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Abstract 13 

Remote sensing data, crop modelling, and statistical methods are combined in an original method to 14 

overcome current limitations of crop yield estimation. It is then tested for timely estimation of maize grain 15 

yields and their year-on-year variability in Burkina Faso. Outputs from the SARRA-O crop model were used 16 

as a proxy for observed data for calibration. The final remote sensing-based yield model was constructed on 17 

the interaction between aboveground biomass at flowering (AGB-F) and crop water stress (Cstr) over the 18 

reproductive and maturation phases. Various vegetation and drought-related indices were derived from 19 

different spectral domains and tested. Model performance was evaluated by cross-validation against (a) 20 

simulated yields and (b) independent yields from ground surveys aggregated at village level. The results 21 

showed that the RF (Random Forest) model outperformed the MLR  (Multiple Linear Regression) model for 22 

year-on-year yield estimation at the end of the season when compared to simulated yields. Surface soil 23 

moisture (SSM) information, as a proxy for soil water available for plant growth, together with information 24 

on the temperature of the canopy cover, helped to improve the RF maize yield model, impacting more 25 

particularly the estimation of crop water stress. Lastly, two months before harvest the RF model predicted 46% 26 

of the observed end-of-season maize grain yield variability. The combined remote sensing, crop model and 27 

machine learning method is thus an effective approach for estimating and forecasting inter-annual maize 28 
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crop yields in environments where field data are scarce, such as in most parts of the African continent. 29 

However, more research is needed to better retrieve the spatial variability of yields in order to strengthen 30 

current agricultural monitoring systems, and to address societal challenges, such as declining food security. 31 

Keywords: Crop yield estimation and forecast; Food security; MODIS NDVI and LST; SMOS SSM; 32 

Statistical model; SARRA-O crop model, uncalibrated approach 33 

1. INTRODUCTION 34 

With more than a billion tons per year, maize (Zea mays l.) is the most widely grown crop in the world and is 35 

thus considered as key in supporting global food security. In addition, most of the maize produced in the 36 

developing world comes from low income countries, with the livelihoods of the most vulnerable populations 37 

strongly dependent on maize production and its fluctuations (Bassu et al., 2014; Shiferaw et al., 2011). In 38 

West Africa, maize as a staple crop plays a central role in fulfilling population food requirements (Chivasa et 39 

al., 2017; Shiferaw et al., 2011), which were estimated at more than 30 kg/capita/year in 2013 by FAOSTAT. 40 

However, important climate and demographic trends combine to worsen an already difficult situation in the 41 

region. In particular, in the first decade of the 21st century, maize yield barely increased, or even stagnated 42 

(Ray et al., 2012). Climate change has already been seen to impact maize productivity globally, with a 3.8% 43 

reduction in maize yields since 1980 (Lobell et al., 2011b). With global warming, a significant decline in 44 

maize yield is further foreseen for most parts of West Africa (Lobell et al., 2011a). In addition, the 45 

population is expected to outgrow yield improvement, portending a decline in per capita food production in 46 

the coming years (Ray et al., 2013). Among the current and future societal challenges brought about by 47 

climate change, food security in regions with dominant smallholder farming systems remains a pressing 48 

priority, whereby timely and reliable information on maize crop yields and their inter-annual variability is 49 

urgently needed for effective decision-making. 50 

There are several ways of estimating crop yields, from a plot to continent scale. Direct methods based on 51 

field surveys are expected to give reliable yield estimates, but they have significant weaknesses, including 52 

the cost, in terms of time and labour, and the difficulty of upscaling to large areas (Burke and Lobell, 2017). 53 
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Another way of estimating crop yields is to use crop growth models that incorporate ecophysiological 54 

processes to simulate crop growth, development and yields according to soil characteristics, agricultural 55 

practices and meteorological data. For most of these crop models, water and/or heat stress during the 56 

reproductive and maturation phases are considered as crop yield limiting factors. For instance, in the FAO 57 

AquaCrop model, the impact of water stress is taken into account in canopy growth, senescence and 58 

transpiration, as well as in the Harvest Index that is used to derive crop yield from simulated aboveground 59 

biomass (Akumaga et al., 2017). In the SARRA-H crop model the impact of water stress during the 60 

reproductive and maturation phases is taken into account through the reduction of potential yields using a 61 

crop water stress factor (Cstr), with daily values ranging from 0 for no stress to 1 for full stress (Dingkuhn et 62 

al., 2003). These models require a large amount of input data on a field scale, which limits their scalability 63 

over large spatial scales. Conversely, some of these crop models, like SARRA-O, allow crop monitoring 64 

over large areas using spatialized agrometeorological data, such as rainfall estimates, as inputs, but in that 65 

case they are only able to represent broad processes. 66 

Compared to crop growth models, remote sensing provides a physical measurement of crop areas, and their 67 

temporal and spatial development, which implicitly integrates underlying determinants of crop productivity, 68 

such as sowing dates, pest attacks, irrigation or intensification levels, which are not accessible or too 69 

expensive at these scales or are not always represented in crop growth models (Duncan et al., 2015). Owing 70 

to its large area and repetitive coverage at relatively low cost, satellite remote sensing has been widely used 71 

to estimate and forecast yields, but mainly for large homogeneous crop plots in developed countries (Becker-72 

Reshef et al., 2010; Bolton and Friedl, 2013; Johnson, 2014; Johnson et al., 2016; Sibley et al., 2014). Some 73 

promising results have nevertheless been obtained for African smallholder farming (Jin et al., 2017) such as 74 

for maize grain yield estimations in East and southern Africa (e.g., Mkhabela et al., 2005; Unganai and 75 

Kogan, 1998), and for millet and/or sorghum (e.g., Groten, 1993; Leroux et al., 2016; Maselli et al., 2000; 76 

Rasmussen, 1992). However, the main limitations of such approaches can be categorized into three groups. 77 

First, as pointed out in Leroux et al. (2016) there are limitations in using vegetation index alone (e.g. 78 

Normalized Difference Vegetation Index, NDVI) as a direct indicator of final crop yields, particularly when 79 



4 

aboveground biomass is not proportional to the final harvestable yield. Arguments put forward include the 80 

fact that: (1) different yields could be observed for the same amount of aboveground biomass due to spatial 81 

variability in management practices or environmental conditions, and (2) droughts during sensitive phases, 82 

such as the reproductive stage, can lead to significant yield reductions, but with negligible effects on 83 

vegetative aboveground biomass. To overcome these limitations, Leroux et al. (2016) proposed an approach 84 

based on MODIS NDVI and CWSI (Crop Water Stress Index) to assess each component of the yield 85 

equation, namely the aboveground biomass and the Harvest Index, to estimate pearl millet yields in Niger. 86 

Other approaches have been tested for estimating and forecasting yields based on canopy temperatures 87 

(Jackson et al., 1981; Johnson, 2014; Kogan, 1995; Unganai and Kogan, 1998) or soil moisture information 88 

(Chakrabarti et al., 2014; Holzman et al., 2014), given that plant heat stress or soil moisture availability has 89 

negative impacts on photosynthetic activity, development rates and reproductive processes, and thus on crop 90 

yields. In particular, since rainfall does not necessarily reflect the actual water available for plant growth, soil 91 

water content is considered as a better driver in explaining crop yields (Holzman et al., 2014). Secondly, 92 

most of these studies rely on statistical linear models to predict crop yields, although several underlying 93 

processes are nonlinear. Thus, some studies, mainly from the field of machine learning, have also tested the 94 

use of nonlinear models to predict crop yields. For instance, Johnson et al. (2016) compared model-based 95 

recursive partitioning and Bayesian neural networks to predict barley, canola and wheat yields in Canada, 96 

while Fieuzal et al. (2017) used artificial neural networks to estimate corn yields in France using optical and 97 

radar image time series. Lastly, at least in developing countries where reliable in-situ yield measurements are 98 

scarce, all these approaches rely on empirical relationships between remote sensing indices and national 99 

agricultural statistics. Agricultural statistics are generally available several months after the end of the 100 

cropping season and thus do not allow for timely and reliable yield estimations. Recently, several studies 101 

have proposed using an “uncalibrated approach”, meaning that remote sensing-based models are calibrated 102 

using outputs from crop models validated for the targeted crop and areas. Promising results were obtained 103 

when compared to ground data (Azzari et al., 2017; Burke and Lobell, 2017; Jin et al., 2017; Sibley et al., 104 

