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Abstract: Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid
biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant,
antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains
incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed.
In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type
and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main
flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into
the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type
and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic
stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress.
These findings suggest the indirect involvement of lignans in osmotic stress response.

Keywords: lignans; secoisolariciresinol; RNA interference; flax; osmotic stress; metabolomics; 1H-
NMR; LC-MS

1. Introduction

Flax (Linum usitatissimum) has been extensively used as a plant model for lignan
biosynthesis studies. Flaxseed is a rich source of lignans and neolignans and contains
about 75–800 times more lignans than other plant-derived food [1]. Secoisolariciresinol
diglucoside (SDG) is the major lignan present in flaxseed and exists as a macromolecule in
the flaxseed hull. This polymer complex is composed of SDG, which are held together by
3-hydroxy-3-methylglutaric acid (HMGA) residues; The hydroxycinnamic acids, 4-O-β-D-
glucopyranosyl-p-coumaric glucoside (CouAG), and 4-O-β-D-glucopyranosyl ferulic acid
glucoside (FAG) are ester-linked to the glucosyl moiety of SDG as end units. Stereochem-
istry and enantiomeric composition of lignans vary between plant species, but also between
different organs and/or different developmental stages within the same species [2]. For
example, flax seeds contain almost 99% (+)- and 1% (−)-SDG, whereas its aerial parts
during flowering stage accumulate only (−)-enantiomers of lignans [3].
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In flax, the lignan biosynthesis pathway starts with the stereospecific coupling of
two coniferyl alcohol residues, in the presence of dirigent proteins (DIR), leading to the
formation of (−)-pinoresinol, which is step-wisely converted into (−)-lariciresinol and
then into (+)-secoisolariciresinol through the action of a NADPH-dependent pinoresinol-
lariciresinol reductase (PLR). In L. usitatissimum, five PLR genes are present in the genome
that encodes full PLR proteins, but only two have been widely studied: LuPLR1 and LuPLR2.
Both LuPLR1 and LuPLR2 transcripts were detected in the seeds and roots but only the
LuPLR2 transcript is detected in leaves and stems [4,5]. PLR1 and PLR2 showed opposite
enantiospecificity towards pinoresinol and lariciresinol. Further on, PLR1 catalyzes the
conversion of (−)-pinoresinol into (−)-lariciresinol and contributes to the synthesis of
(+)-secoisolariciresinol, whereas PLR2 catalyzes the conversion of (+)-pinoresinol into
(+)-lariciresinol and contribute to the synthesis of (−)-secoisolariciresinol [5,6].

Lignans are well recognized for their antioxidative, anti-inflammatory, and antiestro-
genic activities, key properties that contribute to their ability to reduce risk and protect
against various types of cancer, especially hormone-dependent cancers, like breast, colon,
and prostate cancer [7–9]. Lignans also exhibit an important role in the reduction of hyper-
cholesterolemia, atherosclerosis, hypertension and diabetes [10–13]. Furthermore, in the
last years, several research works demonstrated that dietary lignans could have beneficial
effects in the prevention of neurological disorders [14].

However, in plants, the exact biological role of the lignans still remains unclear.
They have potent defensive properties, including antiviral [15], antimicrobial [16], antifun-
gal [17,18], and antifeedant activities [19]. Along with these, lignans can act as phytoalexins:
they are synthesized in various plant species in response to fungal infections [20]. A pos-
sible phytoanticipin activity of lignans is also reported in heartwood where they act as
a protective post-lignification infusion [21]. In addition, due to their antioxidant activity,
lignans can protect the seed oil against oxidation by scavenging reactive oxygen species
(ROS) or maintaining seed dormancy [22–24]. Lignans have been proposed to have a
role in defense against oxidative stress during the process of lignification as it is the case
in poplar [25]. Additionally, a study by Corbin et al. [26] has shown a regulation of the
transcription of the LuPLR1 gene in flax by the hormone abscisic acid (ABA) suggesting a
role of lignan in stress response.

In a previous study, Renouard et al. [27], successfully used the RNAi-mediated gene
silencing approach to knock-down the LuPLR1 gene in flax. As a consequence, the accumu-
lation of the major lignan SDG was nearly suppressed in PLR1-RNAi seeds. These plants,
devoid of lignan, provide a tool to allow a comparison between wild-type and PLR1-RNAi
transgenic plants, under stress condition and give better insight into the role of lignan
in plants.

In the present work, we used the PLR1-RNAi transgenic flax to elucidate whether
lignan is involved in the response to osmotic stress (simulating drought stress). For
this purpose, we performed a comparative non-targeted metabolic analysis of the roots,
stems, and leaves of wild-type and PLR1-RNAi transgenic L. usitatissimum, using proton-
nuclear magnetic resonance spectroscopy (1H-NMR) and liquid chromatography-mass
spectrometry (LC-MS), to identify the common and specific metabolic responses in plants
under osmotic stress conditions induced by polyethylene glycol (PEG-6000).

2. Results and Discussion
2.1. Phenotype Analysis

The presence of the selectable marker gene NPTII was confirmed in the samples of all
homozygous Pi1AM plants selected for the study. Figure 1A shows the PCR analysis of ge-
nomic DNA of wild-type (LuT) and transgenic plants (Pi1AM). Plants expressing the NPTII
marker gene showed no significant morphological differences from the non-transgenic
plants, when they were grown under control conditions (Figure 1B). In addition, after
harvest, root, stem, and leaf dry weights were determined, and no significant differences
were shown between wild-type and PLR1-RNAi transgenic lines (Supplementary Data 1).
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These observations suggest that the lignans have no essential role in plant growth under
the present conditions.
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Figure 1. (A) Amplification of NPTII sequence from genomic DNA of wild-type (LuT) and transgenic
plants transformed with pART-RNAiPLR binary vector (Pi1AM). PCR products obtained with a
specific set of primers designed for the amplification of a 0.7 Kb NPTII fragment were separated by
2.0% agarose gel electrophoresis and visualized with GelRed, under UV light. Ld, a 100 pb DNA
Ladder (Solis BioDyne). Flax housekeeping gene was used as a reference gene to normalize the PCR
data. (B) Phenotypes of wild-type and transgenic plants under control conditions. Pictures were
taken at 25 and 75 days after sowing (left and right respectively).

2.2. Metabolite Profiling
2.2.1. Difference of Metabolic Profiles between Wild-Type and PLR1-RNAi Transgenic
Lines under Control Conditions

Before studying the impact of osmotic stress on the L. usitatissimum metabolome, we
firstly compared the metabolite composition of each of the three parts (root, stem, and leaf),
of wild-type (LuT) and transgenic (Pi1AM) plants, in control conditions at different time
points (day 1 (D1) and day 5 (D5)).

Metabolomic profiles analysis was performed using LC-MS and NMR. While NMR is
less sensitive than LC-MS, it can be used for quantification and structural identification of
unknown compounds. NMR is, therefore, ideal for untargeted metabolomic studies. How-
ever, LC-MS is more sensitive than NMR, and can detect a higher number of metabolites,
particularly less abundant compounds such as secondary metabolites. Thus, applying both
NMR and LC-MS improves the coverage of the metabolome and enhances both metabolite
resolution and annotation.

