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Abstract Wing dimorphisms have long served as models for examining the ecological and

evolutionary tradeoffs associated with alternative phenotypes. Here, we investigated the genetic

cause of the pea aphid (Acyrthosiphon pisum) male wing dimorphism, wherein males exhibit one of

two morphologies that differ in correlated traits that include the presence or absence of wings. We

mapped this trait difference to a single genomic region and, using third generation, long-read

sequencing, we identified a 120 kb insertion in the wingless allele. This insertion includes a

duplicated follistatin gene, which is a strong candidate gene in the minimal mapped interval to

cause the dimorphism. We found that both alleles were present prior to pea aphid biotype lineage

diversification, we estimated that the insertion occurred millions of years ago, and we propose that

both alleles have been maintained in the species, likely due to balancing selection.

Introduction
The evolutionary loss of flight ability in insects has long been leveraged to study the patterns and

processes of adaptation (Zera and Denno, 1997; Roff, 1990; Harrison, 1980). The loss of flight has

occurred repeatedly across insect orders, such as ants, termites, beetles, crickets, and aphids

(Zera and Denno, 1997), with such evolutionary shifts to flightlessness co-occurring with entry into

stable or isolated habitats where flight is unnecessary (Roff, 1990; Wagner and Liebherr, 1992).

Loss of flight allows animals to shift resources toward production of offspring instead of flight appen-

dages and fuel. Flight-capable and flight-incapable insects therefore present an evolutionary trade-

off between dispersal and reproduction (Zera and Denno, 1997; Harrison, 1980). This tradeoff is

sometimes observed within species, where some individuals develop with wings and others are

wingless. We focus here on wing dimorphisms that are under genetic control (Roff, 1986), although

some species display phenotypically plastic wing dimorphisms (Zera and Denno, 1997).

Wing dimorphisms offer an appealing system for exploring the genetic basis of adaptation

because of their relatively simple genetic architectures. In species of weevils, ground beetles, and

dung flies, for example, a single locus controls each species’ wing dimorphism (Roff, 1986). Other

dimorphisms are polygenic, but Roff (1986) found that eight of 22 species exhibited Mendelian

inheritance. Transitions between flight-capable and flight-incapable morphs have probably evolved

thousands of times in insects (Wagner and Liebherr, 1992; Whiting et al., 2003). Despite the

importance of alternative winged and wingless morphs in insect adaptation, none of the loci control-

ling wing dimorphism have yet been characterized (Saastamoinen et al., 2018).
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Here, we investigated the genetic basis and evolution of the pea aphid (Acyrthosiphon pisum)

male wing dimorphism. Pea aphid males exhibit distinct winged and wingless adult phenotypes

(Figure 1A) and differ in a set of correlated traits. Winged males have well-developed fore and hind-

wings, and direct and indirect flight muscles, while wingless males have a smaller thorax, and lack

wings and associated flight musculature (Dixon and Howard, 1986; Braendle et al., 2006;

Ogawa et al., 2012). The males also differ behaviorally; winged males are more active than wingless

males and thus may gain more mating opportunities with females in competitive trials (Sack and

Stern, 2007), while the wingless males do not fly and thus avoid the high mortality associated with

flight. Unlike the aphid asexual female polyphenism where environmental cues like high density and

low food quality lead to the production of winged versus wingless female morphs (Dixon, 1973), the

male polymorphism is genetically determined. A single locus with two alleles on the X chromosome

called aphicarus (‘aphid’ plus ‘Icarus’, api) controls male morphology (Braendle et al., 2005;

Caillaud et al., 2002). Male aphids carry only a single X chromosome (females are XX, males are

XO), so males carry only a single winged or wingless allele. The correlated anatomical and behavioral

traits suggest that the causal locus can regulate development, and perhaps physiology, in multiple

anatomical domains. We found that a large structural variant, resulting from a duplication event,

underlies the winged versus wingless differences. We then explore the evolutionary history of this

locus, including the maintenance of the duplication polymorphism and its distribution in present-day

populations.
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Figure 1. Linkage and association mapping of api. (A) Winged (top) and wingless (bottom) males. (B) Top: QTL analysis revealed the presence of a

single QTL peak on the X chromosome as assembled by Li et al. (2019). The blue line indicates p=0.01 determined by 1000 permutations of the

phenotype data relative to the genotype data. Further RFLP analysis of recombinant F2 individuals localized api to a ~ 190 kb region, which is

highlighted by a green, vertical line. Bottom: Genetic differentiation between winged and wingless males using FST values calculated from 20 kb

windows across the X chromosome. (C) Dot plots showing areas of similarity among our newly assembled pea aphid genomic scaffolds containing api

(either W:winged or WL:wingless, as indicated) and the scaffold containing api from a species in the Carolinaia genus.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Wingless, but not winged reads, map to the wingless-specific region.

Figure supplement 2. Similarity of the wingless-specific region to putatively homologous regions in the peach-potato aphid (Myzus persicae), the

Carolinaia spp. aphid, and the Russian wheat aphid (Diuraphis noxia).

Figure supplement 3. The male wing-dimorphic pea aphid (Acyrthosiphon pisum, arrow) is embedded in a clade of mainly monomorphic winged

species.

Figure supplement 4. Similarity of the wingless-specific region to an autosomal scaffold containing the fs-2 gene.
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Results and discussion

Mapping the api locus
The api locus is located on the X chromosome, which is estimated to contain a third of the pea aphid

genome (Jaquiéry et al., 2018). The locus was previously localized to a 10 cM region

(Braendle et al., 2005), a large region consisting of hundreds of genes. We took a two-pronged

mapping approach to narrow down the api region. First, we crossed males and females from the F1

line from the original mapping population (Braendle et al., 2005) to generate additional F2 individu-

als. We performed multiplexed shotgun genotyping (Andolfatto et al., 2011) to simultaneously

identify and score single nucleotide polymorphisms (SNPs) from 164 of these F2s. QTL analysis of

these data using a recently published chromosome-level assembly (Li et al., 2019) resulted in a sin-

gle LOD peak on the X chromosome (LOD 10.8, with a 1% LOD permutation threshold of 3.6,

Figure 1B, top; Source data 1). Second, we performed genome-wide association mapping using 44

winged and 44 wingless males collected across the U.S. from alfalfa (Medicago sativa) fields

(Supplementary file 1). We pooled the 44 winged and wingless males separately and performed

Illumina resequencing to high coverage for a total of 68X and 70X coverage, respectively. FST analy-

sis between the winged and wingless sequenced pools revealed a single, large FST value (Figure 1B,

bottom; Source data 2) close to the LOD peak from the QTL analysis.