2014), suggesting that the method could be an alternative in environments where field data are scarce. 105 
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In this context, the objective of this study is to develop an original method that overcomes the current 106 

limitations of crop yield estimation by combining recent research on remote sensing data, crop modelling, 107 

and statistical methods. More specifically we conduct a benchmarking analysis between a Multiple Linear 108 

model and a Random Forest model to estimate early and end-of-season maize yields in Burkina Faso (West 109 

Africa), using remote sensing indicators based on vegetation indices, canopy temperature, and surface soil 110 

moisture. The models training rely on proxy of observed crop variables (“uncalibrated approach”) that are 111 

simulated by the crop growth model SARRA-O which was calibrated and verified for the Sahelian rainfed 112 

cereals. 113 

2. MATERIALS 114 

MODIS NDVI, MODIS Land Surface Temperature (LST) and SMOS (Soil Moisture and Ocean Salinity) 115 

Surface Soil Moisture (SSM), were used to derive phenological metrics as well as vegetation vigour, drought 116 

and heat stress related indices. In addition, the SARRA-O crop model (Baron et al., 2005) was used to 117 

simulate AGB-F (aboveground biomass at the flowering), Cstr (water stress coefficient) and final maize 118 

yields in order to calibrate remote sensing-based models, and ground-based data were employed to validate 119 

our results. All remote sensing processing, statistical analysis and graphical outputs were carried out with R 120 

software version 3.5.2 (R Core Team, 2018). The full list of the R packages and the main functions used are 121 

given in Supplementary Materials (S1). 122 

2.1.  STUDY AREA AND FIELD DATA SURVEY 123 

The study was conducted from 2011 to 2016 around Koumbia and neighbouring villages. The whole study 124 

area was located in Tuy province, south-west Burkina-Faso, the main cotton production zone in the country 125 

(Figure 1a). The climate there is Sudanian, characterized by a unimodal rainfall season, with annual rainfall 126 

ranging from 650 mm to 850 mm (Figure 1b) and a rainy season lasting from June to September, with the 127 

highest cumulative rainfall being recorded in July and August. According to the Harmonized World Soil 128 

Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the soils are mainly loamy sand and loam. The 129 

landscape is highly fragmented with small to very small fields, often smaller than 1 ha (Fritz et al., 2015) 130 
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with high inter and intra-field spatial variability due to different soil conditions, farming practices and the 131 

presence of trees within fields. Maize and cotton are the main crops, about 90% of the cultivated area, and 132 

are often cultivated in rotation allowing the maize to benefit from inputs for cotton supplied on credit by the 133 

cotton company (Diarisso et al., 2015). Other crops encountered are sorghum, millet, sesame and groundnut. 134 

All crops are rainfed. 135 

 136 

Figure 1: The study site: a) Main land cover (adapted from Gaetano et al. 2016) and location of field survey 137 

(dots), b) Mean daily cumulated rainfall over the study area for the 2011-2016 period, from TAMSAT 138 

rainfall estimates. 2014 was not included due to inconsistencies when compared to rain gauge data (see 139 

Section 2.3. Sarra-O crop model). 140 

 141 

Field and rainfall data were collected in 2014, 2015 and 2016 for 3 villages located in the study area as part 142 

of the FP7 SIGMA project (http://www.geoglam-sigma.info). A network of 114 geolocalized maize fields 143 

(Figure 1a) under farmed conditions was surveyed to monitor agricultural practices (sowing dates, crop 144 

rotations, sowing density, etc.) and to measure biomass components (grain, stalk and leaf) at harvest. 145 

Measurements were made on three 25 m² randomly located plots within each field. Measured yields ranged 146 

from 415 kg/ha to 5840 kg/ha revealing high spatial and temporal variability in maize yields (Figure 2). 147 

Lastly, a fertility class was assigned to each field assuming maize grain yields were well correlated to the 148 

level of field fertility (Adiku et al., 2015), with four possible classes (Table 1). Maize yield data were then 149 
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aggregated at village level on an annual basis, accounting for the weight of each fertility class. Field data 150 

were used to check the robustness of the remote-sensing maize yield model against independent data. 151 

 

Figure 2. Variability in measured maize yields (white dots) according to villages and year, where Gomb = 

Gombeledougou (45 fields), Koum B = Koumbia Bwaba (46 fields) and Koum M = Koumbia Mossi (23 

fields). Horizontal black lines indicate the mean value and the rectangles the interquartile range. 

Table 1. Level of fertility according to measured maize yields in Tuy province (Burkina Faso). 

Fertility class F1 F2 F3 F4 

Maize yield (kg/ha) <1800 1800-3200 3200-4600 >4600 

Weight (% of fields) 27 53 15 5 

2.2. REMOTE SENSING DATA AND PREPROCESSING 152 

2.2.1. Normalized Difference Vegetation Index 153 

For this study, the NDVI time series from the MODIS MOD13Q1 product (collection 6; Didan, 2015) was 154 

used for the 2011-2016 period. MODIS products are freely distributed by the U.S. Land Processes 155 

Distributed Active Archive Center (https://lpdaac.usgs.gov/). The MOD13Q1 product consists of 16-day 156 

NDVI average values at a spatial resolution of 250 m. To reduce any remaining atmospheric effects, we 157 

applied a Savitzky-Golay temporal filter algorithm, a simplified least-square fit convolution used for 158 
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smoothing time series. In order to account for areas with a very low vegetation density, or bare soils, and 159 

thus characterized by no vegetation seasonality, a mask was applied by excluding pixels with NDVI standard 160 

deviation values below 0.125.  161 

In addition, a cropland mask was used to select MODIS cropped pixels and extract the corresponding NDVI 162 

values. The cropland mask was derived from a 2014 land cover classification (Gaetano et al., 2016) made 163 

with ground surveys and very high spatial resolution multi-source images (Pléiades, Deimos, RapidEye, 164 

Landsat). The classification was achieved using a Random Forest algorithm (Breiman, 2001) and produced a 165 

cropland map with 92% overall accuracy. A binary mask was then created (with annual cropped pixels set to 166 

1 and other pixels to 0) and used to obtain a map with the percentage annual cropped pixels at MODIS 167 

resolution (250 m). The MODIS pixels with at least 50% of their area within the crop mask were kept as 168 

annual cropped pixels at 250 m.  169 

2.2.2. Land Surface Temperature 170 

The Land Surface Temperature (LST) MODIS MOD11A2 product (collection 6) was used in this study. The 171 

MOD11A2 product consists of a simple average of clear-sky LST values over an 8-day period at 1 km (Wan, 172 

2015).  The LST data were converted to degrees Celsius. One of the main limitations of MODIS LST data is 173 

that they are highly prone to contamination by clouds or other atmospheric disturbances. Thus, noisy pixels 174 

were removed when LST values were below 0°C and the missing values were filled by also applying a 175 

Savitzky-Golay filter. As for the NDVI time series, non-cropped pixels were masked out taking the same 176 

approach. Lastly, the temporal resolution of the MODIS LST time series was reduced to 16-day resolution in 177 

order to match that of the NDVI time series. 178 

2.2.3. Surface Soil Moisture 179 

The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global Surface Soil Moisture (SSM) 180 

at a spatial resolution of approximately 40 km and a revisit of less than 3 days with a high target accuracy of 181 

4% volumetric soil moisture (Kerr et al., 2010). SMOS SSM provides soil moisture estimation for the top 182 

5 cm of soil based on the relationship between soil moisture and dielectric constant that influences 183 
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microwave brightness temperature (Gruhier et al., 2010). Soil moisture is highly variable spatially, so we 184 

applied a disaggregation approach in order to obtain more relevant soil moisture information for the 185 

monitoring of rainfed crops in heterogeneous agricultural landscapes. The data were disaggregated at a 1 km 186 

spatial resolution using the DisPATCh method (Merlin et al., 2010) based on MODIS NDVI and LST time 187 

series. A 16-day time series was obtained by averaging the daily SM over 16-day periods to match the 188 

MODIS NDVI temporal resolution. Lastly, as for NDVI and LST, the non-annual cropping pixels were 189 

masked out. 190 

2.2.4. Derived vegetation vigour and drought remote sensing indices 191 

In this study, indicators of vegetation productivity and of plant water or heat stress (referred to hereafter as 192 

‘drought indices’) were calculated and investigated as explanatory variables for maize yields to take into 193 

account the impact of agricultural drought as a limiting factor in final crop yields. The indicators were based 194 

on NDVI, LST and SSM or a combination of them. Table 2 gives the different vegetation and drought 195 

indices used in the study. These include NDVI and SSM alone, TCI (Temperature Condition Index), CWSI 196 

(Crop Water Stress Index), TVDI (Temperature Vegetation Dryness Index) and SMADI (Soil Moisture 197 

Agricultural Drought Index). 198 

Table 2. Vegetation and drought indices selected as explanatory variables. Equations are given in 

Supplementary Materials (S2). 