The LC-MS and NMR spectral data obtained for each plant part, were subjected
separately to a multivariate non-targeted analysis-PLS-DA. The score plot of PLS-DA,
shown in Figure 2, shows that transgenic LuPLR1-RNAi samples (Pi1AM) were grouped
away from the wild-type samples, in various plant parts. These results highlight the
metabolomic variability between LuT and Pi1AM. The next step to compare LuT and
Pi1AM consisted of identifying the discriminant metabolites in each plant part.
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Figure 2. Score plot of partial least squares discriminant analysis (PLS-DA) of metabolite content in flax roots, stems, and
leaves, based on 1H-NMR and LC-MS data for LuT and Pi1AM, in control conditions. Samples represent LuT plants (circle)
and Pi1AM plants (triangle). Arrows indicate the increases in relative metabolite content in various parts of the wild-type
(LuT) or transgenic (Pi1AM) plants. Metabolites are listed in descending order of discrimination. Boldface text indicates
discriminant metabolites of the two lines in both control and stress conditions. Red text indicates metabolites measured in
common with LC-MS and 1H-NMR. Variable Importance in Projection (VIP) score and the Log10 (Ratio Pi1AM/LuT) of the
main discriminant metabolites for each PLS-DA model, are shown in supplementary data 2.

The results of statistical analysis (Wilcoxon Rank Sum test) indicate a significant
difference in 22 metabolites in roots, 32 in stems, and 33 in leaves, between LuT and Pi1AM.
Differences were observed in primary metabolites as well as in secondary metabolites in
different plant parts.

Changes in Primary Metabolism

The changes in primary metabolites are more evident by the PLS-DA model obtained
with NMR spectral data. Differences in the accumulation of these metabolites between
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LuT and Pi1AM in different plant parts indicate that the change is not restricted to a few
chemical classes or categories, and involves different metabolic pathways.

Among primary metabolites, coniferyl alcohol displayed similar trends in different
plant parts: The amount of this compound although, exhibited to be 7.91, 8.65, and
10.32 times higher in Pi1AM than in LuT in roots, stems and leaves, respectively.

In addition, when compared to LuT roots, those of Pi1AM, the transgenic line, had
significantly higher contents of nine metabolites but significantly lower contents of four
metabolites. These up-accumulated metabolites were mainly glucose, fructose, succinic
acid, putrescine, serine, sucrose, glycine, fumaric acid and threonine. In contrast, LuT roots
were significantly higher in aspartic acid, glutamine, glutamic acid, and maltose contents.

Moreover, Pi1AM stems presented an up-accumulation of seven metabolites, which
include glycerol, tyrosine, phenylalanine, glucose, glutamic acid, aspartic acid, and galac-
tose, when compared to LuT stems while these latter showed an up-accumulation of seven
different metabolites identified as alanine, succinic acid, tartaric acid, asparagine, malic
acid, putrescine, and threonine.

In leaves, the Pi1AM line had significantly higher contents of nine metabolites than
LuT including many sugars such as fructose, glucose, sucrose, raffinose, but also tyrosine,
choline, glycerol, serine, and chicoric acid. Despite, LuT displayed a higher content in
10 metabolites including amino acids such as GABA, alanine, phenylalanine, threonine,
asparagine, and other compounds, such as uridine, adenosine, galactose, ethanolamine,
and tartaric acid.

Despite the genetic modification is in a part of the genome coding for compounds
that are involved in metabolic pathways away from the biosynthetic pathway of amino
acids, sugars, and organic acids, we observed major changes for these latter. These primary
metabolites are central molecules. Changes at these levels can therefore affect a large part
of the other metabolic pathways of the plant.

In the different plant parts, nitrogen metabolism showed changes in the content
of amino acids such as glutamic acid, glutamine, aspartic acid, and asparagine, in the
transgenic line compared to the wild-type. These amino acids are commonly involved in
nitrogen recycling and transport.

These observations lead to hypothesize that these amino acids can be affected by the
disruption of the activity of phenylalanine ammonia-lyase (PAL) which can be caused by
the accumulation of coniferyl alcohol, in the transgenic line.

PAL constitutes the point of connection between the primary metabolism of shikimate,
which leads to aromatic amino acids and the secondary metabolism of phenylpropanoids.
Generally, phenylpropanoid biosynthesis begins with the deamination of phenylalanine by
phenylalanine ammonia-lyase (PAL) to yield cinnamic acid [28]. In the second step, the
action of cinnamate 4-hydrolase (C4H) transforms the cinnamic acid into p-coumaric acid.
Then, 4-coumaroyl CoA ligase (4CL) catalyzes p-coumaric acid into p-coumaroyl-CoA. This
latter is a crucial branch point leading to the generation of various phenolic compounds
such as flavonoids, lignins and lignans [29]. In transgenic plants, coniferyl alcohol can
accumulate eventually to levels that could be toxic to the plant cells. Therefore, cells can
put in place a negative feedback to limit this accumulation. This regulation must act on the
pathway of phenylpropanoid, responsible for the production of coniferyl alcohol. PAL are
the most potential candidates for this process, since the regulation of PALs can also affect
nitrogen metabolism.

In fact, PALs are responsible for the release of NH4+ from phenylalanine which is
then incorporated into glutamate to form glutamine. Then, amino and amide groups
from glutamate and glutamine are transferred to other molecules by transamination and
transamidation reactions for the synthesis of amino acids [30].

Changes in Secondary Metabolism

On the other hand, and with regard to secondary metabolites, the loading plots
obtained from LC-MS data indicate that, the major change can be observed in the lignan
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metabolite group in the different plant parts. An 18.1, 5.31, and 13.78-fold increase in the
content of pinoresinol mono-glucoside (PMG), was observed in roots, stems, and leaves
of the Pi1AM line, respectively. The diglucosylated forms of this metabolite (PDG), also
showed a 12.27, 4.73 and approximately 15-folds increase in roots, stems, and leaves of
Pi1AM, respectively. The drastic accumulation of pinoresinol may initiate a downregulation
on the dimerization process of coniferyl alcohol that yield pinoresinol, as a negative
feedback, and that, as a consequence, can explain the coniferyl alcohol accumulation in the
transgenic line.

However, the accumulation level of pinoresinol in both its mono and diglucoside
forms, was higher than that of the coniferyl alcohol, in the transgenic line. This observation
suggests that coniferyl alcohol can be accumulated in a different form other than its free
form. This hypothesis was supported by an accumulation of coniferin observed in the three
parts of the transgenic plant compared to the wild-type.

Coniferin is a glycoside of coniferyl alcohol, and might serve as an alternative precur-
sor in lignan production. Coniferin is accumulated in Pi1AM compared to the LuT line,
with 2.32, 2.4, and 7.68-fold increases in roots, stems, and leaves, respectively. This accumu-
lation is also in accordance with the increase of coniferyl alcohol. Thus, it is likely that, the
coniferyl alcohol accumulates in both free and glycosylated forms in the transgenic line.

Lariciresinol mono-glucoside (LMG) showed to be lower in Pi1AM when compared to the
LuT line, with a Pi1AM/LuT ratios (calculated by the formula: ratio Pi1AM/LuT = content
Pi1AM plant/content LuT plant) of 0.31, 0.73, and 0.50 for roots, stems, and leaves, respectively.