We further refined the api region by assaying restriction fragment length polymorphism (RFLP)

markers on a panel of 40 F2 individuals that each carried a recombination event between the previ-

ous closest api flanking markers (Braendle et al., 2005). Two markers displayed perfect association

with all 40 F2s, narrowing the api interval to a ~ 190 kb region (see the green vertical line in

Figure 1B, spanning positions from 62.56M to 62.75M). Hereafter, we will use the term ‘api region’

to refer to this genetically defined region.

We then used an additional set of fully sequenced pea aphid genomes to independently verify

the genomic location of api. The pea aphid is a species complex with as many as 15 host specialized

lineages, called biotypes, that probably began diverging 500,000 years ago (Fazalova and Nevado,

2019, but see Peccoud et al., 2009b). Biotypes have limited gene flow between them, and the ones

with the least genetic exchange have been described as incipient species (Peccoud et al., 2009a;

Peccoud et al., 2009b). We used the complete genomes of 23 individual genotypes from nine dif-

ferent biotypes to investigate patterns of association in the api region: nine winged allele carrying

genotypes from five biotypes, and 14 wingless allele carrying genotypes from six biotypes (two bio-

types, pea and alfalfa, had individuals of both allele classes; we sequenced males of these individuals

to separately sequence the two X chromosomes). SNPs across the api region segregated perfectly

with the male winged or wingless phenotype across these biotype samples. Thus, data from linkage

mapping, and the association study within and between biotypes, all confirm the same genomic

location of the causative api locus.

Genome sequencing reveals a structural variant that differentiates the
two alleles
Given the lack of a contiguous reference sequence in the api region in the previous assembly of the

reference genome (v2.0), we separately sequenced the genomes of an F2 female homozygous for

the winged (W) allele to 28x coverage and an F2 female homozygous for the wingless (WL) allele to

11x coverage using Nanopore long-read sequencing. For each allele, we assembled contiguous

sequences that spanned the entire api region (WL scaffold ID = utg000342l; W scaffold

ID = tig00159082l). We identified a ~ 120 kb insertion in the WL scaffold relative to the W scaffold

(Figure 1C, left axis). The SNPs that originally identified this genomic region in the linkage and asso-

ciation mapping are adjacent to, and thus linked to, this insertion. The pool-seq reads from wingless

males (generated for the association mapping discussed above) generated the same level of cover-

age across this insertion (including reads that cross the insertion boundaries) as the surrounding

sequence, while the winged male pool-seq reads did not map to this inserted region, confirming the

absence of this sequence in winged male genomes (Figure 1—figure supplement 1). This 120 kb

insertion is not assembled correctly in the original pea aphid genome published

in International Aphid Genomics Consortium (2010), which is homozygous for the wingless allele,

so a portion of this region is present in that assembly as a separate contig. In the more recent, near-
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chromosome length assembly of the pea aphid genome (Li et al., 2019), the authors reported link-

age of an approximately 50 kb insertion to the api locus. However, we found that the api region is

incompletely assembled in this new assembly as well. We therefore use our new, wingless assembly

for the remainder of this work.

To determine whether this indel represents an insertion in the wingless allele or a deletion in the

winged allele, we aligned the winged and wingless api scaffolds against homologous genomic scaf-

folds from three other aphid species, the peach-potato aphid (Myzus persicae), an unidentified spe-

cies from the Carolinaia genus (Carolinaia spp.), and the Russian wheat aphid (Diuraphis noxia)

(other available aphid genomes were not used because they did not have scaffolds that spanned this

region). The peach-potato aphid produces only winged males and the Russian wheat aphid produces

only wingless males. We do not know the male phenotype of the Carolinaia species. We observed

that the pea aphid wingless scaffold contained ~120 kb of sequence not present in other species,

while the pea aphid winged scaffold exhibited nearly complete synteny across the region

(Figure 1C, right axis, for comparison to the Carolinaia spp.; see Figure 1—figure supplement 2 for

comparison to all three aphid species). Thus, the ~120 kb sequence in the wingless allele is an evolu-

tionarily derived insertion that occurred in the lineage that led to pea aphids. The majority of the

species closely related to the pea aphid produce only winged males (Figure 1—figure supplement

3), so the wingless phenotype is likely the derived phenotype. Thus, both the wingless male pheno-

type and the insertion appear to be derived characteristics of pea aphids.

To investigate the source of this inserted sequence, we used a BLASTn analysis of the ~120 kb

wingless-specific region against our newly reconstructed pea aphid genome. This analysis revealed

that approximately half of the inserted sequence showed similarity to another region of the refer-

ence genome (scaffold utg000238I; Figure 1—figure supplement 4), which is on an autosome.

Thus, most of the inserted sequence at api is derived from a duplication of an autosomal region. The

remainder of the insertion is largely composed of complex repeats which are likely the result of

mobile element insertions that occurred after the duplication event.

A candidate follistatin gene in the inserted sequence
Annotation software (Augustus v.3.3.1) predicted 12 open reading frames (ORFs) in the wingless api

insertion. The gene models located within the insertion in Figure 2a are from this annotation; mod-

els outside the insertion are the genome v3.0 annotations (Li et al., 2019). 11 of the 12 ORFs

(Supplementary file 1) appear to be remnants of transposable element insertions. Ten show nucleo-

tide similarity to previously identified pea aphid transposable element sequences

(International Aphid Genomics Consortium, 2010). Another, ORF g6, has a DDE_Tnp4 superfamily

domain (7.15e-3), which is part of the DDE superfamily of endonucleases that are likely transposases.

