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ABSTRACT

The Ampelodesmos mauritanicus plant, Mauritanian grass or also called ‘Diss’, is a perennial abundant plant 
on the Mediterranean contour, having attractive characteristics for ecofriendly materials. This work aims to 
highlight the potential of the Diss fibers elements by assessing their use as reinforcement for polymer 
matrices (bio-composite). So, untreated and treated Diss fibers by chemical (soda, silane and acetic acid) 
and thermal treatment have been manually extracted and characterized to evaluate their surface condition 
as well as their chemical composition, their mechanical properties and their thermal stability. The obtained 
results have shown many advantages look promising for such an application, especially the fact that the 
Diss fiber bundles has small diameter (89 ± 22 μm), a rough surface with the presence of thorns, a low 
density of 0.93 g/cm3, and a tensile strength that can reach 270 MPa. Furthermore, all the treatments 
adopted have shown improvements regarding the fibrillation of fiber bundles (could reach −40% for the 
diameter), their surface state, their thermal stability and their mechanical behavior (could reach +60% for 
Young’s modulus and +15% for tensile stress).

Introduction

The depletion of resources and global warming have pushed all industries to adopt a green and more
sustainable production. In the field of composites, one of these movements consists in substituting the
synthetic materials, such as carbon and glass fibers, by other natural substances holding less environmental
impact, such as cellulosic fibers. To the fact that they are biodegradable, these fibers present an ecological
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interest, because they appear to be neutral in terms of CO2 emissions in the atmosphere (Baley 2013).
Furthermore, other benefits of these fibers can bementioned such as their low cost and the fact that they are
renewable resources.

Currently, Despite the wide range of plants already exploited in the world, there is still a vast variety
of plants not yet sufficiently studied such as the Diss plant. Mauritanian grass, Diss, or Ampelodesmos
mauritanicus, is a plant species of the family Poaceae (Damerdji 2012). This herbaceous perennial plant
can reach two to three meters high, is rich in fibers, robust with acuminate leaves and it grows as tufts in
more or less dry soils (Damerdji 2012; Rameau, Mansion, and Dumé 1989). Diss is one of the most
abundant plant resources in the Mediterranean contour (Achour, Ghomari, and Belayachi 2017). It was
formerly used to build the roofs of old houses thanks to their mechanical and hydrous qualities
(Bourahli 2014). The exploitation of these wild plant fibers as a reinforcement to cementitious
composites is little studied in the literature and rarely studied for polymer composites.

Merzoud and Habita (2008) made a composite from crushed Diss fibers and cement matrix. Recently,
Bourahli and Osmani (2013) have carried out an in-depth study of Diss fibers in which their chemical
compositions and the tensile strength were determined. Furthermore, Bourahli (2014) found that the
incorporation of Diss fibers into a polyester matrix led to an improvement of the matrix mechanical
properties. Lately, Achour, Ghomari, and Belayachi (2017) investigated the effect of various treatments and
the fibers loading rate on the physical, mechanical and thermal properties of the composite Diss fibers/
cement. Very recently, Sarasini et al. (2019) studied the reinforcement of PP and PLAmatrix by Diss fibers.

However, to this day, there is no extraction method dedicated to this type of plant, which should take
into account its particular morphology comparing to other plants. Generally, the extraction procedure
occurs on an industrial scale mechanically. The lack of a suitable extraction technique for this type of
plant, as was observe in the literature, make its industrial exploitation difficult. Merzoud and Habita
(2008) crushed the diss plant to have, what they call, diss fibers. Bourahli (2014) used during his thesis
dissolutions by retting and soda. Sarasini et al. (2019) used an enzymatic method. In addition, the
extraction method clearly influences the mechanical properties of the fibers. Bourahli (2014) found an
average tensile stresses of 149 ± 81, while Sarasini et al. (2019) found a low one of 19 MPa.

Although, the interface state between the fibers and the matrix plays a leading role in the stresses
transmission in the polymer composite. Natural fibers contain free hydroxyl groups on their surface,
coming fromhemicellulose, pectin and cellulose to a lower extent, which produces their hydrophilic nature,
while most polymer matrices are hydrophobic (Chilali 2017, Methacanon et al. 2010). To overcome this
incompatibility, vegetal fibers are generally subjected to specific treatments, which may be mechanical,
chemical, enzymatic or physical (Methacanon et al. 2010). Chemical treatments are themostwidely adopted
for vegetal fibers in the literature. In addition, physical treatments, such as heat treatment, are more
responsible to the environment.