In our study, lariciresinol in di-glycosilated form (LDG) is not detected, both in roots
and leaves of L. usitatissimum. However, LDG is detected in stems in a lower amount in
Pi1AM when compared to the LuT (Pi1AM/LuT ratio: 0.17)

The negative correlation between the accumulation of pinoresinol and lariciresinol
with the PLR activity confirmed that the accumulation of theses lignans occurred due to
the reduction of the PLR enzyme activity.

A remarkable reduction of secoisolariciresinol mono-glucoside (SMG) was observed
only in roots of the Pi1AM line compared with that in roots of LuT. Secoisolariciresinol
are usually found in a glycosylated form (SDG), its intermediate monoglucoside (SMG)
forms not being accumulated in the seed. In this study, the presence of SMG was detected
in roots. The decreased amount of SMG in the transgenic line is then, a consequence of
the PLR enzyme suppression. PLR, in fact, a bifunctional enzyme which catalyze the
reduction of pinoresinol to lariciresinol and then lariciresinol to secoisolaricirésinol [27].
By suppression of LuPLR1 expression, the lignan biosynthesis pathway from pinoresinol
to the end products would be blocked, leading to an accumulation of pinoresinol and a
decrease of both lariciresinol and secoisolariciresinol within the transgenic line.

Both PLR1 and PLR2 enzymes were detected in the seeds and roots. However, in stems
and leaves, only PLR2 was expressed. However, our results showed that the integration of
PLR1-RNAi in the L. usitatissimum genome leads to a different metabolome in roots, but
also in stems and leaves of wild-type and transgenic lines. Thus, it could be suggested
that the suppression of LuPLR1 expression is accompanied by the LuPLR2 cosuppression.
This can be theoretically, possible due to a major similarity of LuPLR1 sequence used to
synthetize PLR1-RNAi construct, with LuPLR2 gene (60.3% of sequence homology) as
already observed by Corbin et al. [6].

Herein it should be noted that, the decreased rate in both LMG and SMG is not
proportionally equivalent to the increased rate of pinoresinol, in the transgenic line. This
led us to hypothesize that, in the transgenic line, a compensation can occur with an increase
in the production of pinoresinol in order to recover the loss of LMG and SMG. This
compensation could be carried out by the cell to maintain the role of lignan.

Because lignans play an important role in plant defense, their content should be
maintained in the transgenic line. The low amounts of larciresinol in the cell can there-
fore activate regulators in order to transmit a signal into the cell to continue producing
pinoresinol. A possible regulation of dirigent proteins by abscisic acid ABA could be
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suggested, since this phytohormone appears to be involved in the regulation of lignan
biosynthesis as previously described in L. usitatissimum [31], as well as in the regulation of
dirigent proteins in response to abiotic stress as previously described in B. hygrometrica [32].

Furthermore, the presence of neolignan dehydrodiconiferyl alcohol glucoside (DCG)
was detected in roots, stems and leaves of the transgenic lines, but it was not found in
the wild-type plant. A similar result was seen in PLR1-RNAi transgenic flax seeds [27].
The aforementioned results can be attributed to a down-regulation of the LuPLR1 gene
expression, leading to the synthesis of the neolignans. Thus, the DCG formation could result
from the coupling of two monolignol moieties without the intervention of a dirigent protein,
a consequence of coniferyl alcohol accumulation or the dirigent protein retroinhibition as a
result of the pinoresinol accumulation caused by the LuPLR1 suppression.

Moreover, further change in secondary metabolites was also observed between LuT
and Pi1AM lines in each plant part.

In roots, cyanogenic compounds such as linamarin and lotaustralin showed signif-
icantly higher contents in Pi1AM than those in LuT. While in stems, Pi1AM showed a
lower content than LuT in linamarin and lotaustralin and a higher content in neolinustatin.
On the other hand, in leaves, these cyanogenic compounds did not show any statistically
significant changes, in the comparison between Pi1AM and LuT but linustatin, showed a
higher content in Pi1AM line. A previous study on NMR metabolomics performed on flax
seeds with differentω-3 fatty acid contents has shown that a decrease in secoisolariciresinol
glucoside (+)-SDG was accompanied with a decrease in linustatin [33]. Another study on
spatiotemporal distribution of lignans and cyanogenic glucosides in flaxseed revealed that
seeds devoid of (+)-SDG did not accumulate linustatin [34]. However, so far, no specific
and precise relation between lignans and cyanogenic compounds has been reported.

It should be noted that, although the majority of the metabolites listed above were
measured by one of the two analytical techniques. The cyanogenic glycosides including
linamarin, lotaustralin, linustatin, and neolinustatin, were detected in common with both
1H-NMR and LC-MS. Interestingly, for each of these metabolites, LC-MS data showed
almost a similar relative value (Pi1AM/LuT), when compared to those obtained with
1H-NMR, in each of the plant parts. This similarity confirms the robustness of these two
analytical methods. For example, for linamarin and lotaustralin: NMR data showed that
Pi1AM/LuT root ratios were 1.44 and 1.5, respectively. LC-MS analysis, showed very
similar values for Pi1AM/LuT ratios (1.41 for linamarin and 1.49 for lotaustralin). In stems,
according to NMR data, Pi1AM/LuT ratio was 0.82 for linamarin and 0.88 for lotaustralin.
While, using LC-MS, Pi1AM/LuT ratio were approximately 0.76 for linamarin and 0.76
for lotaustralin. In the case of leaves, both NMR and LC-MS data revealed no significant
difference in lotaustralin and linamarin contents between Pi1AM and LuT.

In addition, in stems, Pi1AM showed a higher content of carlinoside, lucenin-2,
orientin, caffeic acid glucoside (CAFG), chlorogenic acid, and ferulic acid glucoside (FAG)
than in LuT. However, a lower content than LuT in triticuside-A.

Leaves of Pi1AM line showed a higher content in chlorogenic acid, carlinoside, FAG,
lucenin-2 and CAFG, than shows the LuT. This latter showed, however, a higher content in
vitexin and vicenin-2.

Carlinoside, lucenin-2, vitexin, vicenin-2, orientin and triticuside-A, are flavone C-
glycosides derived from the same precursor of lignan, p-coumaroyl CoA, which in turn are
derived from the phenylpropanoid pathway. Chalcone synthase (CHS) uses p-coumaroyl-
CoA as a starter molecule to form the naringenin chalcone (4,2′,4′,6′-tetrahydroxychalcone),
which serves as precursor for a different class of flavonoids [35]. Thus, the changes observed
for these flavone C-glycosides in the transgenic line compared to the wild-type, could be
explained by the disruption of their precursors p-coumaroyl CoA, which might be caused
by the accumulation of coniferyl alcohol.

Ferulic and caffeic acids are also involved in phenylpropanoid metabolism. These
compounds are hydroxylated derivatives of cinnamic acid. For monolignol biosynthesis,
cinnamic acid is first hydroxylated by cinnamate 4-hydroxylase to yield p-coumaric acid.
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Then, p-coumaric acid and their derivates (caffeic and ferulic acid) are catalyzed by the
action of 4-coumaroyl CoA ligase (4CL) to form the p-coumaroyl CoA ester, which is a point
of divergence of different pathway leading to the biosynthesis of other phenylpropanoids.