 
Indices Definition Meaning Remote sensing 

data 
References 

Vegetation indices     
NDVI Normalized 

Difference 
Vegetation Index 

Aboveground 
biomass production 

MODIS NDVI Tucker et al. (1980) 

Drought indices     

SSM Soil Surface 
Moisture 

Soil water content SMOS SSM Kerr et al. (2010) 

TCI Temperature 
Condition Index 

Temperature related 
to vegetation stress 
over time 

MODIS LST Kogan (1995) 

CWSI Crop Water Stress 
Index 

Variation in water 
deficit through space 

MODIS LST Jackson et al. 
(1981) 
Son et al. (2012) 
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TVDI Temperature 
Vegetation Dryness 
Index 

Soil water 
availability and 
vegetation conditions 
on the surface 

MODIS NDVI, 
MODIS LST 

Sandholt et al. 
(2002) 

SMADI Soil Moisture 
Agricultural 
Drought Index 

Soil moisture 
drought conditions 

MODIS NDVI, 
MODIS LST, 
SMOS SSM 

Sánchez et al. 
(2016) 

Several studies suggested that accumulated vegetation or drought indices are more closely related to 199 

vegetation growth and crop production than instantaneous measurements (e.g., Meroni et al., 2013; Tucker, 200 

1985). On the other hand, Bolton and Friedl (2013) also found that the inclusion of information related to 201 

crop phenology significantly improved the prediction of maize crop yields. Therefore, each vegetation vigour 202 

and drought indicator was integrated over two phenological phases in order to account for spatial and 203 

temporal variations in crop growth due to environmental characteristics and management strategies: (1) the 204 

vegetative phase determining the aboveground biomass and (2) the productive phase, starting with the 205 

reproductive phase and ending with the ripening phase, and including heading, flowering and development 206 

of fruit, which are sensitive periods. To do so, three seasonal phenological metrics were derived from 207 

MODIS NDVI time series: (1) SOS, the timing of the start of the growth phase, (2) EOS, the timing of the 208 

end of the senescence phase and (3) TOS, the timing of the peak of the growing season. The R software 209 

“greenbrown” package (http://greenbrown.r-forge.r-project.org/index.php) was used to derive phenological 210 

metrics on a pixel basis with a fixed threshold computed from the long-term mean values of the NDVI time 211 

series. All vegetation or drought-related indices were then integrated over the vegetative period 212 

corresponding to the period between SOS and TOS and the productive period corresponding to the period 213 

between TOS and EOS. In order to match the output of the SARRA-O crop model, all indicators were 214 

resampled from their respective original spatial resolution to 4 km spatial resolution using the nearest 215 

neighbour method. 216 

2.3. SARRA-O CROP MODEL SIMULATIONS 217 

The process-based crop model SARRA-O was used in this study. SARRA-O is the spatialized version of the 218 

SARRA-H crop model (Baron et al., 2005) implemented under the Ocelet modelling platform (Degenne and 219 

Lo Seen, 2016). SARRA-H is a process-based crop model, designed to simulate attainable agricultural yields 220 
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under tropical conditions. It takes into account potential and actual evapotranspiration, phenology, potential 221 

and water-limited assimilation, and biomass partitioning. The SARRA-H crop model was calibrated and 222 

verified for different millet, sorghum and maize cultivars based on agronomic trials and on-farm surveys 223 

conducted in different West African countries (Senegal, Burkina-Faso, Mali and Niger; Traoré et al. 2011) 224 

and showed good agreement with FAO statistics (Sultan et al., 2014) and other crop model results (Bassu et 225 

al., 2014; Durand et al., 2018). SARRA-H has been used in several studies in West Africa, particularly to 226 

assess the impacts of climatic change on future cereal yields (Guan et al., 2015; Oettli et al., 2011; Sultan et 227 

al., 2013) or to assess the impact of climate on farmers’ cropping practices (Guan et al., 2017; Marteau et al., 228 

2011; Roudier et al., 2016). In SARRA-H, the water constraints impact the potential yield reduction in 229 

different ways, depending on the phenological phases. During the anthesis to flowering stages, water 230 

constraints will induce a reduction in biomass and yields through a reduction in the number of grains. After 231 

flowering, assimilates are distributed to grains as a priority.  232 

The SARRA-O crop model uses as inputs TAMSAT rainfall data (daily, 4 km; Tarnavsky et al., 2014) and 233 

ECMWF (European Centre for Medium-range Weather Forecast) agrometeorological data (minimum and 234 

maximum temperature, global radiation and evapotranspiration) provided on a 10-day frequency at 0.25° 235 

spatial resolution. However, due to an underestimation of cumulative rainfall over the rainy season and an 236 

overestimation of the daily intensity of rainfall events at the beginning of the rainy season by TAMSAT 237 

compared to ground measurements (Guillemot, 2016), 2014 was not considered in this study. A local maize 238 

cultivar, adapted from the DMR-ESR-W cultivar in Benin (Allé et al., 2014) with a 120-day cycle duration 239 

and lowest harvest index, was used for all simulations. Soils were defined based on the Harmonized World 240 

Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). To catch soil fertility variability due to different 241 

management practices, simulations were conducted considering four fertility levels (F1 to F4; see Section 242 

2.1.) for each type of soil which is translated in SARRA-O by a decrease in the optimum radiation to 243 

biomass conversion capacity. In the model, the sowing date was automatically generated starting from May 1. 244 

The sowing date is defined as the day when simulated plant soil water availability is greater than 10 mm at 245 

the end of the day, followed by a 20-day period during which crop establishment is monitored. The juvenile 246 
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stage of the crop is considered failed, triggering automatic re-sowing, if the simulated daily total biomass 247 

decreases for 3 of the 20 days. 248 

3. METHODOLOGY 249 

3.1.1. Overall approach 250 

The proposed methodology is illustrated by the flowchart presented in Figure 3 and is organised around two 251 

main phases: calibration and validation. In this study, two yields models are tested. The “end of season” 252 

yield model is developed combining a remote sensing model for each component of the yield equation, 253 

namely the aboveground biomass at flowering (AGB-F, Figure 3a) and the Cstr (water stress coefficient, 254 

Figure 3b) using remote sensing indices integrated over the whole cropping season (Figure 3d). The “early 255 

estimate” yield model is built using remote sensing indices integrated over the vegetative period only to have 256 

yield forecast two-months before the end of season (Figure 3c). The SARRA-O crop model is used in this 257 

study to simulate vegetation AGB-F (Figure 3a), the Cstr (Figure 3b) and attainable final maize yields over 258 

the study area, for each growing season between 2011 and 2015, according to the soil type, rainfall regime 259 

and agricultural practices (crop varieties, sowing dates and fertility classes). The simulated SARRA-O data 260 

are then used as a proxy for ground data in the calibration phase of the remote sensing-based model, in a so-261 

called “uncalibrated approach”. In addition, in order to account for drought-related stress over sensitive 262 

phenological phases of the maize cropping development cycle, the Cstr values were integrated over the 263 

productive period (i.e. reproductive and maturation phases, corresponding to phase 4 and phase 5 in 264 

SARRA-O, starting with inflorescence emergence stage and ending with ripening stage), when the final 265 

grain yields were set (Eq.1). The maize AGB-F, Cstr and final grain yields for each fertility class were 266 

aggregated using a weighted average according to the proportion of each fertility class observed in the field 267 

network (Table 1). 268 

���� = ∑ ������	
��	
��	�����
������������������  (1) 269 
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Where ���� (unitless) is the Cstr value integrated during the productive phase and ������	
� the SARRA-O 270 

daily simulated Cstr values. 271 

 272 

Figure 3. Flowchart of the methodology used to estimate maize grain yield.  

