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Samples clustering based on the expression of 30,895 poplar genes. Our 

experimental design is summarized by the below Heatmap (green= include, white= not 

include). Based on topological overlap within the gene matrix, a signed network is 

constructed using WGCNA. Sixteen modules were delineated among the whole 

sample- normalized gene expression matrix, driven by both organs or treatments.   
Is there an impact of ectomycorrhization on tree responses (in leaves and 

roots) to ozone or water stress? 
 

 

 

 

 

 

Ozone application strongly impacted the leave transcriptome while the response to 

soil water stress responses preferentially occurred within roots, regardless of the 

plants being inoculated with an ECM fungi or not. Those responses triggered GO 

enrichment in terms, such as “response to abiotic stress”, “responses to 

endogenous stimulus” or “response to stress”, highlighting that early stress signaling 

occurred within stressed organ, with a little systemic impact.   

 

 

   

 

 

 

 

- RNA-seq: 60 mRNA libraries were sequenced (Hiseq3000, GenoToul, France). 

Raw reads were filtered, trimmed and aligned with the P. trichocarpa genome 

version 3.1 (Phytozome, JGI) or L. bicolor (Mycocosm, JGI).  

Read mapping against Poplar reference genome covering more than 89% of our 

read sequence samples.  
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Context & Aims 
    Long-lived and stationary organisms such as trees are 

subjected to a wide variety of environmental cues from 

both biotic and abiotic origins. With the on-going 

climate change, more severe and recurrent abiotic 

stresses are expected. It is crucial to address the following 

questions of i) how trees interact with their biotic and 

abiotic environments, ii) does the ectomycorrhizal 

symbiosis mitigate the impact of stress at a systemic scale 

and iii) does abiotic stresses challenge the ectomycorrhiza 

(ECM)-tree interaction. Here, we tested the hypothesis 

that ECM trigger a deep rewiring of the hormonal network, 

which in turns could modify the early perception of abiotic 

stresses, sensed either by the root or the shoots. 

Ozone (O3) 

Drought 

Results 
- Physiological measurements (Leaf gas exchange, root respiration, RWC, PO, 

plant biomass, etc.)            No impact of ECM or short-term stress on whole plant 

functioning.  
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Leaf Root 

We aim to better understanding the molecular plasticity in the above and below part 

of poplar (Populus trichocarpa) trees under different environmental cues: 

drought and ozone. In this context, the specific objectives are to decipher the 

impact of these abiotic stresses on (i) metabolites, (ii) hormonal and (iii) transcript 

signatures of Populus leaves and ECM or no-ECM roots as well as the impact of 

ectomycorrhization on tree responses to stress.  

Heatmap provides the correlation between eigengene of each module (ME) and our 

experimental set-up. Color-code is the Pearson coefficient, Student asymptotic p-

value is given in bracket. WGCNA modules will be associate with metabolomics and 

hormonomics data to access the biological significance of the transcriptional network.  

The poplar transcriptome of ECM was poorly responsive 

to stress exposure. Regulation of gene expression in 

ECM appeared distinct during ozone or water stress 

responses. Only one gene is showed as common to 

stress (Transducin/WD40 repeat-like superfamily 

protein). 

Material & Methods 

-Plant growth conditions: Cuttings were rooted for 2 weeks in distillated water. Young rooted poplar 

were planted in attapulgite clay and half of pots were inoculated with an ECM-fungus, Laccaria 

bicolor.  Each pot was given a dilute nutrient solution weekly and kept under climate-controlled 

greenhouse conditions, maintaining a 16-h photoperiod and a temperature of 22°C (day) during three 

months - Exposure conditions: Homogeneous plants were set in phytotron chambers during for two 

weeks, prior to stress exposure (200 nmol.mol-1 O3 for 8 hours or withholding watering for 43h).  Non-

inoculated and inoculated trees were randomly assigned to one of environmental conditions, and 

control plants harvested together with stress plant. - Sample:  Leaf, lateral roots and/or ECM roots 

were harvested separately and frozen at -80°C for further RNA extraction and lyophilized for 

metabolites and hormones (GC/MS-MS) profile analyses. A pool of four plants was used for each 

repetition and each treatment.  

Topology-based gene network of “Omics data”	
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The transcriptome of root and leaf tissues 
were responsive to stress exposure 
(p>0.05, Deseq2) . Venn d iagrams 
compared the response of Poplar inoculated 
with L. bicolor  (Lb) or not  (woLB). (Ozone-
treated versus control = Lb_O ; woLb_O; 
Water-stressed versus control = Lb_W ; 
woLb_W) 

Do ECM roots sense that poplar leaves are exposed to O3 and that soil is 

getting dryer? 
- On-going experiments of phytohormone and metabolite profiles will 

be linked to RNA-seq data.   

Adjacency-based gene network within 
Module 14 Top-connected gene are showed in 

the center 
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