The purpose of this work is to characterize Diss plant and its fibers and optimize a treatment of
these last in order to promote their use as reinforcements for polymer composites. We propose to fill
a gap in the literature by investigating the diss plant fibers extraction and subsequent fibers thereof.
Furthermore, several treatments have been studied on this kind of fibers: soda, silane, acetic acid and
heat treatment from manually extracted Diss fibers. These treatments are intended to modify the
surface of these fibers in order to obtain a good interfacial bond with the polymer matrix

Materials and methods

Diss fibers extraction

The Diss plant leaves (Figure 1) were harvested by hand in the north of Algeria at the end of their
maturity (in 2018). The manual extraction method was conducted as follows: First, retting the leaves
with water for 11 days. Next, scraping the wet leaves using a cutting tool by fixing them on a rigid
plate, this step produces fibers ribbons. Then, carding the fiber ribbons with two combs, this step
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produces the untreated Technical Fiber of Diss (UTFD). Finally, spreading the UTFD (about 50 mm
long) and drying them at room temperature.

Fiber surface treatment

The thermal treatment of UTFD was carried out in an oven at a temperature of 140°C during 14h.
Then, the thermally treated TFD (TTFD) were cooled down at room temperature. The temperature
of the treatment was deduced from the work of Ariawan et al. (2018) concerning kenaf fibers.

The UTFD were submerged in an aqueous solution containing 5% NaOH at room temperature
during 5h. Afterward the TFD treated with NaOH (NTFD) were first cleaned by immersing them in
distilled water for 24h. They were then submerged in a solution of distilled water containing 2% of
acetic acid in order to adjust the pH to 7. The pH degree was measured by a pH paper indicator.
Finally, the NTFD were washed several times with tap water and dried in the oven at 60°C for 3h.

The UTFD were immersed in an acetic acid solution at room temperature during 90 min. Then,
the acetylated TFD (ATFD) were treated with an ethyl acetate solution containing two drops of
sulfuric acid to remove excess of acetic acid. Finally, the ATFD were cleaned with tap water and
dried in the oven at 40°C for 24h. This protocol was inspired by the work of Haque et al. (2015).

Octyltriethoxysilane (2%) was dissolved in a mixture of distilled water/ethanol with a volume
ratio of (0.40/0.60), respectively. This solution was adjusted using acetic acid until the pH value
equaled 4, then the solution was stirred for 2h. Afterward, the UTFD were submerged in the solution
for 2h at room temperature. Finally, the Silane-treated TFD (STFD) were cleaned with tap water and
dried in the oven at 60°C for 3h.

Fibers characterization

Density measurement

The density of the UTFD was measured by Pycnometer method. Three measurements were carried
out using a volumetric flask of 100 cm3. The UTFD were cut in short length (about 5 mm) and then
dried for 48h in a desiccator containing silica. For each measurement, one gram of fiber was
introduced into the flask and then submerged with canola oil till the gauge mark. Before making
the weighing, the UTFD were left in this state for 24h in order to let the microbubbles between the
UTFD evacuate. Subsequently, the weighings were carried out for each sample using a Sartorius scale
(1/1000). The apparent density was determined by equation (1).

Figure 1. Diss plant.
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ρf ¼
mf

100� mh
ρh

� � (1)

ρf : Fiber density (g/cm3). ρh: Canola oil density (0.914 g/cm3). mf : UTFDmass (g). mh: canola oil

mass of (g).

Microscopy

An optical microscope (Infinity 2 – Olympus BH2) was used to observe the Diss leaves and UTFD
cross-sections. The latter were measured using an image processing software (Infinity 2–3). The average
diameter was determined after measuring at least 25 fibers bundles for each treatment. The section was
presumed circular. The fiber bundles were coated in a cold-coating resin (versoCit-2). The leaves were
included in LR-White Added resin (without fixation and without prior dehydration) then cut in 1 μm
slices using a microtome equipped with a diamond knife. The sections were subsequently treated with
orange Acridine (0.02% diluted in 0.1M sodium phosphate buffer at pH = 7.20).

Treated and untreated TFD were also observed using a scanning electron microscope JEOL 6060
LA operating at 45 kV.

Chemical analysis

Before determining their biochemical composition, Diss leaves and UTFD were milled separately
with liquid nitrogen (N2) in a centrifugal grinding mill equipped with a 0.5 mm sieve (Retsh
ZM100). Thereafter, carbohydrates and lignin, expressed as the percentage of the dry matter mass,
were identified and quantified following the chromatographic method and the acetyl bromide
method (Hatfield and Fukushima 2005), respectively. The amount of ash was determined after
calcining the UTFD and Diss leaves in an oven at 900°C for 10h. All analyzes were performed in
three independent assays. The chemicals were laboratory grade, obtained from Sigma Aldrich.