3.1.2. Statistical models development and accuracy measurements  273 
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Linear (MLR) and nonlinear (RF) models were tested and compared. Each model was trained with 274 

vegetation vigour and drought related indices as candidate explanatory variables for AGB-F and Cstr (Table 275 

2).  276 

The Multiple Linear Regression (MLR) model is a regression with two or more predictors that are linearly 277 

related to the dependent variable. To avoid an overfitting of the MLR model, the VIF (Variable Inflation 278 

Factor) was used to remove highly correlated predictors. A stepwise approach was used in which VIF was 279 

recalculated at each step and the predictors with the highest VIF were dropped until all VIF values were 280 

smaller than 2 (see Zuur et al. 2010). The remaining predictors were then used in the MLR model. The MLR 281 

model was established for different combinations of predictors (i.e. vegetation or drought-related remote 282 

sensing indices) and cross terms were also considered to take into account possible interactions between 283 

predictors (e.g. impact of SSM on photosynthetic activity and thus on NDVI). Lastly, in order to help in 284 

understanding and to give an ecophysiological meaning to the resulting model, the contribution of each 285 

predictor to the final MLR model was assessed using the Lindeman, Merenda and Gold (LMG) method. The 286 

contribution of each predictor was expressed as a percentage (Grömping, 2006). 287 

The Random Forest (RF) model is a non-parametric algorithm proposed by Breiman (2001) and is an 288 

ensemble learning method based on the combination of decisions from multiple decision trees. RF is a 289 

method that is now widely used in crop monitoring, both for crop yield modelling or cropland mapping (e.g.,  290 

Forkuor et al., 2017; Lebourgeois et al., 2017). It is particularly valuable for its capacity to assess the relative 291 

importance of each predictor (i.e. remote sensing indices) used for regression. For the former point, we 292 

focused on an RF internal variable importance measurement, namely the mean decrease in Mean Square 293 

Error (MSE) where the larger the decrease in MSE, the higher is the predictor variable. In this study, the RF 294 

algorithm was implemented using the RandomForest package available in R (Liaw and Wiener, 2002). 295 

The MLR and RF models were calibrated separately for AGB-F and Cstr. (Figure 3a and Figure 3b) 296 

Vegetation vigour and drought-related remotely sensed indicators integrated over the vegetative (i.e. from 297 

SOS to TOS) and productive (i.e. from TOS to EOS) periods for AGB-F and Cstr, respectively, were used as 298 
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potential candidates each time the MLR and RF models were calibrated and compared over the 2011-2015 299 

period (2014 excluded). In order to test the added-value of soil water content information in estimating and 300 

predicting maize crop yields, each model was calibrated with and without SSM predictors in the input dataset. 301 

The model was assessed using a 10-fold cross validation approach and through five statistical metrics (Table 302 

3). 303 

Table 3. Definition of the accuracy metrics used in the study, where ����is the observed data (i.e., the data 304 

simulated with the SARRA-O crop model), �
���is the predicted data with the MLR or RF models and ����� 305 

is the multi-annual average of observed data and the number of years. “cv” stands for “cross-validation”. 306 

Metric Formula Definition 

cv-R² (coefficient 
of determination) 1 � ∑��������  ���� � �
���!�

∑�������� "���� � �����#� 
Expresses how accurately the 
vegetation vigour or 
drought-related remote sensing 
indices can predict AGB-F or 
Cstr. Its values vary between 0 
(none of the observed data 
variability is explained by the 
model) to 1 (all of the observed 
data variability is explained by 
the model). 

cv-RMSE (Root 
Mean Square 
Error) 

$∑��������  �
��� � ����!�
%  

Gives the error between the 
observed and predicted values. 
Values can range from 0 to ∞ 
with lower values indicating 
better fitting of the model. 

cv-RRMSE 
(Relative Root 
Mean Square 
Error) 

&'()*+�����  
Is a normalization of cv-RMSE 
by the multi-annual average 
observed data. Lower values 
indicate better fitting of the 
model. 

cv-MAE (Mean 
Absolute Error) 

1% , -���� � �
���-����
����

 
Measures the average error in 
the predicted values when 
compared to the observed 
values. Values can range from 0 
(no average absolute difference 
between observed and predicted 
data) to ∞ (large average 
absolute difference).  

Willmott d (index 
of agreement d) . = 1 � ∑��������  ���� � �
���!�

∑  -�
��� � �����- / |���� � �����|!���������
 

Is a standardized measurement 
of the degree of model 
prediction error and is very 
useful for cross-comparisons 
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between models. Its values vary 
between 0 (no agreement 
between observed and predicted 
data) and 1 (perfect agreement). 

In order to be in line with the main ecophysiological processes involved in final grain yield formation as 307 

implemented in most crop models, conversion from the aboveground biomass at flowering (AGB-F) and 308 

crop water stress (Cstr) previously estimated by remote sensing, up to final end-of-season maize grain yields, 309 

was done using a MLR model with interaction between AGB-F and Cstr (Figure 3d, Eq.2). 310 

1234.56��678 = 9 / :�;<=>��?	��?�� / :�������?	��?�� / :@;<=>��?	��?��������?	��?��  (2) 311 

Where 1234.56��678  is the final maize grain yield simulated by SARRA-O; ;<=>��?	��?��  and 312 

������?	��?��  are aboveground biomass at flowering and the crop water stress index integrated over the 313 

productive period estimated by remote sensing models; :�, :�, :@ are the regression coefficients associated 314 

with each term of the equation and 9 the error term. In addition, in order to assess whether the final maize 315 

grain yields could be accurately predicted before the end of the season, the MLR and RF models were also 316 

calibrated using vegetation vigour and drought-related indices integrated over the vegetative period only, 317 

with final maize yields simulated by SARRA-O as the variable to be predicted (Figure 3c). The robustness of 318 

each remote-sensing model for maize yields was verified using independent field data for 2014, 2015 and 319 

2016 aggregated on a village scale. 320 

4. RESULTS 321 

4.1.  SARRA-O CROP MODEL RESULTS 322 

The results of SARRA-O simulations for AGB-F, Cstr and final grain yields for the 2011-2015 period (2014 323 

excluded) are shown in Figure 4. Aboveground biomass at the flowering stage simulated by the SARRA-O 324 

crop model exhibited high temporal variability, with values ranging from 3400 kg/ha in 2015 to almost 7000 325 

kg/ha in 2011 (Figure 4a). Spatial variability was also observed with extreme annual ranges of 800 kg/ha to 326 

1800 kg/ha observed in 2013 and 2015, respectively. On average, 2015 was the year with the lowest values 327 
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for vegetative biomass at the flowering stage, mainly due to a late onset of the rainy season and irregular first 328 

rainfall events, with a low daily intensity (Figure 1b). Compared to AGB-F, the spatial and temporal 329 

variability of Cstr integrated over the reproductive and maturation phases (SARRA-O phases 4 and 5) was 330 

relatively low, except for 2015, which experienced lower water stress during phases 4 and 5 (Cstr around 81), 331 

explained by good rainfall over the productive phase of crop growth (Figure 1b and Figure 4b). Thus, the 332 

final grain yields simulated by SARRA-O mainly reflected the level of AGB-F, with simulated maize yields 333 

ranging from 2400 kg/ha in 2015 to more than 4000 kg/ha in 2011 (Figure 4c).  334 

 

Figure 4: Annual and spatial variability in biomass at flowering simulated by the SARRA-O crop model (a), 

Cstr for phase 4 (reproductive phase) and phase 5 (maturation phase including development of fruit and 

ripening) (b) and final maize grain yields (c). Horizontal black lines indicate the mean value. Cstr is unitless, 

with lower values indicating higher water stress, while higher values indicate lower water stress.  

