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a b s t r a c t 

We describe a reference spatial database and four land use 

maps of Antananarivo city produced over 2017 reference year 

using a methodology combining machine learning and ob- 

ject based image analysis (OBIA). These maps are produced 

by processing satellite images using the Moringa land cover 

processing chain developed in our laboratory. We use a sin- 

gle very high spatial resolution (VHSR) Pleiades image, a time 

series of Sentinel-2 and Landsat-8 images, a Digital Terrain 

Model (DTM) and the aforementioned reference database. 

According to the Moringa workflow, the Pleiades image is 

used to generate a suitable object layer at VHSR using a 

segmentation algorithm. Each object is then classified us- 

ing variables from the time series and information from the 

DTM. The reference database used to train the supervised 

classification algorithm is here described, as well as the 4 

land cover maps produced at four different hierarchically 

nested nomenclature levels. For a number of classes going 

from 2 to 20, overall accuracies range from 94% to 74%. Such 
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land cover products are very rare in Madagascar, so we have 

decided to make them openly accessible and usable by land 

managers and researchers. 

© 2020 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Computer Science, Earth Sciences, Social Sciences 

Specific subject area Remote Sensing, GIS, Land Cover Map 

Type of data Vector 

How data were 

acquired 

The reference database was created with the QGIS software ( www.qgis.org ) 

For the production of land use maps, the Moringa processing chain uses the Orfeo 

ToolBox software ( www.orfeo-toolbox.org ) driven by Python scripts. The source code of 

the Moringa processing chain is available at 

https://gitlab.irstea.fr/raffaele.gaetano/moringa.git 

Data format Raw data (Shapefile, Esri) 

Parameters for data 

collection 

To build the reference database, plots were chosen in order to have (i) a good 

representativeness of each class and (ii) a homogeneous distribution of classes over the 

study area 

Description of data 

collection 

To build the reference database, GPS waypoints were collected during the end of 2017 

rainy season. A Trimble Yuma2 tablet was used to collect the waypoints. Each waypoint 

was then converted into a polygon by digitizing the boundaries of the corresponding 

land cover using the VHSR Pleiades image as a support for photo-interpretation. 

To produce the land use maps, the Moringa processing chain was used, implementing aa 

supervised classification method for satellite images (Sentinel2, Landsat8 and Pleiades) 

based on the Random Forest algorithm driven by the reference database mentioned 

above. We produced four land use maps using the reference database and satellite image 

classifications as described below. 

Data source location Antananarivo, capital of Madagascar located in the Indian Ocean (upper left corner: 

18 °43 ′ 37.71 ′ ’S and 47 °19 ′ 23.42 ′ ’E // lower right corner: 19 °06 ′ 07.73 ′ ’S and 47 °39 ′ 14.21 ′ ’E) 

Data accessibility Repository name: CIRAD Dataverse 

Data identification number: 

Land Use Map: Dupuy, Stéphane; Defrise, Laurence; Gaetano, Raffaele; Burnod, Perrine, 

2019, "Antananarivo - 2017 Land cover map", doi:10.18167/DVN1/NHE34C, CIRAD 

Dataverse, V2 

Reference database: Laurence, Defrise; Andriamanga, Valérie; Rasoamalala, Eloise; 

Dupuy, Stéphane; Burnod, Perrine, 2019, "Antananarivo - Madagascar - 2017, Land use 

reference spatial database", doi:10.18167/DVN1/5TZOOW, CIRAD Dataverse, V1 

Direct URL to data: 

Data are referenced in the CIRAD Dataverse and are hosted on CIRAD’s Aware 

Geographic catalog. The web links are in the following files. 

Land use map: http://dx.doi.org/10.18167/DVN1/NHE34C 

Reference database: http://dx.doi.org/10.18167/DVN1/5TZOOW 

Related research article S. Dupuy, L. Defrise, V. Lebourgeois, R. Gaetano, P. Burnod, J.-P. Tonneau, analyzing Urban 

Agriculture’s Contribution to a Southern City’s Resilience through Land Cover Mapping: 

The Case of Antananarivo, Capital of Madagascar, Remote Sensing. 12 (2020). 

https://doi.org/10.3390/rs12121962 . 

alue of the Data 

• The maps can be used by institutions and land planners to update urban and sanitation mas-

ter plans. 