Its predicted protein sequence is highly repetitive, with over 100 copies present across the pea

aphid genome (tBLASTn evalue < �20). 38% of the pea aphid genome has been identified as

derived from transposable element sequences (International Aphid Genomics Consortium, 2010),

thus the api insertion is not unique in containing these elements. The remaining ORF, fs-3, is not

repetitive and, importantly, is the only ORF that has homologous sequence in the insertion’s autoso-

mal source location.

The ORF that originated with the insertion shows high similarity to the Drosophila melanogaster

follistatin (fs) gene (blastp e-value of 4e�43). In Drosophila, fs is a secreted protein that modulates

TGF-b signaling by interacting antagonistically with activin (Bickel et al., 2008; Pentek et al., 2009).

The Drosophila Fs protein contains follistatin-Kazal domains necessary for activin binding

(Wang et al., 2000; Keutmann et al., 2004). Three follistatin-Kazal domains are present in the pea

aphid fs gene that is in the wingless-specific insertion.

We searched the pea aphid genome for fs homologs and identified three total fs homologs: the

fs homolog in the polymorphic insertion (fs-3), the fs homolog in the source of the insertion (fs-2),

and a third homolog (fs-1). A search of four other published aphid genomes revealed only a single fs

copy in each species. The other aphid genomes are significantly diverged from the pea aphid; the

most closely related genome to the pea aphid is that of the peach-potato aphid, which diverged

from the pea aphid over 40 million years ago (Kim et al., 2011). We therefore used the Illumina

technology to sequence the genome of the rose aphid, Macrosiphum rosae, which diverged from

the pea aphid more recently (Figure 2B; Kim et al., 2011; Hardy et al., 2015), although the exact

divergence time is unknown. We examined the relationships among the fs homologs relative to the
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species tree (Figure 2B,C). fs-1 has a slower rate of evolutionary change compared to the fs-2/fs-3

lineage, suggesting that fs-1 likely retains the ancestral follistatin function.

The fs gene tree (Figure 2C) shows that there have been two fs duplication events. The first dupli-

cation created fs-1 and fs-2/3. It occurred around the time that the Macrosiphini aphids represented

here (the peach-potato, Carolinaia spp., rose, and pea aphid) diverged from one another about 42

mya (Kim et al., 2011). The rate of synonymous substitution (dS) between fs-1 and the fs-2/fs-3 line-

age is consistent with this divergence time: the average dS between the peach-potato aphid and the

pea aphid is 0.25 (Ji et al., 2016), while dS between fs-1 and fs-2 or fs-3 are very similar at 0.28 and

0.29, respectively.

Despite this ancient duplication, of the species examined here, we found fs-2 and fs-3 only in the

pea aphid genome (and not the rose aphid or the Carolinaia spp. aphid). More recently, fs-2/3 dupli-

cated to produce fs-2 (the autosomal, api-source copy) and fs-3 (the copy found solely in the pea

aphid wingless allele). The most parsimonious explanation for these patterns is that the initial dupli-

cation that gave rise to the fs-2/3 lineage arose after the split of the pea aphid and the peach-potato

aphid, and this duplicate copy was subsequently lost in the rose aphid lineage. The ambiguity of the

timing, and the limited taxon sampling, however, do not preclude other evolutionary scenarios.

Future sequencing of more aphid genomes would provide insight into the timing of the emergence

of these paralogs.

All pairwise dN/dS comparisons using fs copies in Figure 2C resulted in values less than one

(range of 0.03–0.21, Supplementary file 2), indicating purifying selection acting on all copies. Thus,

all three fs paralogs seem to be functional genes. Although all three fs genes appear to be func-

tional, fs-3 is only present in the WL insertion, which is not found in winged males. Therefore, fs-3 is

not required for aphid survival, although it appears to provide a benefit to individuals that carry it.

To examine if fs-3 is expressed in wingless males, we performed RT-PCR on cDNA collected from

winged and wingless males across three developmental stages (late stage embryos, 1st instar

nymphs, and 2nd instar nymphs, Figure 2D). We did not perform RT-qPCR for this gene because our

experimental design was aimed at confirming that the gene was indeed expressed, and not to per-

form an analysis of comparative expression levels. The winged allele lacks fs-3 and thus winged

males show no expression (Figure 2D). In contrast, the wingless males expressed fs-3 (Figure 2D).

Female samples are also shown for comparison. Winged and wingless males are morphologically dis-

tinct by the second nymphal instar (Ogawa et al., 2012), so the developmental timepoint of morph

determination must occur before this stage. In the phenotypically plastic pea aphid females, wing

morph determination occurs embryonically (Sutherland, 1969). We reasoned that the action of api,

and thus morph determination, likely begins at the embryonic stage and possibly persists through-

out development. fs-3 gene expression present at these early developmental stages is consistent

with this expectation. fs-3 is a strong candidate gene for causing the wingless phenotype, but other

genes within or flanking the WL insertion cannot be ruled out as contributing to, or causing, male

winglessness. For example, there is high sequence divergence between the winged and wingless

alleles in the flanking sequence. In the 10 kb to the right of the insertion we observe ~6% divergence

in the alignable portion of the sequence, plus indels that range from 1 to 920 bp. Many SNPs in the

flanking region are strongly associated with the male phenotype (Figure 2—figure supplement 1).

We examined whether gene expression patterns for other genes in this region are consistent with

their potential role in causing male winglessness. There are five genes present in the pea aphid

genome annotation that are outside of the insertion, but inside or partially inside the minimal api

region (pea aphid genome annotation v3.0, Figure 2A; Supplementary file 1). We provided names

to these five genes as follows: two aphid-specific genes (as1, as2; neither gene contains conserved

domains and therefore their possible functions are unknown), a predicted mitochondrial sorting and

assembly gene (sam50), a predicted fibroblast growth factor receptor substrate gene (frs2), and a

predicted chromodomain-encoding gene (cdg). We found no nonsynonymous polymorphisms in

these genes that perfectly segregate with the api phenotype across the pool-seq and biotype data.