4.2. MODEL FOR THE EVALUATION OF ABOVEGROUND BIOMASS AT FLOWERING 335 
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The AGB-F simulated by SARRA-O was used to calibrate a remote sensing-based model over the 2011-336 

2015 period using vegetation vigour and drought-related variables (Table 2) integrated over the vegetative 337 

period (SOS-TOS) as predictors. Table 4 presents the accuracy metrics for the final MLR and RF models 338 

considering either the full dataset or the dataset without predictors derived from SMOS SSM (raw SSM and 339 

SMADI integrated over the vegetative period). Figure 5 shows the results (accuracy assessment, cumulative 340 

distribution and variable importance) for the full MLR and RF model. For the MLR model, a prior selection 341 

of the most relevant predictive variables was done by removing predictors causing VIF>2 (NDVI, TVDI and 342 

SMADI). The remaining predictors in the MLR model were variables related to drought conditions (TCI, 343 

CWSI) and soil water content (SSM), with an interaction between TCI and CWSI resulting in the highest 344 

prediction accuracy (Figure 5a and Table 4). The final MLR model had a moderate but highly significant 345 

predictive power (cv-R² = 0.46 and cv-RRMSE of 10.6%) with a tendency to overestimate AGB-F for low 346 

values when compared to simulated values, and to underestimate for high AGB-F values (Figure 5a and 5c). 347 

The RF model was significantly better than the previous one for ABG-F estimation with a cv-R² of 0.57, a 348 

relative error in cross validation of 9.3% (Figure 5b and 5d) and an index of agreement d of 0.84 compared 349 

to 0.71 for the MLR model. The resulting scatterplot of points revealed clear specific patterns for each year 350 

(Figure 5a and 5b) which means that, for both the MLR and RF models, the explained variance came from 351 

the inter-annual variation rather than the spatial variation. The variability distributions for estimated and 352 

simulated AGB-F differed but followed approximately a normal distribution in both cases, particularly for 353 

estimated AGB-F (Figure 5c and 5d). In addition, estimated and simulated AGB-F were in relatively good 354 

agreement around median values, though with better fitting of the RF model to the simulated probability 355 

distribution curve (Figure 5d). For the MLR model, among the predictors in the model, the variable related to 356 

the soil water content appeared to be highly relevant in predicting AGB-F and its annual variability, with 50% 357 

of the cv-R² explained by SSM, while for the RF model the most important variables were TCI (31% mean 358 

decrease in MSE) and NDVI (26% mean decrease in MSE), a proxy for cover temperature and 359 

photosynthetic activity, respectively. When the MLR and RF models were calibrated without SMOS SSM 360 

variables, unsurprisingly the predictive accuracy was significantly lower for the MLR model (cv-R² of 0.23) 361 

while for the RF model no significant improvement was observed (Table 4). 362 
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Table 4. Cross-validation metrics for the AGB-F MLR and RF models. For MLR, the final predictor 363 

combination is indicated in square brackets. * NDVI, SMOS, TCI, TVDI, CWSI, SMADI. *** All cv-R² are 364 

significant for p-value<0.001. 365 
 MLR RF 

 Full 

[CWSIxTCI+SMOS] 

Without Soil 
Moisture 
predictors 

[CWSIxTCI] 

Full* Without Soil 
Moisture 
predictors 

cv-R²*** [0-1] 0.46 0.23 0.57 0.58 

cv-RMSE (kg/ha) 610 723 537 529 

cv-RRMSE (%) 10.6 12.5 9.3 9.2 

cv-MAE (kg/ha) 475 582 397 393 

d [0-1] 0.71 0.45 0.84 0.85 
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Figure 5: Cross-validation accuracy metrics for the AGB-F remote sensing-based model for the full MLR (a) 

and RF (b) models. Cumulative probability distribution between estimated and simulated AGB-F for the full 

MLR (c) and RF (d) models. Vertical lines represent median values. (e) Relative importance of the predictors 

used in the AGB-F full MLR model with a 95% bootstrap confidence interval using the Lindeman, Merenda 

and Gold method. (f) Relative importance of the predictors used in the AGB-F full RF model using the mean 

decrease in Mean Square Error. 
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4.3. EVALUATION OF CSTR DURING REPRODUCTIVE-MATURATION PHASES OF THE MODEL 366 

Remote sensing drought indices (Table 2) integrated over the productive period (from TOS to EOS) were 367 

then used as potential predictors of a final grain yield reducing factor, which was a water stress coefficient 368 

(Cstr) calculated during sensitive phases of crop growth (flowering, development of fruit and ripening 369 

phases). The results of Cstr model calibration are presented in Table 5 and Figure 6. For the MLR model, the 370 

variables remaining as predictive variables after VIF selection were TCI, TDVI and SMADI. The MLR 371 

model exhibited a low but still significant predictive power with a cv-R² of 0.24 with CWSI, TCI and 372 

SMADI remaining in the final model, with interaction between TCI and SMADI, and TCI explaining more 373 

than 50% of cv-R². For Cstr estimation, the RF model was also better with a cv-R² of 0.43 with the most 374 

important variables being variables related to temperature conditions (TCI and CWSI), as for the MLR 375 

model (Figure 6e and 6f). However, for both models, the cv-RRMSE value was below 2%, meaning that, on 376 

average, the values predicted by remote sensing were very close to the Cstr values simulated by the SARRA-377 

O crop model. This could be attributed to the low variability observed in the Cstr values simulated by 378 

SARRA-O. When analysing variability distribution (Figure 6c and 6d), we found quite a similar distribution 379 

curve for the MLR and RF model estimations with, in both cases, an overestimation of low Cstr values and, 380 

conversely, an underestimation of the highest Cstr values. Calibration of the Cstr models without SSM-381 

related predictors led to a stronger impact on the predictive accuracy of the RF model, resulting in a drop in 382 

cv-R² of 28% explained mostly by the fact that SSM and SMADI accounted together for 43% of the mean 383 

decrease in MSE (Figure 6f). 384 

4.4. EVALUATION AND VALIDATION OF MAIZE GRAIN YIELD MODELS (END OF SEASON AND 385 

EARLY END ESTIMATIONS) 386 

Firstly, the end-of-season maize grain yield model was established using a linear relationship between 387 

AGB-F estimated by remote sensing during the vegetative period, Cstr during the productive period and 388 

yields simulated by SARRA-O (Eq.2). Table 6 and Figure 7 present the accuracy evaluation of the final 389 

remote sensing-based MLR and RF models for yields, considering either the full dataset or the dataset 390 

without SMOS SSM-related variables.  391 
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Table 5. Cross-validation metrics for Cstr Phase 4-5 MLR and RF models. For MLR, the final predictor 392 

combination is indicated in square brackets. * SMOS, TCI, TVDI, CWSI, SMADI. *** All cv-R² are significant for 393 
p-value<0.001. 394 

 MLR RF 

 Full 

[CWSI+TCIxSMADI] 

Without Soil 
Moisture 
predictors 

[CWSI+TCI] 

Full* Without Soil 
Moisture 
predictors 

cv-R²*** [0-1] 0.24 0.17 0.43 0.15 

cv-RMSE 1.05 1.10 0.90 1.11 

cv-RRMSE (%) 1.31 1.37 1.13 1.39 

cv-MAE  0.87 0.90 0.69 0.89 

d [0-1] 0.60 0.50 0.77 0.50 

The final remote sensing-based models both had good potential for estimating end-of-season maize yields 395 

and their inter-annual variability with a cv-R² of 0.54 for the MLR model and cv-R² of 0.59 for the RF model 396 

between simulated SARRA-O and predicted maize yields and a cross-validated RMSE below 300 kg/ha 397 