For the chromatographic method, 3g of samples were subjected to hydrolysis in 12MH2SO4 for 2 h at
25°C followed by additional hydrolysis of 2 h at 100°C with 1.5 M H2SO4 in presence of inositol as
internal standard. Galacturonic Acid (GalA) was determined by an automated m-hydroxybiphenyl
method (Thibault 1979) whereas individual neutral sugars (arabinose, glucose, xylose and galactose)
were analyzed as their alditol acetate derivatives (Blakeney, Harris, and Henry 1983) by gas-liquid
chromatography (Perkin Elmer, Clarus 580, Shelton, CT, USA) equipped with an DB 225 capillary
column (J&W Scientific, Folsorn, CA, USA) at 205°C, with H2 as the carrier gas.

Fourier transform infrared spectroscopy (FTIR)

FTIR analysis of the TFD was performed with a Perkin Elmer spectrometer using transmission
techniques. The spectra were recorded in the range of infrared rays from 4000 cm−1 to 450 cm−1. The
untreated and treated TFD were crushed into small particles and then mixed and pressed down with
potassium bromide (KBr) into thin pellets.

Thermal analysis

Thermogravimetric analysis (TG-DTG) of treated and untreated Diss fibers were performed using
a Simultaneous Thermal Analyzer (NETZSCH STA 449 F3 Jupite). All measurements were taken by
maintaining a constant heating rate of 20°C/min in an open ceramic crucible. The weight of the
samples was about 40 mg, with a temperature range of 25 to 500°C.

Tensile test

The tensile properties of Diss fiber bundles were obtained using an Instron universal tensile tester
(Instron model 3366) provided with a load cell of 5 N. The tests were carried out under ambient
temperature T ≈ 25°C and a relative humidity between 55 and 65%. The gauge length and the speed of
the moving cross member were chosen in accordance with the standard NF T25-501-3, of 10 mm and
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1 mm/min, respectively. Ten samples were tested for each treatment and the section was determined
according to the method of Hu et al. (2010). The results were evaluated using the Dixon test (1953).

Results and discussion

The density and the morphology of the Diss leaf

The measured density of UTFD was 0.93 ± 0.01 g/cm3, similar to the value found by Bourahli and Osmani
(2013); 0.89 g/cm3. These UTFD have a rather low density compared to that of flax (1.53–1.54 g/cm3),
hemp (1.4–1.6 g/cm3), sisal (1.45 g/cm3) and Jute (1.38–1.40 g/cm3) (Bourmaud et al. 2018).

The Diss plant has long leaves that fold it selves inwards after the harvest. Figure 2a highlights the
cross-section of Diss leaves. Each one of these leaves has an approximate hundred micrometers of
thickness. They are characterized by a smooth outer surface and an extremely undulated thorny
inner surface (Figure 2b). The optical microscope observations of this leaf revealed that it is rich in
fiber. Diss leaves are built from the outside toward the inside, as shown in Figure 2b, by a thick layer
of outer epidermis, conductive (vascular) bundles in the middle surrounded by chlorophyll par-
enchyma and a thinner layer of inner epidermis that contains thorns (trichomes). The inner area of
this leaf is filled with sclerenchyma cells, commonly known as “elementary fibers”.

Morphology of technical Diss fibers (TFD)

Figure 3 illustrates the optical microscope observations on the cross-sections of TFD. These are often
presented in a form of more or less thick ribbons. In addition, these TFDs are frequently connected
to a part of the inner thorny epidermis and take its shape.

Figure 4 illustrates the average diameters of the treated and untreated TFD. UTFD had an average
diameter of 89 ± 22 μm. However, a decrease of the average diameter of the treated TFD was
observed: it reach 40%, 36%, 34%, 20% after NaOH, acetylation, silane and thermal treatments,
respectively. Taking into account the uncertainty, this decrease in diameter becomes significant only

Wound leaf 

Inner surface 

Outer 

Elementary fibres

Vascular bundles 

Chlorophyll parenchyma

Outer epidermis

a) X100 b) X 200

Inner epidermis 

Figure 2. Observation of Diss leaves cross section by optical microscope (a) X100, (b) X200. (b) are treated with Acridine orange.

Figure 3. Observation by optical microscope of the cross section of UTFD.
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after the chemical treatment. This could be due to the removal/degradation of some of the amount of
natural cement that binds the individual fibers between them (middle lamella), which has caused the
fibrillation of TFDs.

Figure 5 shows SEM pictures of the fiber’s surface before and after different treatments. The
observations on UTFD confirmed the presence of thorns on the epidermal layer attached to the
UTFD outer surface. However, the inner surfaces, which are not covered by the epidermis, showed
rough and smooth parts indicating the existence of remaining cells part as ‘impurities’. The surface
of TTFD seems to be clean. The NTFD showed a cleaner and rougher surface and a fibrillation could
be noticed. Furthermore, the thorns had undergone a degradation. The STFD and ATFD also seems
to have a cleaner surface than UTFD.