Any mutations that contribute to the winged and wingless males would, therefore, likely be regula-

tory. We therefore measured the expression levels of the five genes (as1, as2, sam50, frs2, and cdg)

using RT-qPCR. We focused on two developmental stages, embryos and first instar nymphs, as the

likely critical times as explained above. as2 is not expressed in males at these stages. Of the four

other genes (as1, sam50, frs2, and cdg), none were significantly differentially expressed after multi-

ple comparison correction (Figure 2—figure supplement 2, although as1 embryos had an
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uncorrected t-test p-value=0.013; Source data 3). We therefore found no strong evidence that these

genes contribute to the male wing dimorphism.

Multiple lines of evidence suggest that fs-3 is the male morph determination gene. fs-3 is present

in all wingless males and absent from winged males. It is not essential for aphid survival because

winged males do not have it. Yet, fs-3 is under purifying selection and its coding sequence has per-

sisted, intact, for thousands of generations. The maintenance of fs-3 suggests that it provides a

selective advantage, but this advantage can be present only in individuals that have fs-3 (i.e., only

wingless males or females carrying this allele). Furthermore, fs-3 is expressed at the relevant time for

mediating morph determination. A transgene rescue or mutational knock-out experiment (ideally

both) are ultimately required to determine whether fs-3 causes the male wing polymorphism.

The function of fs, as studied in Drosophila, provides insight into how fs-3 might function in the

pea aphid male wing polymorphism. The sole Drosophila fs gene encodes a protein, Fs, that binds

activins to affect TGF-b/activin signaling (Bickel et al., 2008; Pentek et al., 2009). Overexpression

studies (Bickel et al., 2008; Pentek et al., 2009) revealed two potentially relevant Fs roles: regula-

tion of cell proliferation and regulation of ecdysone receptor expression in the brain. For the former,

wings were smaller in fs overexpression mutants (Bickel et al., 2008; Pentek et al., 2009). In the

pea aphid wingless males, expression of an additional fs copy could negatively regulate cell prolifer-

ation in the wing and wing musculature, resulting in a lack of growth. For the latter, fs overexpres-

sion caused phenotypes that mimicked disruption of ecdysone signaling; the authors posited that

there is a potentially underappreciated interaction between activin signaling and ecdysone

responses (Pentek et al., 2009). This is particularly intriguing because the pea aphid plastic, female
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Figure 2. An expressed follistatin gene duplicate in the wingless-specific insertion. (A) Gene models at the api locus, with distances shown in bp on the

x-axis. The recombination mapping defined api region and the wingless-allele specific insertion are indicated. ORFs inside the wingless-specific

insertion are our own annotation, while those outside the insertion are those of the genome v3.0 (Li et al., 2019). Repetitive ORFs and those outside of

the api region are shown in gray. ORFs with evidence for expression either from RT-PCR or RT-qPCR are shown in black. (B) Phylogenetic tree of the

aphids studied here: the soybean aphid (Aphis glycines), the bird cherry-oat aphid (Rhopalosiphum padi), the peach-potato aphid (Myzus persicae), an

unidentified Carolinaia genus species, the rose aphid (Macrosiphum rosae), and the pea aphid (Acyrthosiphon pisum). The maximum likelihood tree

was constructed from 2,378 bp of DNA sequence from elongation factor 1a, 18S rRNA, 12S rRNA, cytochrome b, and cytochrome c oxidase subunit I

collected from Genbank. (C) Maximum likelihood tree of the different copies of follistatin (fs) nucleotide sequences. Nodes with bootstrap values < 80

are collapsed. (D) RT-PCR analysis of fs-3 and fs-2 gene expression across different developmental stages (E: embryo cDNA, 1: 1st instar nymph cDNA,

2: 2nd instar nymph cDNA; +: genomic DNA, -: no cDNA) of wingless males, winged males, daughters of crowded adult wingless females (‘winged’

females, which are predominantly winged females), daughters of uncrowded adult wingless females (‘wingless’ females, which are predominantly

wingless female samples). Females here are heterozygous for the api locus, and thus have fs-3 as indicated by the positive band in the female gDNA

lanes. Data for the G3PDH gene are provided as a positive control.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Association between SNPs at api and the male wing phenotype.

Figure supplement 2. Genes in the insertion-adjacent region are not differentially expressed as measured by RT-qPCR analysis.
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wing dimorphism is regulated, at least in part, by ecdysone signaling (Vellichirammal et al., 2017).

Pea aphid fs-3 might, therefore, directly or indirectly activate ecdysone signaling in a tissue-specific

manner during the development of the wingless morph, causing it to display the wingless male phe-

notype. So, rather than using an environmental cue to activate ecdysone signaling and to ultimately

cause winged versus wingless developmental events, as in the pea aphid female polyphenism, the

males may begin the process using the fs-3 gene product. Future work is required to determine

whether or not fs-3 influences TGF-b/activin signaling in the pea aphid and how these changes might

alter the male phenotype.

Evolution at the api locus
To investigate the evolution of the api region within the pea aphid species complex, we used the 23

individually sequenced pea aphid genomes from nine biotypes discussed above. Of these genomes,

all 14 wingless individuals carried the insertion (Figure 3—figure supplement 1) and the nine

winged individuals did not (Figure 3—figure supplement 2). Phylogenetic network analysis using a

region of the aphid genome outside of api (Source data 4) showed that genetically distinct bio-

types, such as those feeding on Lathyrus pratensis (Lap1-3) and Vicia cracca (Vc1-2), group together

and are separated by relatively long branches (Figure 3A, top). The other biotypes exhibited little

network structure, suggesting that there is gene flow among these biotypes, as reported previously

(Peccoud et al., 2009a). In stark contrast, within the api region but just outside of the insertion

(Source data 5), we found that the winged and wingless alleles are separated by a long branch,

implying that biotype differentiation occurred after the origin of the WL api allele (Figure 3A, bot-

tom). Thus, the WL api insertion must predate the biotype divergence that occurred ~500,000 ya.