• The reference database can be used by remote sensing specialists to assess new methods for

land cover mapping and other classification algorithms. 

• All data provided is georeferenced and in vector format for use in GIS tools in future projects.

http://creativecommons.org/licenses/by/4.0/
http://www.qgis.org
http://www.orfeo-toolbox.org
https://gitlab.irstea.fr/raffaele.gaetano/moringa.git
http://dx.doi.org/10.18167/DVN1/NHE34C
http://dx.doi.org/10.18167/DVN1/5TZOOW
https://doi.org/10.3390/rs12121962


D. Stéphane, D. Laurence and G. Raffaele et al. / Data in Brief 31 (2020) 105952 3 

Table 1 

Nomenclature presenting the four levels of precision and the number of polygons in reference database level 4. 

Level 1 

Crop Land 

Level 2 Land Cover Level 3 Crop Group Level 4 Crop Class Number of 

polygons 

Non crop Urban area Built-up surface Mixed habitat 284 

Residential area 149 

Rural housing 110 

Industrial, commercial 

and military area 

Industrial, commercial and 

military area 

99 

Quarry, landfill and 

construction site 

Quarry, landfill and 

construction site 

60 

Brick extraction 111 

Natural spaces Bare non-agricultural 

soil 

Bare non-agricultural soil 87 

Savannah Herbaceous savannah 111 

Shrub savannah 155 

Forest Forest Tree savannah 196 

Pines 110 

Waterbodies and 

wetland 

Water bodies Water bodies 143 

Wetland Wetland 80 

Crop Annual and pluriannual 

crops 

Irrigated crop Rice 350 

Watercress 83 

Vegetable crop Vegetable crop 371 

Rainfed crop Cassava 192 

Other rainfed crop 140 

Fallows, pasture and 

agricultural bare soil 

Fallows, pasture and 

bare agricultural soil 

Fallows, pasture and bare 

agricultural soil 

99 

Fruit crop Fruit crop Fruit crop 138 

TOTAL 3 068 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Data Description 

The data described in this paper are of two different types related to land use on the greater

Antananarivo area: 

• A GIS reference database in ESRI shapefile format composed of 3068 polygons representative

of the diversity of land uses in Antananarivo. Each polygon is annotated with four class labels

corresponding to four levels of nomenclature. Class nomenclatures are hierarchically nested,

and the number of classes ranges from 2 at level 1 (crop vs. non-crop) to 20 at level 4.

Detailed hierarchical nomenclature is shown in Table 1 . This database is used to generate

training samples in the Moringa supervised classification process in order to identify land

use classes from a set of variables extracted from high and very high spatial resolution satel-

lite images. We use the reference database to evaluate the accuracy of the provided land

use maps with a cross-validation technique. The spatial distribution of reference polygons is

depicted in Fig. 1 . 

• Four land use maps produced by processing multisource satellite data including a Very High

Spatial Resolution (VHRS) Pleiades image, a time series of HRS Sentinel-2 and Landsat-8 im-

ages and a digital terrain model. Each map correspond to land use at one of the four levels

of nomenclature (from 2 to 20 classes), and is distributed in vector format (shapefile). Each

geometry corresponds to an object provided by the segmentation of the Pleiades image, at-

tributed using a class label at the specific nomenclature level. Validation results show that

map accuracies range from 76% for the most detailed nomenclature level (20 classes) to 94%

for the least detailed level (2 classes). The four maps produced are illustrated in Figs. 2 –5 . 

Final maps in ESRI shapefile format are delivered in the local UTM projection (WGS 84 UTM

38 South, EPSG code 32,738). Data are referenced in the CIRAD Dataverse. Further description of

these data and their use in a real world case study is detailed in the article [1] . 
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Fig. 1. Distribution of the collected polygons - Vector file in ESRI shape format available here: http://dx.doi.org/10.18167/ 

DVN1/5TZOOW . 
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. Experimental design, materials, and methods 

.1. Materials 

.1.1. 2017 reference database and nomenclature 

The reference database is organized according to a multi-level nomenclature (Cf. Table 1 ).

ield surveys were performed during the end of the 2017 rainy season (March to April), which

orresponds to the peak of the growing season. GPS waypoints were collected following an op-

ortunistic sampling approach [2] . Waypoints were collected within the whole study area in or-

er to have a representativeness of the existing types of crops and urban structures. GPS points

ave also been recorded for uncultivated and unbuilt plots such as savannah, forest or marsh.