(Table 6 and Figure 7a and 7b). Average conditions, and extreme conditions like those in 2015, were 398 

properly captured by both models, while spatial yield variability was poorly rendered by both models, as 399 

suggested by the absence of a clear pattern within each year (Figure 7a and 7b). This results in overall good 400 

fitting of the estimated yields to the simulated probability distribution curve, particularly around low and 401 

median values, with median simulated yields of 3634 kg/ha and 3648 kg/ha for the MLR model and 3659 402 

kg/ha for the RF model (Figure 7c and 7d). Lastly, the importance of the SMOS SSM-related variables in the 403 

predictive accuracy of the remote sensing-based model mirrored that of the AGB-F biomass estimation, with 404 

a higher impact on the MLR model than on the RF model (Table 6).  405 
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 406 

Figure 6: Cross-validation accuracy metrics for the Cstr Phase 4-5 remote sensing-based model, for the full 407 

MLR (a) and RF (b) models. Cumulative probability distribution between estimated and simulated Cstr 408 

Phase 4-5 for the full MLR (c) and RF (d) models. Vertical lines represent median values. (e) Relative 409 

importance of the predictors used in the Cstr Phase 4-5 full MLR model with a 95% bootstrap confidence 410 

interval using the Lindeman, Merenda and Gold method. (f) Relative importance of the predictors used in the 411 

Cstr Phase 4-5 full RF model using the mean decrease in Mean Square Error. 412 
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This implies that incorporating soil moisture adds little information to the RF model, while most of the yield 413 

variability seems to be linked to the soil water content information in the MLR model. 414 

Table 6. Cross-validation metrics for final maize grain yield models based on the combination of AGB-F and 415 

Cstr Phase 4-5 estimated by the MLR and RF models. *** All cv-R² are significant for p-value<0.001). 416 

 MLR RF 

 Full 

 

Without Soil 
Moisture 
predictors 

Full Without Soil 
Moisture 
predictors 

cv-R²*** [0-1] 0.54 0.17 0.59 0.52 

cv-RMSE (kg/ha) 271 363 258 273 

cv-RRMSE (%) 7.65 10.3 7.29 7.72 

cv-MAE (kg/ha) 213 291 201 214 

d [0-1] 0.80 0.48 0.82 0.79 
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 417 

Figure 7: Cross-validation accuracy metrics for the maize yield remote sensing-based model obtained from 418 

AGB-F and Cstr Phase 4-5 for the full MLR (a) and RF (b) models. Cumulative probability distribution 419 

between estimated maize yields and simulated maize yields for the full MLR (c) and RF (d) models are 420 

presented. Vertical lines represent median values. 421 

Secondly, the final maize grain yield model was established using estimated AGB-F and Cstr values 422 

obtained with vegetation vigour and drought indices over the vegetative period (SOS-TOS, Table 7 and 423 

Figure 8) in order to have an assessment of maize yields prior to the end of the cropping season. When 424 

compared to simulated SARRA-O maize yields, the results showed that between 42% and 53% of yield 425 

variance was predicted by the MLR and RF models, respectively, with cv-RMSE values similar to the 426 

models calibrated over the full cropping season (cv-RRMSE below the threshold of 10%) and an overall 427 

agreement when the probability distribution curves were compared, particularly around median values for 428 
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the RF model (3629 kg/ha). All in all, this means that roughly half of the maize yield variability could be 429 

explained about two months before the end of the cropping season. 430 

Table 7. Cross-validation metrics for early assessment of maize grain yield models using remote sensing 431 

indices integrated over the vegetative period only. *** All cv-R² are significant for p-value<0.001. 432 

 MLR 

[CWSIxTCIxSMOS] 

RF 

cv-R²*** [0-1] 0.42 0.53 

cv-RMSE 

(kg/ha) 

303 271 

cv-RRMSE (%) 8.57 7.65 

cv-MAE (kg/ha) 236 202 

d [0-1] 0.71 0.82 

 433 

 434 

Figure 8: Cross-validation accuracy metrics and cumulative probability distribution between early estimated 435 

maize yields and simulated maize yields at the end of the season for the full MLR (c) and RF (d) models. The 436 

remote sensing-based models were calibrated using the full dataset over the vegetative period (SOS-TOS). 437 

Vertical lines represent median values. 438 

Lastly, the robustness of the remote sensing-based models was assessed using independent maize yield data 439 

from field surveys for 2014, 2015 and 2016. Thus, maize yields were estimated from the previous MLR and 440 

RF models for 2014 and 2016, which were years not used in the calibration steps. The results are illustrated 441 
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in Table 8. Overall, when compared to an independent dataset, the RF models outperformed the MLR 442 

models and depicted overall good agreement with field data, accounting for roughly 60% of the yield 443 

variability when all the cropping season was considered and 46% in early assessment with, however, high 444 

error in the second configuration (1117 kg/ha).  445 

Table 8. Accuracy metrics for the validation of the MLR and RF models with field yield data for 2014, 2015 446 

and 2016. The results were compared on an annual basis on a village scale. * R² significant for p-value<0.1. 447 

** R² significant for p-value<0.01. 448 

 MLR RF 

 Estimation 

 

Early 
assessment 

Estimation Early 
assessment 

R² [0-1] 0.39* 0.10 0.59** 0.46* 

RMSE (kg/ha) 823 824 637 1117 

RRMSE (%) 33.4 33.4 25.9 45 

MAE (kg/ha) 806 768 592 1096 

5. DISCUSSION 449 

5.1. MAIN FINDINGS 450 

In most crop models, the basic ecophysiological processes involved in final grain yield build-up rely on an 451 

empirical reduction function applied to potential yield based on a crop water stress factor calculated during 452 

the phenological phases. The present study proposed a remote sensing-based model that went beyond 453 

traditional methods, by taking into account essential ecophysiological processes implemented in a crop 454 

growth model. Overall, we found that with the machine learning model (RF) we were able to obtain a 455 

reliable estimation of year-on-year variability in maize yields, both at the end of the season (R2 of 0.59) and 456 

approximately two months prior to harvest (R2 of 0.49), with a significant impact of soil water content 457 

information for Cstr estimation from the flowering to ripening phases. Our results are in line with and 458 

comparable to previous studies, both in intensive agriculture and in tropical smallholder farming systems. 459 

For instance, by also using an “uncalibrated approach”, in the USA, Sibley et al. (2014) and Lobell et al. 460 
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(2015) were able to explain 37% and an average of 35% of the maize yield variance in the USA with a model 461 

using a MODIS and a Landsat-derived vegetation index, respectively. Meanwhile, in a tropical context 462 

characterized by a fragmented agricultural landscape, Mkhabela et al. (2005) obtained accuracies ranging 463 

from 5% to 68% on the scale of an ecological zone in Zimbabwe using NOAA’s-AVHRR NDVI. Azzari et 464 

al. (2017) obtained a R2 of 0.55 on a province scale using MODIS data in Zambia. As mentioned in the 465 

introduction, such studies have not yet been conducted for maize in West Africa. This suggests that low 466 

spatial resolution, such as MODIS, can be considered as a reliable alternative to high spatial resolution 467 

images for rainfed crop yield estimates and their inter-annual variability in heterogeneous agricultural 468 

landscape, as there is often a lack of sufficient dense time series of high spatial resolution.  469 

5.2. CAN NONLINEAR STATISTICAL MODELS IMPROVE MAIZE GRAIN YIELD ESTIMATIONS 470 

COMPARED TO LINEAR STATISTICAL MODELS? 471 

In the calibration phase, we found that the RF model was only slightly better than the MLR model, both for 472 

estimating and predicting maize yields (Table 7). However, when compared to an independent dataset, and 473 

including an additional year, we found that the machine learning model outperformed the linear model 474 