To further explore the age of the insertion, we used the synonymous divergence rate, dS, as a

measure of neutral differences and thus as a proxy for age. We first explored the distribution of dS

values for all genes between two divergent biotypes, a Lathyrus pratensis biotype genome (Lap1

from Figure 3A) and a Medicago sativa biotype genome (Ms3 from Figure 3A). Even between these
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Figure 3. The polymorphism predates radiation within the species complex. (A) Tree networks, built with SplitsTrees, based on positions ~ 1,235 kb-

1,245kb (‘Outside api’) or ~379 kb–388 kb (‘Inside api’) on the WL api scaffold. Winged individuals are colored in blue and wingless alleles in red.

Abbreviations: Cs: Cytisus scoparius, Lap: Lathyrus pratensis, Mes: Melilotus spp., Ms: Medicago sativa, Os: Ononis spinosa, Ps: Pisum sativum, Tp:

Trifolium pratense, and Vc: Vicia cracca. (B) Neutral divergence times, as measured by dS. Orange line shows the dS distribution for 16,367 genes,

derived from comparing individuals Lap1 and Ms3. Dotted vertical lines indicate the dS values for the average of the three api-adjacent genes (as1,

sam50, frs2) when winged and wingless individuals are compared, the comparison of fs-2 and fs-3, and the average rose to pea aphid dS. (C) Allele

frequency estimates based on SNP frequency analysis of read counts in pool-seq data for each of the different pea aphid biotypes. Biotypes that

overlap with data in (A) are shown with the same abbreviations as in (A), but some biotypes are unique to analyses in (A) or (C). Additional

abbreviations: Gs: Genista sagittalis, Gt: Genista tinctoria, Lc: Lotus corniculatus, Ml: Medicago lupulina, Ov: Onobrychis viciifolia, Ss: Securigera spp.,

and Ts: Trifolium spp.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Reads from wingless individuals of different biotypes map to the wingless-specific region.

Figure supplement 2. Reads from winged individuals of different biotypes do not map to the wingless-specific region.
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divergent biotypes, most genes had few differences, with a median dS of 0.0035 (orange distribu-

tion, Figure 3B; Source data 6). In contrast, the three expressed genes with exons within the api-

adjacent region had dS values between winged and wingless alleles that are an order of magnitude

higher than the average of all genes: 0.045 (as1), 0.035 (sam50), and 0.036 (frs2) (vertical dashed line

in Figure 3B). Even more strikingly, dS between fs-3, the follistatin copy in the WL insertion, and fs-

2, the follistatin copy at the autosomal origin, was 0.068 (Figure 3B, vertical dashed line). These high

dS values also support the hypothesis that the api WL insertion is considerably older than the bio-

type diversification.

We next estimated the age of the insertion relative to the divergence between the pea aphid and

the rose aphid (Macrosiphum rosae). The pea aphid and rose aphid display an average dS of 0.08

(Figure 3B). Assuming a molecular clock, and an estimated dS and divergence time between the

pea aphid and the peach-potato aphid (Myzus persicae) of 0.25 and approximately 42 million years,

respectively (Ji et al., 2016), we estimate that the pea aphid and rose aphid diverged approximately

13 million years ago. We therefore conclude that the api WL insertion occurred approximately 10

millions years ago. Given the age of this insertion, the region is likely not unique to pea aphids, but

rather could be responsible for the wingless male phenotype observed in other, related species as

well. For example, a species not examined in the phylogeny shown in Figure 1—figure supplement

3 is Acyrthosiphon auctum, which is purportedly within the same genus as the pea aphid, but this

species only produces wingless males (Blackman and Eastop, 2000). It will be interesting to interro-

gate other, closely related wingless and dimorphic species to determine whether or not the insertion

is present in them and thus responsible for the wingless phenotype in other species.

To explore contemporary frequencies of the two alleles, we estimated the winged allele fre-

quency from 12 different pea aphid biotypes. To do this, we focused on a noncoding SNP in the api

region that segregates perfectly with the male wing phenotype across all 23 sequenced genomes

from the nine biotypes, and which is 95% associated with the male phenotype in the alfalfa-biotype-

specific, pool-seq data. We examined this SNP from pre-existing pool-seq data collected from each

of the 12 biotypes (Guyomar et al., 2018) to estimate the winged allele frequencies. Each pool con-

tained from 14 to 35 individuals from France, which has high host plant diversity, and each pooled

individual had a distinct, multilocus genotype (Guyomar et al., 2018). The majority (9/12) of the bio-

type lineages exhibited both alleles, with the ancestral, winged allele frequency ranging from 5% to

94% (Figure 3C). In the remaining three biotypes (Gs, Mes, and Vc), the derived, wingless allele has

gone to fixation in the samples of our dataset. This inter-biotype variation raises the intriguing idea

that specialization on distinct legume hosts may influence male wing dimorphism variation.

The winged and wingless alleles have been maintained within the pea aphid lineage for millions

of years. This variation may have been maintained within one or more biotypes as we see in modern-

day sampling, or alternatively, the pea aphid species complex has maintained both alleles for thou-

sands of years, but the alleles have moved between individual biotype via introgression. Unlike the

female pea aphid wing dimorphism, which is well studied in terms of the investment tradeoff in

reproduction versus dispersal (Zera and Denno, 1997), it is not as clear what fitness advantage a

winged or wingless pea aphid male has over its counterpart. Indeed, the existence of wing dimor-

phisms in male insects are less well understood generally, especially given their limited energetic

investment in offspring relative to females (reviewed in Langellotto et al., 2000). Hypotheses would

include inbreeding avoidance and reduction of local mate competition driving the increase in abun-

dance of winged males, while the high mortality associated with flight would drive an increase in

wingless males. Future studies should, therefore, aim to understand why both morphs have existed

for so long in pea aphids.