ach waypoint was then converted into a polygon by digitizing the boundaries of the corre-

ponding land cover on a VHSR Pleiades image (0.5 m 

∗ 0.5 m pixel size). 981 additional poly-

ons were digitized by photointerpretation of the Pleiades image for easily recognizable classes

housing, brick extraction, rice, watercress and savannah). The final ground database was thus

omposed of 3068 polygons (Cf. Fig. 1 ). 

http://dx.doi.org/10.18167/DVN1/5TZOOW
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Fig. 2. Land cover map corresponding to Level-1 with 2 classes. Vector file in ESRI shape format available here: http: 

//dx.doi.org/10.18167/DVN1/NHE34C . This figure is a modified version of Fig. 5 published in this article [1] . 

 

 

 

 

 

 

 

 

 

 

2.1.2. Images 

➢ Very High Spatial Resolution (VHSR): 

Two 20 ×20 km Pleiades tiles (with spatial resolution of 2 m and 0.5 m) were acquired simul-

taneously on January 8, 2017, which corresponds to the middle of the rainy season in Mada-

gascar. Pleiades images were acquired with the support of CNES (Centre National d’Etudes

Spatiales: government agency responsible for shaping and implementing France’s space pol-

icy in Europe). Pleiades images are not free and are available under condition of eligibility

via the Theia consortium (Data and Services centre for continental surfaces) and the DINAMIS

programme. More information is available on the Theia website ( https://www.theia-land.fr/

le- programme- isis- du- cnes- sintegre- a- dinamis ). 

➢ High Spatial Resolution (HSR): 

The High Spatial Resolution time series consists of 50 images acquired between October 2016

and September 2017 (including 19 images from Landsat-8 and 62 images from Sentinel-2 (2 tiles

and 31 acquisition dates)). Selection criteria for these images were: images should cover at least

20% of the study area and have less than 80% cloud cover per tile. 

http://dx.doi.org/10.18167/DVN1/NHE34C
https://www.theia-land.fr/le-programme-isis-du-cnes-sintegre-a-dinamis
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Fig. 3. Land cover map corresponding to Level-2 with 8 classes. Vector file in ESRI shape format available here: http: 

//dx.doi.org/10.18167/DVN1/NHE34C . This figure is a modified version of Fig. 5 published in this article [1] . 
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The Sentinel 2A and 2B satellites (S2A and S2B) have been deployed by the European Space

gency (ESA). The images offer 13 spectral bands with a spatial resolution between 10 m and

0 m. The interval between two subsequent acquisitions is 5 days considering both satellites. In

his study, Sentinel-2 (S2) level-1C images provided by ESA were used and only 10 bands were

ept with a resolution of 10 m and 20 m. 

The Landsat-8 (L8) satellite was deployed by the National Aeronautics and Space Administra-

ion (NASA). The revisiting frequency is 16 days. L8 images have a spatial resolution of 15 m for

he panchromatic band and 30 m for the multispectral bands. 

The characteristics of the L8 and S2 images are different, but in tropical areas with high

loud cover, the combination of these sensors increases the probability of regularly observing

he entire territory. 

.1.3. Topography 

The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) at 30 m spa-

ial resolution was downloaded from United States Geological Survey (USGS) website ( https:

/earthexplorer.usgs.gov ) to take into account the topography (altitude, slope) of the study zone.

http://dx.doi.org/10.18167/DVN1/NHE34C
https://earthexplorer.usgs.gov
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Fig. 4. Land cover map corresponding to Level-3 with 13 classes. Vector file in ESRI shape format available here: http: 

//dx.doi.org/10.18167/DVN1/NHE34C . 