The methylation of caffeoyl-CoA (activated form of caffeic acid) to feruloyl-CoA
(activated form of ferulic acid) is catalyzed by caffeoyl-CoA O-methyltransferase. Then,
feruloyl-CoA, is reduced by cinnamoyl-CoA reductase to form the coniferaldehyde and
further by cinnamyl alcohol dehydrogenase to yield coniferyl alcohol [36].

In plant cells, ferulic and caffeic acids rarely appear in their free form. Generally, they
are mostly found in glycosylated form, such as FAG and CAFG, or in esterified form, such
as chlorogenic acid and chicoric acid [37]. The accumulation of these acids in glucoside and
esterified forms in the transgenic line, can be due to the accumulation of coniferyl alcohol
caused by the disruption of lignan synthesis. Thus, there might be a negative feedback on
the activity of the coumaroyl CoA ligase (4CL), in order to reduce the biosynthesis of CoA
esters which represent the activated forms of the metabolism of phenylpropanoids.

Based on the above mentioned, we can hypothesize that, the integration of PLR1-RNAi
transgene in L. usitatissimum genome, affects flax metabolic activity and leads to a different
metabolome in various plant parts of wild-type and transgenic lines.

2.2.2. Metabolites Change in Response to Osmotic Stress in Wild-Type and PLR1-RNAi
Transgenic Line

Drought is becoming one of the major limiting factors in agriculture worldwide lead-
ing to vast reductions in crop yield. It affects physiological and molecular processes and
disrupt metabolic homeostasis, causing significant changes in the chemical composition of
many plants resulting from the adjustment of metabolic pathways for adaptation. Hence,
studying the metabolic response of transgenic line deprived for lignan production com-
pared to wild-type of flax under osmotic stress conditions seems crucial and will provide
important information about whether lignan play a role in the mechanism of the plants
against this abiotic stress.

The PCA score plot of wild-type (LuT) and transgenic lines (Pi1AM) of each of the
three parts (root, stem, and leaf), shows a characteristic grouping for control and stressed
samples (Supplementary Data 3). The effect of the kinetics of stressed samples in different
plant part was investigated. A Wilcoxon Rank Sum test was performed on the datasets
for LuT and Pi1AM stressed sample, to verify whether there was a significant difference
between the two periods of osmotic stress application. The test highlighted differences in
metabolite content during the osmotic stress period (Data not shown). Thus, D1 and D5
stressed samples could be considered as a separate group for both lines.

Metabolic Profiles in Response to Osmotic Stress in Roots

In roots, the metabolic response to osmotic stress differed between LuT and Pi1AM.
Statistical analysis highlighted 31 metabolite contents that change under osmotic stress
for LuT and 31 for Pi1AM (Figure 3). Among these, some responded similarly to osmotic
stress in both LuT and Pi1AM, some were specific to LuT and others to Pi1AM.

Thirteen amino acid (AAs) that increased significantly during osmotic stress applica-
tion period were common to both lines: proline, asparagine, leucine, GABA, tryptophane,
alanine, phenylalanine, valine, tyrosine, threonine, isoleucine, glycine, and serine. The
reorganization of almost all these AAs appeared after one-day post-treatment with PEG
and becomes more visible after five days, which indicates that metabolite content variation
in roots, occurred early in response to osmotic stress in both lines. The largest fold increase
in AAs content was observed for proline. This compound accumulated in a gradual manner
with stress period, and at D5, its content was multiplied by 4.99- and 4.52-fold (calculated
by the formula: ratio S/C = content plant treated by PEG-6000/content control plant), for
LuT and Pi1AM respectively. There was also an increase in the amount of putrescine, a
diamine derived from amino acid, in stressed samples compared to control samples in
both lines.
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Decreased aspartic and glutamic acid contents were also observed in both lines, after
PEG treatment. Only one AA changes specifically in LuT after PEG treatment: glutamine
decreased in stressed roots samples compared to control samples in LuT, while the content
of this metabolite was not affected in Pi1AM under osmotic stress.

In addition, LuT and Pi1AM showed different others kinds of primary metabolites that
decreased during osmotic stress, such as choline, fumaric acid, formic acid, and uridine, as
well as of secondary metabolites, such as trigonelline, vitexin, and LMG.

A significant accumulation of non-structural carbohydrates (NSCs) such as glucose
(ratio S/C: 1.77), sucrose (ratio S/C: 1.82) and fructose (ratio S/C: 1.84), was observed
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specifically for LuT stressed samples, compared with LuT control samples, after five days
of stress. Additionally, five days of treatment with PEG, led to a significant decrease in
the content of secoisolariciresinol monoglucoside (SMG) (ratio S/C: 0.68) on LuT roots.
However, this latter compound was not detected in Pi1AM roots.

For Pi1AM, five days of osmotic stress, induced a decrease in content of both lignans
such as PMG (ratio S/C: 0.49) and neolignans such as DCG (ratio S/C: 0.64). A decrease in
a similar manner was also observed for coniferyl alcohol content (ratio S/C: 0.7).

There were other metabolites that changed specifically in roots of Pi1AM, under
osmotic stress. This was the case for chicoric acid that decreased and for malic acid that
increased under osmotic stress conditions.

The content of linamarin and lotaustralin decreased in LuT, at D5 of stress conditions,
with an S/C ratios of 0.8 and 0.76, respectively, while they accumulated more in Pi1AM in
stress conditions with S/C ratios increased 1.45 and 1.67 folds respectively, after five days
of osmotic stress, which was observed on both 1H-NMR and LC-MS.

Metabolic Profiles in Response to Osmotic Stress in Stems

In stems, comparisons between the two datasets therefore reveal common responses
between LuT and Pi1AM, and responses specific. A total of 43 metabolites were observed
significantly influenced in the stressed LuT samples, compared to 29 in Pi1AM (Figure 4).

It appears that AAs content variation occurred early in stem of both lines (after one-
day post treatment with PEG) relatively compared to other metabolites, and becomes more
visible after five days post treatment with PEG.

Content of 12 among of these AAs increased (proline, isoleucine, asparagine, leucine,
valine, threonine, glycine, phenylalanine, tryptophane, tyrosine, alanine, GABA, and
serine), and for two of them it decreased (aspartic acid and glutamic acid). These reorga-
nization in AAs content are similar to those observed in roots under osmotic stress. The
highest increase also concerned the well-known osmorotectant proline that the content
increased by 5.8- and 4.59-fold in the stems of LuT and Pi1AM, respectively, after five days
of osmotic stress.

Other metabolites responded similarly to osmotic stress in the two lines. The contents
of caffeic acid, tartaric acid and putrescine, were significantly accumulated under osmotic
stress in both of the LuT and Pi1AM lines. In contrast, their contents in linamarin, lucenin-
2, carlinoside, orientin, and fumaric acid were significantly decreased in stems, after
osmotic stress.

The content of some kinds of sugar, including sucrose, and raffinose, was decreased
in stems, for both Pi1AM and LuT lines, under osmotic stress.

Furthermore, glucose, fructose and galactose, decreased specifically in stems of LuT,
after five days of osmotic stress.

The specific response to osmotic stress in LuT stems, was associated to the accu-
mulation of ferulic acid and glycerol, and the decrease of the accumulation of primary
metabolites such as succinic acid, choline, malic acid, uridine and ethanolamine, but also
phenolic acid such as chlorogenic acid, flavonoids, such as isovitexin, vitexin, and vicenin-2,
and cyanogenic glycosides, such as linustatin, lotaustralin, and neolinustatin, as well as
lignans, such as LDG.