Conclusions
We have identified a derived insertion carrying a duplicated follistatin homolog that underlies the

differences between winged and wingless males. This study represents an important breakthrough

in understanding the molecular evolution of wing dimorphisms, which have evolved repeatedly in

insects (Roff, 1986). Furthermore, this work demonstrates that a dramatic phenotypic difference is

due to a relatively old insertion containing a gene duplicate, and thus that mutations of relatively

large effect can play an important role in adaptive evolution (Orr and Coyne, 1992). The discovery

of these types of structural variants underlying morphological adaptations have largely gone unde-

tected (at least, compared to SNPs, although notable examples exist e.g., Lamichhaney et al.,
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2016; Joron et al., 2006) to date due to technological limitations. Long-read genome sequencing

technologies are likely to uncover additional cases of structural variants underlying morphological

evolution in the future.

Materials and methods

Linkage mapping
Braendle et al. (2005) previously established an api linkage mapping population. We used the F1

line from that population to generate additional F2 recombinants. Specifically, F1 asexual females

(that reproduce through parthenogenesis) were placed on Vicia faba plants in an incubator at 16˚C

and a photoperiod of 12 hr light and 12 hr dark. After two generations of asexual reproduction,

these conditions induce the production of sexual females and males. F1 males are both winged and

wingless. Females produce males asexually by losing one X chromosome (Blackman, 1987). The api

locus is on the X chromosome, so F1 females produce either winged or wingless males depending

on which chromosome they drop. Male siblings are therefore identical on their autosomes, but they

carry different X chromosomes. We crossed F1 females to F1 males, collected fertilized eggs, steril-

ized them in 1% calcium propionate on Whatman paper, and placed them in an incubator that alter-

nated between 4˚C for 12 hr light and 0˚C for 12 hr dark. After 90 days, eggs were removed from

this incubator and placed in a 19˚C incubator that alternated between 16 hr light and 8 hr dark. F2

hatchlings were transferred to individual plants for asexual reproduction to establish a line of that F2

individual.

Genomic DNA from 164 F2 females was isolated, quantified, and diluted to 2 ng/ml and subjected

to multiplexed shotgun genotyping (Andolfatto et al., 2011). The final amplified libraries were

sequenced on an Illumina Genome Analyzer. We generated parental X-chromosome genomes for

the MSG software pipeline (https://github.com/YourePrettyGood/msg; copy archived at https://

github.com/elifesciences-publications/msg; Pinero et al., 2020) by updating a recently published

assembly of the pea aphid genome (Li et al., 2019) with short sequence reads generated from wing-

less and winged males from the F1 strain and a custom script (available upon request). MSG pro-

duced genotype posterior probabilities that were imported directly into the genotype data structure

of R-qtl (Broman et al., 2003) using a custom script (https://github.com/dstern/read_cross_msg;

copy archived at https://github.com/elifesciences-publications/read_cross_msg; Stern, 2020). We

performed QTL analysis assuming a single additive locus for winged versus wingless males using the

R-qtl command scanone using Haley-Knott regression (Haley and Knott, 1992). Genome-wide sig-

nificance values were calculated using 1000 permutations of the phenotype data over the

genotypes.

Pool-seq
We used 44 winged and 44 wingless male pea aphids induced from females collected from

Nebraska, New York, California and Massachusetts (Supplementary file 3). Genomic DNA (gDNA)

from each male was extracted using the Qiagen DNeasy Blood and Tissue Kit. 50 ng of gDNA from

each male was pooled together with males of the same phenotype. Paired-end libraries were pre-

pared with the TruSeq DNA PCR-Free Library Preparation Kit at the University of Rochester Geno-

mics Research Center and sequenced on an Illumina HiSeq2500 Sequencer with paired 125nt reads.

First, reads were mapped to the recently published whole-X-chromosome assembly (Li et al., 2019)

using bowtie2 v2.2.9 (50) with default parameters. The SAM files were converted to BAM files using

samtools (v1.7) and later used for Fst analysis. In addition, the reads were mapped to our WL

genome using bowtie2 (Li and Durbin, 2009) using default parameters. Reads were filtered for a

mapping quality of 20 and BAM files were sorted by coordinates using samtools. The coverage of

both W and WL libraries mapping to our WL genome was calculated using the samtools depth func-

tion. The pool-seq reads are deposited under BioProject PRJNA562690, SRA SRR10030338 for the

winged reads and SRA SRR10030337 for the wingless reads.

Biotype genomes
In addition to the reference pea aphid genome which is api wingless homozygous, we obtained the

sequence of 22 additional pea aphid genomes: nine carrying only the winged allele and 13 the
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wingless allele. These genotypes were collected in the wild as parthenogenetic females, on distinct

legume species (Guyomar et al., 2018; Gouin et al., 2015). Biotypes (populations specialized on

distinct legume hosts) of these genotypes were assigned based on their microsatellite profiles

(Peccoud et al., 2009b) and representatives were then selected for genome resequencing

(Gouin et al., 2015). Lines were sequenced to 17X to 30X coverage with Illumina 100nt paired-end

reads. The reads of each sample were aligned to the pea aphid reference genome with default set-

tings in bowtie2 (version 2.2.1) (Langmead et al., 2009). The consensus sequence of each sample

was acquired using the recommended pipeline in samtools (version 1.3.1) and bcftools (version 1.3).