 

 

 

 

 

 

 

 

 

 

 

2.2. Moringa processing chain to obtain land cover map in 2017 

The Moringa processing chain was used to automate the production of land cover maps

at Very High Spatial Resolution (VHSR) following a methodology that is particularly adapted

to tropical agricultural systems (cloudy acquisitions, small field sizes, heterogeneous and frag-

mented landscapes) [ 3 , 4 ]. The Moringa chain can be downloaded at the following link: https:

//gitlab.irstea.fr/raffaele.gaetano/moringa 

The methodology is based on the combined use of Very High Spatial Resolution (VHSR)

Pleiades imagery, time series of Sentinel-2 and Landsat-8 High Spatial Resolution (HRS) opti-

cal images and a Digital Terrain Model (DTM) within an Object Based Image Analysis (OBIA)

and Random Forest classification approach driven by a reference database combining in situ

and photo-interpretation measurements. The chain is built upon the Orfeo Tool Box (OTB) ap-

plications, driven by python scripts. Some pre-processing steps are performed under QGiS. Main

processes of the chain are summarized in Fig. 6 . The following paragraphs describe specific pa-

rameters and useful elements of the classification method. 

http://dx.doi.org/10.18167/DVN1/NHE34C
https://gitlab.irstea.fr/raffaele.gaetano/moringa
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Fig. 5. Land cover map corresponding to Level-3 with 20 classes. Vector file in ESRI shape format available here: http: 

//dx.doi.org/10.18167/DVN1/NHE34C . This figure is a modified version of Fig. 5 published in this article [1] . 
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.2.1. VHSR pre-processing 

Preprocessing steps were realized with Orfeo ToolBox [5] and consisted in Top of Atmo-

phere (TOA) reflectance calculation, and orthorectification of Pleiade image. Orthorectification

f panchromatic and multispectral images was based on SRTM digital elevation model and the

Orthobase Madagascar” product (orthorectified mosaic of 2.5 m panchromatic SPOT5 images

as acquired to serve as a reference for the co-registration of Pleiades images). These images

re available under the condition of eligibility distributed by SEAS-OI (Survey of the Environ-

ent Assisted by Satellite in the Indian Ocean): http://www.seas-oi.fr . The two PAN and MS

http://dx.doi.org/10.18167/DVN1/NHE34C
http://www.seas-oi.fr


D. Stéphane, D. Laurence and G. Raffaele et al. / Data in Brief 31 (2020) 105952 9 

Fig. 6. Number of images without clouds in the time serie (include Sentinel-2 and Landsat-8). 
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Table 2 

Description of variables extracted to compute the classification (with HSR = High Spatial Resolution and VHSR = Very 

High Spatial Resolution). This table is a modified version of Table 2 published in this article [1] . 

Type HSR VHRS Topography 

Spectral 

reflectance 

Landsat-8: 7 bands and Sentinel-2: 10 

bands 

Spectral indices NDVI 1 [7] , MNDVI 2 [8] , NDWI 3 [9] , 

MNDWI 4 [10] , brightness index 5 and 

RNDVI 6 [11] 

Textural indices Energy, Contrast et 

Variance Haralick indices 

[12] calculated at 2 

windows size: 5 × 5 and 

11 × 11 

Topographic 

indices 

Altitude and slope 

number 1024 6 2 

1: Normalized Difference Vegetation Index. 2: Modified Normalized Difference Vegetation Index. 3: Normalized Differ- 

ence Water Index. 4: Modified Normalized Difference Water Index. 5: Square root of the sum of squared values of all 

bands. 6: Rededge NDVI (only for Sentinel-2). 
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iles were then mosaicked and the resulted mosaics were pansharpened using the Bayesian fu-

ion algorithm of the OTB pansharpening module in order to obtain a multispectral mosaic at

.5 m spatial resolution. 

.2.2. HSR pre-processing 

Pre-processing applied to HRS images is automated in the Moringa chain: 

• The 62 Sentinel-2 tiles were mosaicked to produce a time series of 31 mosaics. 

• For the Landsat-8 pansharpening processing is applied to bring the spatial resolution as close

as possible to S2 images. 

S2 and L8 images were coregistered to the VHSR Pleiades reference using an automatic pro-

edure based on the homologous points extraction application of OTB. This processing is con-

eived to improve overlapping among the different remote sensing sources, and is crucial for

he characterization of small scale objects. 

Fmask tool [6] was used to produce the cloud masks corresponding to each image of the time

eries. The chain produces, from the cloud masks, an image illustrating the number of times a

ixel is not covered by clouds in the time series. This illustration locates the areas where there

s a risk of instability of the results on the maps if the number of clear acquisitions is low (Cf.

ig. 6 ). 

