contrary, the study of the phylogeography of C. imicola, the 
main Afrotropical vector, has shown that its range is from 
the northern part of sub-Saharan Africa to the Mediterra-
nean Basin [39]. This type of study would make it possible 
to estimate the effective size of the populations, a key fac-
tor in the dispersal of C. obsoletus. In future studies, the use 
of high-throughput sequencing approaches using mark-
ers such as double-digest restriction-site associated DNA 
sequencing can provide greater resolution in view of the 
large number of single nucleotide polymorphisms (SNPs) 
revealed at a local scale, and improve our understanding of 
the active and passive dispersal of Culicoides. It could also 
be relevant to include more microsatellite markers or SNPs 
to improve genetic resolution and observe the matching and 
assignment of each individual.

Conclusions
To the best of our knowledge, this study provides the 
first complete landscape genetic analysis of C. obsole-
tus, a major vector species of animal viruses in Europe. 
This study shows that the genetic structure of popu-
lations at the scale of a country can become homo-
geneous through large-scale dispersion. Our results 
demonstrate, for C. obsoletus, a very high inland dis-
persal and vectorization capacity, which has to be 
taken into consideration in further work on vector 
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competence and epidemiological modeling of disease 
transmission. Wind direction could be a key factor in 
the dispersal of many insect vector species. Futures 
studies should increase their geographical extent to 
cover the entire area of species distribution and enable 
a better understanding of the limits of Culicoides gene 
flow. In addition to the biological information pre-
sented here, this study highlights several important 
areas for the improvement of methodologies that may 
currently limit the inclusion of wind direction in land-
scape genetic analyses.
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