Nanopore sequencing and genome assembly
Two F2 lines, one homozygous winged and the other homozygous wingless, were generated from

the api heterozygous F1 (W/WL) line. The DNA of nymphs (first through fourth instars) was isolated

using the Qiagen Gentra Puregene Tissue Kit according to the manufacturer’s instructions. DNA was

quantified on a Qubit and a Nanodrop and visualized on a pulse filed gel to verify its large size. For

Nanopore sequencing, 2 mg of DNA was used to prepare a 1D sequencing library (SQK-LSK108)

according to the manufacturer’s instructions (1D gDNA long reads without BluePippin protocol),

including the FFPE repair step. 75 mL of the library was immediately loaded onto an R9.4 flow cell

prepared according to the manufacturer’s instructions and run for approximately 48 hr. Basecalling

was completed using ONT Albacore Sequencing Pipeline Software version v2.2.6. 14 GB of Nano-

pore reads were generated for the winged line and 7 GB reads were generated for the wingless

line. OntCns, a customized version of MECAT (Xiao et al., 2017) was used to assemble the Nano-

pore reads of the W line. All parameters were kept the same as the example included in the package

manual except for the OntCns2Consensus step, in which the coverage cutoff (-c) was set to 5. Mini-

map2 (Li, 2018) and Miniasm2 (Li, 2016) was used for genome assembly of the WL genome. An

additional 36 GB of WL/WL Pacbio reads were combined with the 7 GB of Nanopore reads. Preset

parameters (-x ava-pb) were used in the Minimap step. Assembly polishing was performed slightly

differently for the two assemblies. First, 4 rounds of RACON (Vaser et al., 2016) (two rounds of

Nanopore and two rounds of Pacbio) were performed to improve the WL assembly since there is no

consensus step in the Miniasm assembler (there is a consensus step in the MECAT assembler). We

aligned the Nanopore reads and Pacbio reads using Minimap2 with preset parameters (-x ava-ont

and -x ava-pb) respectively. Next, 10 rounds of Pilon were used to further polish the WL assembly

(Walker et al., 2014). We aligned 84X W and 48X WL Illumina paired-end (2 � 100 nt) reads to the

assembly using bowtie2 (Langmead and Salzberg, 2012) and then ran Pilon on the sorted bam files

using default settings. The same Pilon polishing process has been performed for the MECAT assem-

bly. The only difference is that we used 68 � 100 nt F2(wl) and 44X F2(w) Illumina paired-end (2 �

100 nt) reads for the alignment. The wingless reads are deposited under accession SRR8306868

(wingless) and SRR10028116 (winged).

Other genomes
We sequenced the genome of the rose aphid (Macrosiphum rosae) using 2 � 150 nt Illumina reads

to approximately 105x coverage. Abyss 2.13 was used to assemble the genome, with kmer set to

107 and other parameters left as default. This Whole Genome Shotgun project has been deposited

at GenBank under the accession BioProject: PRJNA576965. We used publicly available data for the

peach-potato (Myzus persicae), the soybean (Aphis glycines), and the bird cherry-oat (Rhopalosi-

phum padi) aphid genomes, available at Aphidbase.com. We also used information from a genome

produced by the 10XGENOMICS company (here renamed Carolinaia spp. based on its COI

sequence) available at their website: https://support.10xgenomics.com/de-novo-assembly/datasets/

2.0.0/aphid).

Association and FST analysis
Two mpileup files were created from the W and WL male BAM files, mapping to either the genome

recently published chromosome-length genome (Li et al., 2019) or to the WL genome assembly we

produced here using the samtools mpileup function with the -B option to disable BAQ computation.

They were further processed by the mpileup2sync.jar script in PoPoolation2 v.1.201 (Kofler et al.,

2011) to generate synchronized mpileup files (sync files), with fastq type set to sanger and minimum
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quality set to 20. For association analyses, Fisher’s exact tests were performed on the mapping to

our WL genome using the fisher-test.pl script included in PoPoolation2 with a window-size of 1,

step-size of 1, minimum coverage of 2, and minimum allele count of 2. FST values were calculated on

the mapping to the whole-X-chromosome assembly (Li et al., 2019) with the fst-sliding.pl script

included in PoPoolation2 with a window size set to 20 kb, a step size set to 10 kb, minimum cover-

age set to 30, a maximum coverage set to 200, pool size set to 44. We filtered the results by the

fraction of the window having sufficient coverage greater than 0.05.

Species and follistatin gene phylogenies
Two fs genes were identified in the A. pisum reference genome (v3.0): XM_003246488 and

XM_029488805. We found an additional copy in the insertion, which in v2.0 of the genome was

referred to as ACYPI065759. They were renamed as follows: XM_003246488: fs-1; XM_029488805:

fs-2; ACYPI065759: fs-3. The fs homologs in the peach-potato (Myzus persicae), the soybean (Aphis

glycines), and the bird cherry-oat aphids (Rhopalosiphum padi) were identified by blastp using the

pea aphid fs-1. Tblastn was used to identify the homolog in the 10X genomics, Carolinaia spp.

genome. Finally, a blastn was used to find the fs gene sequence from the rose aphid. MAFFT

(v.7.313) was used for alignment and Raxml (v.8.2.11) was used to build a maximum likelihood tree

of the aligned coding sequences. Rapid bootstrap analysis (-f a) was used to search for the best-scor-

ing maximum likelihood tree in one program run. The GTRGAMMA model was selected (-m

GTRGAMMA) and 1000 bootstrap replicates were performed. Random seed number for the starting

trees (-p 123321) and Bootstrap (-x 12321) were set accordingly.

Five housekeeping genes (Elongation factor 1a, 18S ribosomal RNA, 12S ribosomal RNA, Cyto-

chrome b and Cytochrome c oxidase subunit I) were selected to construct the phylogeny of six aphid

species: the pea aphid (A. pisum), the rose aphid (Macrosiphum rosae), a Carolinaia spp. aphid, the

peach-potato aphid (Myzus persicae), the bird cherry-oat aphid (Rhopalosiphum padi), and the soy-

bean aphid (Aphis glycines). The sequences were concatenated together for each species and then

aligned using MUSCLE (v.3.8.31). The aligned sequences were further curated using Gblock (http://

www.phylogeny.fr/) to eliminate poorly aligned positions and divergent regions. Then the same set-

tings of Raxml as in the follistatin phylogeny were adopted to construct the maximum likelihood

tree.

Annotations
Augustus v.3.3.1 (Sommerfeld et al., 2009) was used for annotations. Species parameters were set

to the pea aphid, Acyrthosiphon pisum, since there is a pretrained model.