.2.3. The variables used in the classification 

➢ 6 common radiometric indices useful for land use characterization were chosen (Cf. Table 2 )

➢ Textures are important to detect visible patterns on the THRS image such as tree alignments

in agricultural crops. In the Moringa chain, these texture indices are the only variables de-

rived from the VHSR image. The OTB "Haralick Texture Extraction" algorithm was used and

applied to the panchromatic image (Cf. Table 2 ) 

➢ Slopes were calculated using QGIS software. DTM and slopes are used as variables in the

classification process. 

.2.4. Object based classification 

The Moringa processing chain is designed to provide object-based supervised classification,

nd operates by first performing the segmentation of the VHSR image to generate a suitable ob-

ect layer. The method described in [13] , implemented in the large scale version of OTB’s Gener-

cRegionMerging application [14] , was used to perform the segmentation. To obtain a segmen-

ation result adapted to our study, parameters for the homogeneity criteria and the maximum
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Table 3 

Global and class accuracy indices by level. This table is a modified version of Table 4 published in this article [1] . 

LEVEL 1 F1-SCORE LEVEL 2 F1-SCORE LEVEL 3 F1-SCORE LEVEL 4 F1-SCORE 

Non crop 96.13% Urban area 91.6% Built-up surface 83.5% Mixed habitat 65.1% 

Residential area 8.2% 

Rural housing 52.8% 

Industrial, commercial and 

military area 

81.8% Industrial, commercial and 

military area 

84.1% 

Quarry, landfill and 

construction site 

86.8% Quarry, landfill and construction 

site 

68.0% 

Brick extraction 94.7% 

Natural spaces 73.1% Bare non-agricultural soil 41.8% Bare non-agricultural soil 44.9% 

Savannah 75.6% Herbaceous savannah 62.4% 

Shrub savannah 58.4% 

Forest 86.8% Forest 86.9% Tree savannah 63.0% 

Pines 63.0% 

Waterbodies and wetland 90.4% Water bodies 97.5% Water bodies 97.4% 

Wetland 61.9% Wetland 70.2% 

Crop 91.7% Annual and pluriannual crop 88.5% Irrigated crop 89.1% Rice 88.0% 

Watercress 78.3% 

Vegetable crop 37.1% Vegetable crop 41.1% 

Rainfed crop 47.4% Cassava 48.6% 

Other rainfed crop 0% 

Fallows, pasture and bare 

agricultural soil 

63.7% Fallows, pasture and bare 

agricultural soil 

66.8% Fallows, pasture and bare 

agricultural soil 

67.7% 

Fruit crop 45.0% Fruit crop 68.% Fruit crop 67.7% 

Overall accuracy 94.78% 86.83% 84.08% 76.56% 

Kappa index 0.88 0.83 0.81 0.74 
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eterogeneity threshold were assessed using a grid search on several representative subsets of

he VHSR pansharpened image. The following parameters were finally chosen: 

➢ Scale parameter: 150 

➢ Shape parameter: 0.3 

➢ Compactness parameter: 0.7 

Training samples were subsequently generated by intersecting the so-obtained segmentation

ith the reference polygons available in the GIS dataset, and attributed using the spatial means

ver every band and index listed in Table 2 . Random Forest (RF) classification algorithm [ 14 , 15 ]

as chosen for classification considering its robustness when working with heterogeneous data,

uch as in our study (data from several sensors combined with altitude, slopes and textural

ndices). 

An independent RF model was built for each nomenclature level, and applied for the classifi-

ation of the whole set of objects, which were beforehand attributed in the same way described

or the training samples. At the end of the process, the four land use maps are made available

n vector and raster format. 

.2.5. Validation of 2017 maps 

We here use the k-fold cross-validation technique to evaluate the accuracy of the provided

and use maps. The specific validation protocol (number of folds, accuracy metrics) for these

aps is the same already used in [ 1 , 4 ] 

These quality indicators (global accuracy, Kappa, fscore) are given in Table 3 . 

.2.6. Smoothing by majority filter 

A majority filter was applied to the rasterized classification to smooth out contours and re-

ove isolated pixels. OTB’s Classification Map Regularization tool was used. The size of the

tructuring element can be adjusted to measure the intensity of the smoothing. To limit the

egradation of the classification, a filter of radius 1, corresponding to a 3 × 3 pixel window, was

hosen. 
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