(Table 8). Despite the supremacy of linear models in the field of crop yield forecasting relying on remote 475 

sensing observations (e.g. Bolton and Friedl, 2013; Jin et al., 2017; Rasmussen, 1998), this study brings 476 

evidence in support of agro-ecosystems functioning with complex interactions between biophysical, 477 

ecological and physiological processes, and management practices, that can be far from linear. The results of 478 

this study are in line with the recent study by Jeong et al. (2016). However, as pointed out by the authors, RF 479 

is a “black box” approach in the sense that the relationships between the response variable and the predictors 480 

are not easily readable, since the algorithm is based on a set of decision trees, where each single tree is not 481 

accessible. While the results of this study seem to show promising prospects of the machine learning 482 

algorithm for crop yield forecasting in smallholder agriculture, a more in-depth analysis would be necessary 483 

to test the robustness of the method using a longer time series, including more variability in terms of 484 

agrometeorological conditions and, particularly, extreme drought or excess moisture years. Indeed, as 485 

already observed by Jeong et al. (2016) we also found a systematic tendency to underestimate high yield 486 
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values and to overestimate low yield values (Figure 7 and Figure 8). This effect was attributed by the authors 487 

to an imbalance in the variance distribution of the variables, which implied a tendency for the algorithm to 488 

underestimate or overestimate extreme years, such as 2015 (Figure 7). Thus, when predicting extreme 489 

conditions, our RF model may result in a loss of accuracy. Increasing the size of the calibration dataset, with 490 

more balanced predictor variance, may help to minimize this issue. In addition, the specific patterns observed 491 

in the RF estimated AGB-F vs simulated SARRA-O AGB-F (Figure 5b) and the RF estimated yield vs 492 

simulated SARRA-O yield (Figure 7) depicted a good capacity of the RF model to render year-on-year 493 

variability, but a limited ability to retrieve spatial variability. In a context marked by high between-field yield 494 

variability due to rainfall variability, soil fertility and management practices, this is the main limitation of our 495 

study. It has been shown, for instance, for millet in Niger that spatial yield patterns are greatly determined by 496 

the variability in sowing dates (Akponikpè et al., 2011). Integrating information on spatio-temporal rainfall 497 

distribution and sowing conditions, together with vegetation and drought-related indices, can certainly help 498 

to predict spatial yield variability more precisely.  499 

5.3. CAN REMOTE SENSING INFORMATION RELATIVE TO SOIL MOISTURE AND SOIL WATER 500 

CONTENT HELP IN BETTER ACCOUNTING FOR WATER STRESS IN THE FINAL MAIZE YIELDS? 501 

Our results showed a stronger impact of SSM-related variables in the MLR model, mainly due to a high 502 

contribution of SSM integrated over the vegetative period to maize AGB-F. This can be explained by the fact 503 

that herbaceous vegetation seed germination is highly dependent on the amount of moisture available for the 504 

seeds. In SARRA-O, germination is triggered when simulated soil water available for the plant is greater 505 

than 10 mm at the end of the day. On the other hand, for the RF model, SMOS SSM and SMADI were of 506 

greater importance for Cstr over the sensitive phenological phases for maize and went hand in hand with 507 

temperature condition indicators (TCI and CWSI), but with a limited impact on final maize grain yields. This 508 

limited impact on final maize yields can also be explained by a near absence of Cstr simulated by SARRA-O 509 

over the study period. Here, the interaction between temperature and soil moisture suggested that crop water 510 

stress depended either on a reduction in soil moisture or an increase in drought, with both having an impact 511 

on how maize copes with heat, such as evaporative cooling (Lobell et al., 2011a). While processes 512 
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determining crop yield are mainly limited by the soil water content in the root zone depth, our study 513 

highlighted that information on near-surface soil moisture (0-5 cm) is already a good proxy for the water 514 

effectively available for developing vegetation. Besides the SSM variables, the Temperature Condition Index 515 

(TCI) was also revealed to be an important variable, particularly for Cstr estimation, in both the MLR and 516 

RF models (see Figure 6e and 6f). This tallied with the study by Unganai and Kogan (1998), where a strong 517 

correlation was found between TCI and maize yields during the grain filling period in Zimbabwe. While 518 

most process-based crop models rely on ambient air temperature to drive various processes such as 519 

photosynthesis, the development rate or reproductive development (Eyshi Rezaei et al., 2015), it has been 520 

shown that canopy temperature more effectively explains grain losses, particularly when heat stress occurs 521 

around sensitive phases (Siebert et al., 2014). In particular, heat stress induces a decrease in transpiration rate 522 

and thus an increase in crop canopy temperature resulting from stomatal closure. For maize, photosynthesis 523 

and reproductive processes are altered, particularly when heat stress occurs at the flowering stage or during 524 

grain filling, with a significant reduction in the grain number, a key element of final yields (Eyshi Rezaei et 525 

al., 2015). Thus, our results are along the same lines as the results of studies conducted on a field scale as 526 

well as a regional scale (Lobell et al., 2011a), and they highlighted the need to account for canopy 527 

temperature conditions in remote sensing-based yield models. 528 

5.4. CAN AN EARLY ESTIMATION OF FINAL MAIZE YIELDS BE OBTAINED BEFORE HARVEST WITH 529 

A REMOTE SENSING-BASED MODEL? 530 

When compared to the yields simulated with the SARRA-O crop model, both the MLR and RF models 531 

allowed an early estimation of maize grain yields (two months on average; Table 7). However, when 532 

compared to field data, only the RF model was able to explain 46% of the observed yield variability, but with 533 

an overestimation of roughly 1120 kg/ha (RRMSE of 45%, Table 8). For the MLR model, the low predictive 534 

power regarding observed maize yields came from a limited ability to accurately estimate yields for 2016. 535 

When 2016 was discarded from the analysis, the MLR model was able to account for more than 90% of the 536 

measured yield variability (not shown). This illustrates one of the main limitations of a parametric model 537 

such as MLR, which is not easily extendable to periods outside the one used for regression. For instance, 538 
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variations in agrometeorological conditions may not have been included in the population from which the 539 

MLR model was derived. For the RF model, the overestimation was mainly due to the fact that relying solely 540 

on remote sensing indicators taken over the vegetative period amounted to estimating potential yields 541 

(similar to AGB-F). However, these potential yields can be drastically reduced if a heat or drought stress 542 

occurs during sensitive phases. In addition, this overestimation was not disconnected from the “uncalibrated 543 

approach”, since the SARRA-O crop model simulates attainable yields according to agrometeorological 544 

constraints, but does not integrate all biotic or non-environmental factors that may lead to yield variations 545 

(Sultan et al., 2005). Despite this overestimation, whenever temporal variability is well represented, it is 546 

already useful information and constitutes an improvement in risk forecasting of a maize grain yield deficit.  547 

5.5. TOWARDS A SCALABILITY OF REMOTE SENSING-BASED MAIZE YIELD ESTIMATIONS 548 

The approach proposed in this study relies on the calibration of a remote sensing model based on the output 549 

of a crop model, considered as a proxy for observation data, thus not requiring any ground data. For areas 550 

such as in West Africa, where ground measurements are either unreliable or not available at the right time, 551 

the performance of the “uncalibrated approach” is undoubtedly a definite option for the scalability of maize 552 

yield estimations over wider areas. However, several issues have to be addressed before extending to other 553 

areas or other types of crops. 554 

Firstly, besides the need for reliable ground data observations for model calibration, the estimation of maize 555 

yields over larger areas also requires an accurate crop mask on a regional scale, so as to have a crop signal 556 

that is as pure as possible and to avoid bias introduced by natural or semi-natural vegetation. The launch of 557 

new sensors, such as Sentinel-2 with high spatial, temporal and spectral resolution (Drusch et al., 2012), or 558 

progress in cloud computing solutions, open up new perspectives for enhancing cropland monitoring in 559 

fragmented landscapes and mapping on a wide scale (Fritz et al., 2015; Pérez-Hoyos et al., 2017).  560 

A second improvement that would be required is the use of vegetation vigour and drought-related indices at a 561 

higher spatial resolution, in order to be more consistent with the spatial complexity of smallholder farming 562 

systems. Here, we obtained good results with MODIS and downscaled SMOS aggregated at 4 km for a 563 