While the specific metabolic response to stress in Pi1AM, mainly consisted in a de-
crease of the content of metabolites involved in lignan biosynthetic pathway including
DCG, coniferyl alcohol, PDG, and PMG.

Metabolic Profiles in Response to Osmotic Stress in Leaves

The response of metabolites to osmotic stress in leaves differed between LuT and
Pi1AM lines. There were 38 metabolites with a significant change in leaves content under
osmotic stress for each of LuT and Pi1AM (Figure 5). Most of up-regulated metabolites
in both lines belonged to AAs, including proline, leucine, tryptophane, valine, isoleucine,
phenylalanine, threonine, tyrosine, GABA, serine, asparagine, alanine, and glycine. In both
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lines it seems that the intensity of change of these AAs is dependent of stress period. The
up-regulation had significantly been noticed after a single day of treatment with PEG and
become more visible after five days. The largest significant increase in LuT and Pi1AM was
proline with an S/C ratios of 10.29 and 6.8 respectively, after five days of osmotic stress.
The AAs reorganization in leaves under osmotic stress is also reflected by the decrease
in the content of aspartic acid in both lines. These trends in AAs changes are similar to
what has been observed previously in roots and stems of both lines, under osmotic stress.
A similar change in these AAs contents was reported by Quéro et al. in wild-type flax
(L. usitatissimum) leaves, under osmotic stress conditions [38].
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Other compounds accumulated in the same way in leaves of both lines when plants
were submitted to osmotic stress. This was the case of ethanolamine, adenosine, and
glycerol and as well as sugars, including fructose, sucrose, glucose, and galactose.

In addition to aspartic acid, there were 12 metabolites that the content decreased
in leaves, under osmotic stress, which were common to both lines. This decrease was
observed for lucenin-2, PDG, orientin, chlorogenic acid, choline, chicoric acid, FAG, LMG,
and coumaric acid, but also for cyanogenic compounds including linamarin, linustatin, and
lotaustralin. However, LuT showed specifically, significant increase of the accumulation of
raffinose, vicenin-2, vitexin and schaftoside, and a decrease of the accumulation of CAFG
in leaves under osmotic stress.

Conversely, some metabolites such as uridine, tartaric acid, succinic acid, trigonelline,
and coniferyl alcohol were not affected by osmotic stress in LuT, but were significantly
involved in the Pi1AM osmotic stress response. Among these metabolites, the content of
coniferyl alcohol decreased while for the others, metabolites content in leaves increased
under osmotic stress.

In the present work, an evident difference in the metabolic response to osmotic stress
between different plant parts, as well as lines, was observed. These observations suggest
that the mechanism of osmotic stress response of transgenic line is somehow different of
that of wild-type, leading to the hypothesis that balanced lignan content may be important
for proper stress response.

Major changes in the primary and secondary metabolic pathways of roots, stems and
leaves of both wild-type and transgenic line after PEG treatment, as well as the proposed
relations between these metabolic pathways are presented in balance sheet shown in
Figure 6.

2.2.3. Comparison of the Metabolites in Wild-Type and PLR1-RNAi Transgenic Line under
Osmotic Stress Conditions

PLS-DA was performed with both NMR and LC-MS data corresponding to stressed
samples for LuT and Pi1AM for each of the three parts of the plant (Figure 7). The
representation reveals that, in roots, stems, and leaves, LuT and Pi1AM lines are still
separated because they still have a different metabolome under osmotic stress conditions.
The metabolites that discriminated LuT and Pi1AM under osmotic stress in each of the
three organs of these two lines, are represented in Figure 7, and their respective ratios, and
significance are reported in Table 1.

In roots, some metabolites were discriminant of the two lines in control conditions and
remained so, in the same range, in osmotic stress, due to a comparable increase or decrease
in these metabolites after osmotic stress for both lines. This was the case for glutamic acid,
aspartic acid, glutamine, SMG, and LMG that accumulated more in LuT, whereas glycine,
succinic acid, threonine, fructose, sucrose, fumaric acid, glucose, lotaustralin, linamarin,
coniferin, coniferyl alcohol, PDG, PMG, and DCG accumulated more in Pi1AM.

Some metabolites appeared to be discriminant for both lines only in stress conditions
while they were not discriminant in control conditions. This was the case for GABA,
tyrosine, alanine, uridine, formic acid, malic acid, chicoric acid, and trigonelline.

Some metabolites were discriminant for both lines in control conditions but no longer
discriminant in stress conditions. This was the case for maltose, serine, and putrescine.

In stems, glycerol, galactose, tyrosine, glucose, phenylalanine, LMG, LDG, triticuside-
A, CAFG, chlorogenic acid, FAG, neolinustatin, orientine, lucenin-2, carlinoside, DCG,
PDG, PMG, coniferin, and coniferyl alcohol were discriminant of the two lines in control
conditions and still discriminant under osmotic stress. All these metabolites are more
accumulated in Pi1AM than in LuT, except LMG, LDG, and triticuside-A, which are
accumulated more in LuT than in Pi1AM under stress conditions.

Ethanolamine, fumaric acid, uridine, fructose, vicenin-2 and vitexin appeared to be
discriminant for both lines only in stress conditions. The amount of these metabolites was
the same for both lines in control conditions:
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Alanine, succinic acid, tartaric acid, asparagine, malic acid, putrescine, threonine,
aspartic acid, glutamic acid, linamarin, and lotaustralin were discriminant for the two
lines, in control conditions, but they did not interact in the discrimination of both lines, in
stress conditions.

In leaves, some metabolites were discriminant of the two lines in both control and
stress conditions. This was the case for phenylalanine, GABA, alanine, serine, galactose,
LMG, vitexin, and vicenin-2 that were more accumulated in LuT and for glycerol, fruc-
tose, choline, glucose, lucenin-2, chicoric acid, CAFG, carlinoside, FAG, chlorogenic acid,
coniferyl alcohol, coniferin, PMG, PDG, and DCG that were more accumulated in Pi1AM.
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Figure 7. Score plot of partial least squares discriminant analysis (PLS-DA) of metabolite content in flax roots, stems and
leaves, based on 1H-NMR and LC-MS data for LuT and Pi1AM, in stress conditions. Samples represent LuT plants (circle)
and Pi1AM plants (triangle). Arrows indicate the increases in relative metabolite content in various parts of the wild-type
(LuT) or transgenic (Pi1AM) plants. Metabolites are listed in descending order of discrimination. Boldface text indicates
discriminant metabolites of the two lines in control and stress conditions. Red text indicates metabolites measured in
common with LC-MS and 1H-NMR. Importance in Projection (VIP) score and the Log10 (ratio Pi1AM/LuT) of the main
discriminant metabolites for each PLS-DA model, are shown in supplementary data 4.
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Table 1. Comparison of discriminant metabolite contents for LuT and Pi1AM in stress versus control conditions.