SplitsTree
SplitsTree v.4.14.6 (Huson and Bryant, 2006) was used to generate unrooted phylogenetic net-

works. Two regions were analyzed for individual biotypes on the api scaffold: inside api (posi-

tions 378,979–387,730) and outside api (positions 1,235,176–1,245,122). All parameters were left

as default.

dS biotype calculations
The bedtools (v.2.26.0) getfasta function was used to extract CDS sequences from the consensus

sequences of the Lap1 and Ms3 genomes based on the annotation file AphidBase_OGS2.1b_-

withCDS.gff3, available at aphidbase.com. A modified perl script of SNAP (Synonymous Non-synon-

ymous Analysis Program, v.2.1.1), (Korber, 2000) was used to calculate dS values with the Jukes-

Cantor correction. Results were filtered to only include CDS lengths greater than or equal to 300

and less than or equal to 3000.

Reverse-transcriptase quantitative PCR (RT-qPCR)
We used the two api homozygous F2 lines to collect male embryos and first instar nymphs from

winged and wingless genotypes. We dissected stage 18 (Miura et al., 2003) embryos from the

females or collected first instar nymphs and verified that they were male via PCR (primers 5’ ATCGA

TGCTTTTGAATTGTTTTAC 3’ and 5’ TGTAGGGTCTCTTGAAGTTGTTTG 3’) followed by restriction

digest. This primer set targets a heterozygous recognition sequence for Taq1alpha on the X
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chromosome and males only have one X chromosome; thus, they only display one of the two possi-

ble bands shown by females. Five biological replicates were included. Each embryo replicate con-

tained 20 embryos from 6 to 10 females, while each first instar nymph replicate contained 10

individuals produced by 3 to 5 females. RNA extraction was performed using Trizol and cDNA syn-

thesis via the BioRAD iScript cDNA kit. Quantitative PCR was performed on a Bio-Rad CFX-96 Real-

Time System using 12 mL reactions of 40 ng cDNA, 1X PCR buffer, 2 nM Mg+2, 0.2 nM dNTPs, 1X

EvaGreen, and 0.025 units/mL Invitrogen Taq with the following conditions: 95˚C 3 min, 40x (95˚C 10

s, 55˚C 30 s). Primer concentrations were optimized to 100 ± 5% reaction efficiency with an R2 value

of >0.99 [G3PDH (XM_001943017): 400 nM Forward primer, 350 nM Reverse primer; NADH

(NM_001162323): 350 nM F, 300 nM R primer; 2281: 175 nM; 25525: 150 nM; 25532: 250 nM; and

25533: 150 nM]. Each of the five biological replicates was run on a single plate, with three technical

replicates of each reaction. DCt values were calculated by subtracting the average CT value of the

two endogenous controls (G3PDH and NADH) from the CT values of each target gene. For each pair

of winged and wingless samples, DCT values were analyzed using two-sided t-tests after checking for

normality. The endogenous control primers used were GAPDH 5’ CGGGAATTTCATTGAACGAC 3’

and 5’ TCCACAACACGGTTGGAGTA 3’; and NADH: 5’ CGAGGAGAACATGCTCTTAGAC 3’ and 5’

GATAGCTTGGGCTGGACATATAG 3’. The other gene-specific primers were frs2: 5’ AATGACA-

CAAATGTGGCTGAAG 3’ and 5’ CAGGGCTTAACTCAAGGTATGG 3’; sam50: 5’ CCTATGACA

TTACGTGGTTTCC 3’ and 5’ TTCGGTTACTTTCCATGCC 3’; as1: 5’ GACCTGACGATTTTGAACA-

CAG 3’ and 5’ TTATCTCCCATCATCAGCATTC 3’; cdg: 5’ AAGATGCTTCTTCTTCAACACC 3’ and

5’ CCCTGCAGCTTGTTCTACATTA 3’.

Reverse-transcriptase PCR (RT-PCR)
We used the api mapping F1 line (parental line of the two F2 lines) to collect embryonic, 1st

instar, and 2nd instar males and females. For males, we verified that each individual was a male

via PCR (primers 5’ TGGTACATATCAGCTATCAGCACA 3’ and 5’ ACACAAGTTATTTCAGTTGC

TTAGG 3’) followed by restriction digest. This primer set targets a heterozygous recognition

sequence on the X for Taq1alpha, so that males will only display one of the two possible bands

depending on wing morph. We pooled groups of 20 males for RNA extraction. Wing phenotype

is environmentally determined in females, so there are no genetic differences between them. To

collect predominantly winged female samples, we crowded three-day-old asexual adult wingless

females in groups of 12 for 24 hr. Adults were then placed on plants to lay offspring. Individuals

from embryonic stage 18, the 1st nymphal instar, and the 2nd nymphal instar were collected and

pooled in groups of 20 for RNA extraction. cDNA conversion was via the TransScript cDNA syn-

thesis kit. To target fs-3, we used the primers 5’ CTTTGCACTTTGCGCACGA 3’ and 5’ GC

TGAACGCTTTTCGAAAGAAC 3’ and a 65˚C annealing temperature. For fs-2, we used the pri-

mers 5’ GCGTCCAACGTACATATATAGAAA 3’ and 5’ ACACACCATTGGCATCACAT 3’ and a

60˚C annealing temperature. The G3PDH primers were the same as used for the RT-qPCR. 40

ng of cDNA was used for each reaction.

Winged allele frequency estimation in pea aphid biotypes
We analyzed the api allele frequency of pooled samples from 12 of the biotypes (Guyomar et al.,

2018). Reads were mapped to the reference genome (AphidBase 2.0) using bowtie2 (v2.2.9) with

default settings. Samtools (v1.7) was used to generate mpileup files and popoolation2 (v2.1201)

were used to generated sync files which contain the read depth of each nucleotide at each location

(all default settings except minimum mapping quality (-q for samtools and –min-qual for popoola-

tion2) was set to 20). Allele frequency was calculated based on the nucleotide frequency at the

marker location (position 55599 on scaffold GL349773).
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