32 

system dominated by maize with small fields in a relatively flat environment. For highland farming systems 564 

characterized by rugged terrain, very small fields, a large variety of crop species and/or the presence of 565 

mixed crops or agroforestery systems, such results probably could not be achieved without an adaptation of 566 

the proposed approach. Again, a lot of hope is placed in the new generation of high-resolution sensors, such 567 

as Sentinel-2, as well as the improvement of spatial disaggregation techniques for low-resolution product 568 

sensors, such as SMOS, making it possible to mitigate the impact of mixed-pixels on the spectral signatures 569 

of cropping areas and thus to improve crop yield estimating and forecasting in heterogeneous African 570 

farming systems (Chivasa et al., 2017). 571 

One caveat of our study is the estimation of phenological metrics using and automatic method based on a 572 

threshold computed from the long-term mean values of the NDVI time series. However, as we used coarse 573 

resolution data, the bias in estimating crop phenology can be huge and the start of the season was more 574 

probably a translation of the response of surrounding trees and shrubs, which tended to start a month before 575 

crop vegetation (Vintrou et al., 2014). Thus, a third requirement would be not to rely on phenological metrics, 576 

but rather detect and take into account farming practices, such as sowing dates, in a spatially explicit fashion. 577 

Last, but not least, while the focus of the study was on maize crop yields, what is even more important for 578 

many users, such as early warning systems, national agricultural statistics departments, or other institutes in 579 

charge of agricultural management and planning, is total crop production. With a view to improving food 580 

security it is, for instance, important to have reliable information on food availability, which implies food 581 

production as a function of total crop area and yield per unit area. Thus, focusing solely on final crop yields 582 

may lead to a not insubstantial underestimation of food availability. Thus, a last requirement to be met is 583 

now to promote research on food production estimations considering crop areas and yield estimates together. 584 

6. CONCLUSION 585 

A timely and robust maize grain yield model based on remote sensing, crop modelling and statistical 586 

approaches was developed in a context where ground measurements are either unreliable or not available at 587 

the right time. To this end, we adopted an “uncalibrated approach” as defined and tested recently by Burke 588 
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and Lobell (2017), Lobell et al. (2015), where the output of the SARRA-O crop model, validated over our 589 

study area, was used as pseudo-ground data to estimate vegetative biomass at the flowering stage and a crop 590 

water stress index to restrain the conversion from aboveground biomass to final grain yield. Three different 591 

approaches were tested: (1) a linear (MLR) vs nonlinear (RF) statistical model, (2) the use of soil water 592 

content information to improve the performance of the maize yield model and (3) an estimation vs a 593 

forecasting approach. This study showed that a nonlinear model, such as Random Forest, outperformed a 594 

traditional linear model for maize yield estimates making it more possible to account for underlying 595 

ecophysiological processes involved in vegetation development. In addition, soil moisture information as a 596 

proxy for the soil water actually available for vegetation growth contributed to improving the RF maize yield 597 

model, particularly by impacting mainly on crop water stress (Cstr) over sensitive phases of maize 598 

development, such as the reproductive and maturation phases. Furthermore, we found that the year-on-year 599 

variability of end-of-season maize grain yields can be predicted with a good level of confidence two months 600 

before the end of the season, when only data from the vegetative period are used in the remote sensing model. 601 

The early assessment of main crop yield reduction is of great importance for improving early warning 602 

systems for food security, by mitigating the impact of food shortages on population food security and 603 

livelihoods, as well as helping in drawing up strategic planning to meet food demands. This is strengthened 604 

by the use of an “uncalibrated approach”, which did not require ground measurements for calibration of the 605 

remote sensing-based yield model, which are usually considered as a significant curb to the effectiveness of 606 

crop monitoring systems in the region. However, continued efforts are needed to validate the approach 607 

presented in this study, particularly by extending the analysis to other smallholder farming systems around 608 

the world, and to move towards scalability over larger areas. Such efforts can also be supported by the use of 609 

time series from multiple new high spatial and temporal resolution sensors such as Sentinel, Venµs or Planet, 610 

which would not only significantly improve the estimation of maize grain yields and their year-on-year 611 

variability over large areas, but would also make it possible to capture more precisely the variability in yields 612 

between and within fields. 613 
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 830 

Supplementary Material S1. List of the R software packages used in the study : references, the 831 

main uses and functions employed are provided. 832 

Package Description Reference Use Function 

car A companion to Applied 

Regression 
Fox, J. and Weisberg, S. 

(2011) 
Statistical analysis vif 

DAAG Data Analysis and 

Graphics Data and 

Functions 

Maindonald, J.H and 

Braun, W.J. 2015 
Statistical analysis cv.lm 

doParallel Foreach Parallel Adaptor 

for the 'parallel' 
Package 

Microsoft Corporation 

and Wetson, S. 2017 
Remote sensing 

processing 
foreach 

gdalUtils Wrappers for the 

Geospatial Data 
Abstraction Library 

(GDAL) Utilities 

Greenberg, J.A. and 

Mattiuzzi, M. 2015 
Remote sensing 

processing 
gdalwarp 

ggplot2 Elegant Graphics for Data 

Analysis 
Wickham, H. 2009 Graphic Ggplot, geom_point, 

geom_smooth, 

geom_abline, 

geom_vline, stat_ecdf, 

geom_bar 

ggthemes Extra Themes, Scales and 

Geoms for 'ggplot2' 
Arnold, J.B. 2017 Graphic theme, scale_color, 

scale_fill 

greenbrown Land surface phenology 

and trend analysis 
Forkel et al. 2013 Remote sensing 

processing 
PhenologyRaster 

hydroGOF Goodness-of-fit functions 

for comparison of 

simulated and observed 

hydrological time series 

Zambrano-Bigiarini, M. 

2017 
Statistical analysis rmse, rd, mae 

quantreg Quantile Regression Koenker, R. 2017 Statistical analysis rq 

signal Signal processing Signal developers. 2013 Remote sensing 

processing 
sgolayfilt 

randomForest Breiman and Cutler's 

Random Forests for 

Classification and 

Regression 

Liaw, A. and Wiener, M. 

(2002) 
Statistical analysis randomForest 

raster Geographic data analysis 

and modelling 
Hijmans, R.J. 2016 Remote sensing 

processing 
raster, stack, extent, 

crop, calc, writeRaster, 

shapefile, stackApply, 

values, projectRaster 

relaimpo Relative Importance for 

Linear Regression in R 
Grömping, U. 2006 Statistical analysis calc.relimp, boot.relimp 

reshape2 Reshaping Data with the 

reshape Package 
Hickham, H. 2007 Graphic melt 

stats The R Stats package R Core Team. 2017 Statistical analysis lm 

yarrr A Companion to the e-

Book "YaRrr!: The Pirate's 

Guide to R" 

Phillips, N. 2017 Graphic piratplot 

833 

 834 
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Supplementary Material S2. Equation of the vegetation and drought indices used as explanatory 835 

variables. 836 

Vegetation Index 837 

ABCD = "EF�� � E�#  ÷  "EF�� / E�#   838 

Where E� and EF�� are the surface reflectance in the Red and Near Infra Red bands. 839 

 840 

Drought Indices 841 

I�D =  "J*I�K
?	 ��L � J*I	#  ÷ "J*I�K
?	 ��L � J*I�K
?	 �	�) 842 

Where J*I	 is the smoothed weekly Land Surface Temperature (LST), and J*I�K
?	 ��L and J*I�K
?	 �	� 843 

its multi-year maximum and minimum, respectively. 844 

�M*D =  "J*I	 �  J*I�	�	#  ÷ "J*I��L	 �  J*I �	�	) 845 

Where J*I	 is the smoothed weekly Land Surface Temperature (LST), and J*I ��L	 and J*I�	�	 its 846 

maximum and minimum (i.e. maximum and minimum for the week i), respectively. 847 

ICBD =  "J*I	 �  J*I�	�#  ÷ "N / OABCD	 �  J*I �	�) 848 

Where J*I	 is the smoothed be-weekly Land Surface Temperature (LST), ABCD	 is the smoothed be-weekly 849 

Normalised Difference Vegetation Index, J*I�	� is the minimum temperature observed in the NDVI/LST 850 

space regression (wet edge) and J*I��L =  N / OABCD is the maximum LST temperature for a given value 851 

of NDVI, N and O are the intercept and the slope of the dry edge, modeled as a linear fit to the data. 852 

*);BD = *)P*	  × "J*I	  ÷  ABCD	# 853 

Where *)P*	 is the smoother be-weekly soil surface moisture, J*I	 and  ABCD	 its smoother be-weekly 854 

LST and NDVI, respectively.855 

 856 