Roots Stems Leaves

Ratio Pi1AM/LuT Ratio Pi1AM/LuT Ratio Pi1AM/LuT

Metabolite Stress Control Metabolite Stress Control Metabolite Stress Control

Primary
metabolites

Primary
metabolites

Primary
metabolites

Glutamic Acid 0.5 *** 0.65 ** Glycerol 1.3 * 5.56 ** Phenylalanine 0.42 ** 0.7 **
Aspartic Acid 0.53 *** 0.55 *** Ethanolamine 1.38 ** _ GABA 0.47 * 0.63 *

GABA 0.53 *** _ Galactose 1.47 * 1.19 ** Threonine 0.47 ** _
Tyrosine 0.54 *** _ Fumaric Acid 1.5 ** _ Alanine 0.62 * 0.64 ***

Glutamine 0.56 *** 0.63 *** Uridine 1.68 ** _ Serine 0.64 * 1.13 *
Alanine 0.85 *** _ Fructose 1.87 * _ Galactose 0.66 ** 0.75 ***

Threonine 1.2 *** 1.23 * Tyrosine 2.01 *** 1.88 *** Succinic Acid 1.2 * _
Uridine 1.34 *** _ Glucose 2.31 ** 1.42 ** Glycerol 1.36 * 1.5 **
Glycine 1.38 *** 1.41 *** Phenylalanine 3.05 *** 1.6 ** Fructose 2.00 * 1.72 ***

Succinic Acid 1.42 *** 1.64 ** Coniferyl
Alcohol 7.72 *** 8.65 *** Choline 2.05 ** 1.75 ***

Formic Acid 1.43 *** _ Alanine _ 0.7 ** Glucose 2.15 ** 1.34 *

Sucrose 1.45 *** 2.07 *** Succinic Acid _ 0.73 *** Coniferyl
Alcohol 4.79 *** 10.32 ***

Fructose 1.69 *** 1.73 *** Tartaric Acid _ 0.74 ** Uridine _ 0.55 *
Glucose 1.79 *** 1.85 *** Asparagine _ 0.76 * Adenosine _ 0.6 ***

Malic Acid 2.03 *** _ Malic Acid _ 0.82 *** Threonine _ 0.76 **
Fumaric Acid 2.11 *** 1.34 * Putrescine _ 0.84 ** Ethanolamine _ 0.79 **

Coniferyl
Alcohol 5.51 *** 7.91 *** Threonine _ 0.87 * Asparagine _ 0.85 *

Maltose _ 0.87 * Aspartic Acid _ 1.27 * Tartaric Acid _ 0.91 *
Serine _ 1.48 *** Glutamic Acid _ 1.39 * Raffinose _ 1.28 **

Putrescine _ 1.6 *** Secondary
metabolites Sucrose _ 1.32 **

Secondary
metabolites LMG 0.46 *** 0.73 *** Tyrosine _ 3.73 ***

SMG 0.06 *** 0.15 *** LDG 0.64 *** 0.17 *** Secondary
metabolites

LMG 0.28 *** 0.31 ** Triticuside-A 0.8 * 0.8 ** LMG 0.27 *** 0.50 ***
Chicoric Acid 0.71 *** _ Vicenin-2 1.36 *** _ Vitexin 0.65 *** 0.69 ***
Trigonelline 1.21 *** _ CAFG 1.45 ** 1.42 ** Vicenin-2 0.7 ** 0.77**
Lotaustralin 1.81 ** 1.49 ** Vitexin 1.54 *** _ Schaftoside 0.9 *** _

Linamarin 1.75 ** 1.41 ** Chlorogenic
Acid 1.63 ** 1.32 ** Lucenin-2 1.27* 1.21 **

Coniferin 1.83 *** 2.32 *** FAG 1.81 *** 1.21 * Chicoric Ac 1.33 *** 1.23 ***
PDG 12.66 *** 12.27 *** Neolunistatin 2.04 ** 1.84 ** CAFG 1.42 * 1.11 **
PMG 18.63 *** 18.13 *** Orientin 2.67 *** 1.92 *** linamarin 1.45 *** _

Lucenin-2 3.07 *** 2.57 *** Carlinoide 1.5 *** 1.45 ***
Carlinoside 3.51 ** 2.8 *** FAG 1.66 *** 1.24 *

Coniferin 3.63 *** 2.4 *** Chlorogenic
Acid 2.19 *** 1.51 **

PDG 3.83 *** 4.73 *** Coniferin 6.45 7.68
PMG 4.25 *** 5.31 *** PMG 14.1 13.78 ***

Linamarin _ 0.76 *** PDG 14.5 *** 15.03 ***
Lotaustralin _ 0.76* Linustatin _ 1.27 **

Note: Results of the Wilcoxon Rank Sum test and ratios are reported for each discriminant metabolite; Values are significantly different at:
*** p < 0.001; ** p < 0.01; * p < 0.05. After the Wilcoxon Rank Sum test.

As for, threonine, succinic acid, schaftoside and linamarin, they appeared to be dis-
criminant for LuT and Pi1AM, only in osmotic stress conditions. The amount of these
metabolites was similar in LuT and Pi1AM, in control conditions.
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In addition, uridine, adenosine, threonine, ethanolamine, asparagine, tartaric acid,
raffinose, sucrose, tyrosine, and linustatin were discriminant for both lines, in control
conditions whereas they are not discriminant in stress conditions.

Herein, osmotic stress appears to affect the whole plant metabolome in the different
analyzed parts. Roots, stems, and leaves, display different responses in order to preserve
water status for survival.

However, several organic molecules, known as osmolytes, play a crucial role during
osmotic adjustment, including AAs, sugars, and organic acids, which potentially help in
maintaining osmotic balance within the plant cells.

Amino acids protect the plants cell membranes, stabilize the structure of biomolecules,
play a role as a scavenger of reactive oxygen species (ROS), and provide a reserve of nitrogen
and carbon, mainly for the synthesis of specific enzymes and precursors for secondary
metabolites such as flavonoids and lignins, during stress conditions [39–41]. Thus, an early
accumulation of amino acids contributes to a greater level of stress tolerance [42].

In the present work, for the most of the amino acids that were measured, no significant
differences in their concentrations have been reported between both lines, in control
conditions. Furthermore, under osmotic stress, they showed a rapid transient increase in
content, after one day of PEG treatment. This increase followed almost the same trend in
LuT and Pi1AM lines.

Proline has been repeatedly reported as one of the most important components of
osmotic adjustment in different plant species including flax [38,43]. A large variability exists
between and within plant species for their capacity to accumulate proline [44]. Genotypes
with high capacity to accumulate proline under osmotic stress are generally considered
to be tolerant to this type of stress [45]. In this study, no significant differences in proline
concentrations have been reported between both lines, in control conditions as well as after
exposure to osmotic stress.

In particular, branched-chain amino acids (BCAAs), such as leucine, valine, and
isoleucine, increase in response to osmotic stress, to enhance stress resistance. These com-
pounds can serve as precursors for cyanogenic glycosides and other secondary metabolites,
to acquire a defense response against abiotic stress [46]. In this study, the amount of leucine,
valine and isoleucine, in roots, stems, and leaves, was the same for LuT and Pi1AM lines
in control condition and remained so in stress conditions, due to a comparable increase
in these metabolites during osmotic stress for both lines. We can thus assume that both
LuT and Pi1AM showed the same capacity in producing AAs in their early response that
enhances tolerance and/or resistance to osmotic stress, in various flax parts.

In addition to amino acid, the breakdown of homeostasis caused by water deficit
induces the accumulation of carbohydrates. The accumulation of sugars mainly fructose
and glucose, is indeed considered as an adaptive response that may also contribute to
enhance plant stress tolerance [47]. Soluble sugar plays a major role in osmotic adjustment
of plants facing the conditions of drought stress [48]. It also maintains the turgidity of leaves
and prevent dehydration of membranes and proteins. Furthermore, sugar accumulation
reduces leaf photosynthetic rate, under drought stress [49]. However, glucose enhances
the plant adaptability under drought stress by inducing stomatal closure in leaves [50]. In
another study, Quéro et al. have shown that glucose and fructose increased in response to
osmotic stress in leaves of wild-type L. usitatissimum [38]. In this study, the glucose and
fructose content of leaves increased significantly, in the same manner in both LuT and
Pi1AM, in response to osmotic stress.

On the basis of the comparison of osmolyte contents between the two lines under
control and osmotic stress, we may conclude that the transgenic line has a similar capacity
with the wild-type line, in regulating osmotic stress by producing soluble sugars and AAs.
Additionally, no visible differences were detected in terms of leaf area, plant height and
plant dry weight in Pi1AM compared to LuT, when subjected to PEG-induced osmotic
stress. Overall, it may be assumed that the capacity of plant to induce an adaptative
response that improves osmotic stress tolerance was similar in both LuT and Pi1AM.
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Moreover, our results showed that the levels of some secondary metabolites, including
cyanogen, lignan, and flavonoids, differ between wild-type and transgenic plants in both
control and stress conditions.

Interestingly, a significant common decrease in the content of metabolites involved
in lignan biosynthetic pathway was observed at least in one part of plants subjected to
osmotic stress in comparison to control plants. This was the case for coniferyl alcohol, PMG
and DCG that decreased specifically in Pi1AM, for LMG that decreased in both lines, for
SMG and LDG that decreased only in LuT, and for PDG that decreased in both lines in
leaves, but only in Pi1AM in stems, under stress conditions. These results indicate that
osmotic stress response and lignan biosynthesis pathways may have a crosstalk with each
other in L. usitatissimum.

3. Materials and Methods
3.1. Plant Material

Flax seeds of the variety Barbara, for PLR1-RNAi transgenic (Pi1AM, homozygous),
and wild-type (LuT) lines, have been provided by the Laboratory of Woody Plants and
Crops Biology (LBLGC, INRAE USC 1328) in Chartres, France. Plants were grown in
a hydroponic cultivation system on Hoagland solution [51,52], in a growth chamber
with a hemeroperiod of 16 h at 21 ◦C, 70% relative humidity and a light intensity of
90 µmol·m−1·s−1. After 30 days, half of each line was grown on Hoagland medium sup-
plemented with PEG-6000 (30 mM) (stressed plants), while the half remaining plants still
grown on Hoagland medium (control plants). Then, control and treated plants were har-
vested at different time-points: one and five days (D1, D5) after osmotic stress application.
During the harvest, the aerial and root parts from each plant, were separated, immersed
in liquid nitrogen, stored at −80 ◦C, and freeze-dried. Leaves, stems, and roots of each
plant, were then separately ground to a fine powder. For each condition, eight independent
samples coming from different plants have been collected (n = 8) and were subjected to
further analysis.

3.2. PCR Analysis of Transgenic Plants

Genomic DNA was extracted from leaves (10 mg dried weight) of wild-type and
transgenic plants, using the E.Z.N.A.® Plant DNA DS Kit (Omega, Bio-teK (Norcross, GA
USA)), according to the manufacturer’s instructions, and quantified using a Nanodrop®

spectrophotometer. To confirm their transgenic nature, the extracted DNA from all isolates
were tested for the presence of NPTII selectable marker gene. Primers used for the am-
plification of a 0.7-Kb NPTII fragment were: P2, 5′-ATCGGGAGCGGCGATACCGTA-3′

(position 201) as 5′ primer and P1, 5′-GAGGCTATTCGGCTATGA CTG-3′ (position 900) as
3′ primer [25]. PCR amplification was carried out in a total volume of 25 µL containing
12.5 µL of Quick-Load® Taq 2X Master Mix, BioLabs, 0.5 µL of each primer (0.25 µM), 2 µL
of extracted DNA and 10 µl ultrapure water. Amplifications were performed with initial
denaturation step of 5 min at 95 ◦C, followed by 40 cycles of 10 s denaturation at 95 ◦C,
30 s annealing at 55 ◦C for the NPTII gene, and a final extension step of 1 min at 68 ◦C.
PCR products were run in 2% agarose gel electrophoresis, with 0.5X TBE (Tris, borate,
EDTA), at 100 V for 45 min, and bands were visualized with GelRed, under UV light, using
a ChemiDoc Imaging system.

3.3. Metabolite Wxtractions

Metabolites were separately extracted from 100 mg of powdered leaves or stems
and 60 mg of powdered roots. A total volume of 800, 700 and 600 µL Water/methanol
(1:1), used as extracting solvent, was added to leaves, stems and root powder respectively,
and the samples were mixed for 10 min at 60 ◦C, using a ThermoMixer® (Eppendorf AG,
Germany) at 2000 rpm, followed by 30 min of sonication at 60 ◦C using ultrasonic bath at
35 kHz. The samples were centrifuged at 4 ◦C for 10 min at 12,000 rpm. A total of 400 µL
of the supernatant were collected. The described extraction process was repeated two
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times by adding 400 µL of extraction solvent in the beginning of each new extraction. A
final volume of 1.2 mL was collected, of which 800µL were used for NMR analysis. The
remaining 400 µL were then used for LC-MS analysis.

3.4. Metabolite Analysis by NMR
3.4.1. Sample Preparation

The pH of each sample prepared for NMR analysis was adjusted to 6.00 ± 0.02, and
the samples were dried under vacuum and then dissolved in 800 µL of deuterated solvent
prepared in a mixture of (1:1) Methanol-d4: KH2PO4 buffer (0.1 M) in D2O at pH 6.0 with
TMSP (0.0125%), NaN3 (0.6 mg/mL), and 15 mM EDTA-d12. Then, samples were briefly
vortexed, sonicated, and centrifuged. The supernatant was placed in 5-mm NMR tubes
and then used for NMR analysis.

3.4.2. NMR Data Acquisition

All NMR spectra were acquired at 300 K with a Bruker Avance III 600 MHz spectrom-
eter operating at 600.13 MHz for 1H, and 150.91 MHz for 13C, using a 5-mm multinuclear
broadband, equipped with z-gradient (TXI 5 mm tube). CD3OD was used as the internal
lock. All 1D 1H-NMR spectra were collected using 32 scans of 131 K data points and a
spectral width of 8417 Hz with a relaxation delay of 13 s, and a water suppression pulse
sequence. The resulting spectra were automatically phased and baseline corrected, using
Bruker Topspin software (version 3.5) [51]. 2D J-resolved NMR spectra were processed
with a 2 s relaxation delay using 16 scans per 64 increments collected into 64K data points,
with spectral widths of 8417.5 Hz in F2 and 50 Hz in F1. 2D HSQC spectra were recorded
with a 2 s relaxation delay, using 64 scans per 256 increments that were collected into 4 K
data points using spectral widths of 8417.5 Hz in F2 and 50 Hz in F1. All spectra were
calibrated to TMSP at 0.0 ppm by the Topspin v3.5 (Bruker) software. Each of the 2 D
acquisitions were performed by analyzing one control and one stressed samples of each
part of plant corresponding to each of the two lines (Pi1AM and LuT).

3.4.3. NMR Data Treatment
1H-NMR spectra were automatically converted into ASCII format and the data from

each part of plant (roots, stems and leaves) were collected and imported into Matlab
software (version 2018a, the Mathworks Inc, Natick, MA, USA) where baseline correction
was performed with the algorithm “airPLS 2.0” [53–55]. All spectra were aligned using the
icoshift algorithm (v 1.2.1) with manually defined alignment bins. Then specific integration
intervals of the spectra “buckets” were defined manually, and each bucket was integrated.
Regions of the NMR spectra corresponding to the methanol-d4 (3.34–3.30 ppm), to residual
water (4.85–4.70 ppm), to TMSP (0.01–0 ppm) and to PEG-6000 (3.68–3.64 ppm), were
removed. All signals with intensities lower than 3.3 times the mean variance from such a
noise region were considered to be noise and were also removed. The obtained datasets
were then used for statistical analysis. Metabolites in the 1D and 2D NMR spectra of flax
extracts were identified based on comparison with spectra and chemical shifts of reference
compounds of database previously developed in the laboratory.

3.4.4. Metabolite Analysis by LC/MS
Sample Preparation

Extracts of stems and leaves were diluted 5 and 10 times, respectively, with methanol/
water (50/50), while no dilution was performed for root extracts. All samples were filtered
through 0.22 µm PTFE membrane filters and placed in glass vials for further LC-MS
analysis. For each plant part, a QC sample were prepared; 10 µL from 20 different samples
were taken and thoroughly mixed, reaching a total volume of 200 µL. For roots, stems, and
leaves, analysis samples were run in a randomized order.



Molecules 2021, 26, 767 20 of 23

LC-MS Data Acquisition

The metabolomics analysis was performed using ACQUITY UPLC H-Class system
(Waters Micromass, UK), coupled to a SYNAPT G2-Si Q-TOF mass spectrometer (Waters-
Micromass, Manchester, UK), which was equipped with an electrospray ion source (ESI).
UPLC separation was performed using a Kinetex C18 (1.7 µm, 100 mm × 2.1 mm, Phe-
nomenex, Torrance, CA, USA) column. The column temperature was maintained at 50 ◦C.
The injected volume was 1 µL. Water (A) and methanol (B), both supplemented with 0.1%
formic acid, were used as mobile phases. A stepwise gradient method was used for elution
at a flow rate of 0.4 mL/min, with the following conditions: 5–95% B (0–7 min), followed
by 3 min of isocratic 95% solvent B, and 1 min gradient to 95% (A), followed by 5 min of
re-equilibrium at 100% A. MS data was collected in the negative ion mode, over a m/z
range of 50 to 1150. The parameters of electrospray ionization (ESI) source were set as
follows: capillary voltage at 3 keV, the cone voltage at 3 V, source temperature at 120 ◦C,
desolvation at 450 ◦C, the cone gas flow 6.5 bar and the desolvation gas flow 800 L/h.
Analyses of the samples were carried out in a mode of a full MS survey, at a resolution
of 2000 (FWHM). MSMS scans for most intense peaks were performed to produce high
resolution MSMS spectra, with a collision energy of 30 eV. Data acquisition was performed
by MasslynxTM v4.1 software (Waters, Milford, MA, USA). The QC samples were injected
at the beginning of the run to set up the system and then every eight samples, so they were
used to ensure system conditioning within the analytical sequence.

LC-MS/MS Data Processing

The acquired spectral data were converted to mzXML format using the Proteowizard
MSConvert tool from 0 to 10 min RT in order to avoid features coming from cleaning step
of the gradient.

Then, the mzXML files data of each part of the plant were loaded and pre-processed
with the XCMS package (v3.0.2) in the open-source R software (v3.2.2).

The centWave algorithm was used for peak detection with the following optimized pa-
rameters: minimum peak width = 3 s, maximum peak width = 15 s, ppm = 5, threshold = 2,
mzdiff = 0.005 and prefilter: (4,100,000), and noise filter = 1000. Peaks were well aligned
by XCMS, using the following parameters: bw = 5.0 and mzwid = 0.025. Retention time
correction was performed by the Obiwarp algorithm, which aligns multiple samples by
using a center sample.

A filling step was included to reduce the number of missing peaks, using the fill-
Peaks tool. For each sample, Peak area, retention time and peak widths, calculated as
the difference between the end and start of the integration points, were extracted from
XCMS data.

After the whole data processing, a table (matrix) including retention time and m/z,
sample names, and ion intensities, was obtained for each sample set. Then, before the
statistical analysis, these matrices were prepared in order to remove the features before the
injection peak (less than 1 min).

The percentage of relative standard deviation (%RSD) was calculated for all metabolic
features in QC samples and the features with %RSD greater than 30% were removed due
to its variability.

Metabolites were principally identified by matching masses, retention times and
fragment patterns of pure standards.

Statistical Treatment of Data

The obtained datasets for NMR and LC-MS were imported into SIMCA-P software
(version 15.0; Umetrics, Umea, Sweden), and applied to principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA) for multivariate statistical
analysis. The UV scaling method was used.
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The Wilcoxon Rank Sum test was used in R’s statistics base-package in order to test
the significant difference in metabolite content, between analyzed groups, with different
p-values (p < 0.05; p < 0.01; p < 0.001).

4. Conclusions

In the present study, the wild-type and transgenic flax plants displayed different
metabolic behaviors after being subjected to osmotic stress conditions, which could be due
to their different metabolic backgrounds but also to different metabolic rearrangements. In
the last case, we can suggest that an altered lignan composition in transgenic plant changes
the metabolic response of the plant to osmotic stress.

In addition, our experimental observations revealed that wild-type and transgenic
line showed the same morphological response to osmotic stress. Moreover, they showed
the same capacity to induce an adaptive response that improves osmotic stress tolerance.
Thus, we can assume that lignan perturbations did not affect plant stress response leading
to osmotic stress resistance. Taken together, our findings indicate that the lignans could not
be directly involved in osmotic stress resistance, but in the metabolic pathways responsible
of the osmotic stress response.

Supplementary Materials: The following are available online, Table S1. Comparison of dry weight
of different part (roots, stems and leaves) of wild-type (LuT) and transgenic (Pi1AM) flax lines, at
D1 and D5 in control conditions (n = 8). Table S2. The VIP score and Log10 (Ratio Pi1AM/LuT) of
the discriminant metabolites between LuT and Pi1AM of different plant part, in control conditions.
Figure S1. Score plot of principal component analysis (PCA) based on 1H-NMR and LC-MS data for
LuT control or stressed samples in flax roots, stems and leaves. Figure S2. Score plot of principal
component analysis (PCA) based on 1H-NMR and LC-MS data for Pi1AM control or stressed samples
in flax roots, stems and leaves. Table S3. The VIP score and Log10 (Ratio Pi1AM/LuT) of the
discriminant metabolites between LuT and Pi1AM of different plant part, in stress conditions.
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