Chemical composition

The proportion of the main components mass (lignin and carbohydrates, ash) of UTFD and the Diss
leaves relative to the dry mass were identified and quantified. The results can be seen in Table 1 and
Figure 6. Carbohydrates are the main components of Diss leaves and fibers with 62,60 ± 3,67% and
64,16 ± 0,79% of dry mass, respectively. The amount of lignin is also important: around 20% for both
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Figure 4. Variation of diameters of treated and untreated TFD, uncertainty (k = 2).

Figure 5. SEM observations of TFD surface: (1) untreated, (2) Heat treated at 140°C, (3) Treated with NaOH, (4) silane treated, (5)
Treated with acetic acid.
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samples. The ash represents about 4,50 ± 0,17% of the leaves and 4,67 ± 0,18% of the fibers of Diss.
From these results, we can see that there is not a significant change in the chemical composition of
fibers and leaves.

Glucose and xylan are the main constituents of the carbohydrates present in the leaves and fibers of
Diss with, 31.41 ± 2.65%, 32.64 ± 0.84% and 23.88 ± 0.90%, 24.95 ± 0.12% (Figure 6), respectively. These
fibers could be classified as xylan-rich type fibers because of their important quantity of xylan (Bourmaud
et al. 2018). These proportions are close to those of kapok, alfa and wood fibers (Bourmaud et al. 2018).

It was stated in the literature (Bledzki 1999; Bro et al. 2004; Pouzet 2012; Privas 2013; Sedan 2007;) that
xylose and arabinose are present in the hemicellulose composition; Galactose is a component of pectin;
Glucose is the predominant component of cellulose no less than it also enters the hemicellulose
composition; Uronic acid and rhamnose are present in the composition of pectin and hemicellulose.
This represents 29.09%, 0.94%, 32.64% and 1.49% relative to the dry mass of the diss fibers, respectively.
These fibers are composed mainly of cellulose, hemicellulose and lignin with close proportions (between
20% to 35% in drymass). However, the proportion of pectin should not exceed 2.50%. These proportions
are close to those of kapok, alfa and wood fibers (Bourmaud et al. 2018).

Spectroscopy

Figure 7a presents the different IR spectra of the untreated and treated fibers. The IR spectra of the NTFD
showed changes in some peaks compared to that of the UTFD. It was found that the peaks 2851 cm−1,
1740 cm−1 and 1462 cm−1 disappeared. The peaks 2851 cm−1 and 1740 cm−1 correspond to the stretching
vibrations of CH bonds of the methylene (CH2) and stretch-stretching groups of the C = O bonds,
respectively, of lignin, hemicellulose and pectin. The peak 1462 cm−1 could be attributed to the vibrations
of the hemicellulose aromatic bonds or lignin structure (Merkel et al. 2014). In addition, a significant
decrease was observed for the peaks 1513 and 1248 cm−1 which were related to the stretching vibrations
of the C = C, and C-O bonds of the aromatic rings and C = O bonds of the condensed units of guaiacyl
lignin, respectively (Merkel et al. 2014). This could indicate significant removal of pectin and hemi-
cellulose and less degradation of lignin from the surface of NTFD. These results are similar to those
reported in the literature. However, the 3600–3000 cm−1 absorption band became wider and more
intense after this treatment, the same remark can be raised for the peak 897 cm−1 against the intensity of

Table 1. Chemical composition of leaves and fibers of Diss experessed as dry matter.

Carbohydrates Lignins Ash Total

Diss leaves (%) 61,60 ± 3.66 20.30 ± 0.30 4.41 ± 0.14 86.2
UTFD (%) 64,16 ± 0.79 20.66 ± 0.13 4.67 ± 0.12 89.7

0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

Diss leaves Diss fibers

G
lc
 a
n
d
 X
y
l 
(%

d
ry
 m

a
tt
e
r)

M
o
n
o
sa
cc
h
a
ri
d
e
s 
e
x
e
cp

t 
G
lc
 

a
n
d
 X
y
l
(%

d
ry
 m

a
tt
e
r) GalA

Gal

Rha

Ara

Glc

Xyl

Figure 6. Relative contents of monosaccharides in the leaves and fibers of Diss. Glc Glucose, GalA Galacturonic acid, Xyl xylose, Gal
galactose, Rha rhamnose, Ara arabinose.
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this peak: The first band is attributed to the stretching vibration of the O-H bonds (Saravanakumar et al.
2014). The second peak corresponds to the β-glucoside binding of cellulose.

The fibers treated by silane, acetic acid and thermal treatment showed a decrease in peaks 2920 cm−1

2856 cm−1 and 1740 cm−1. These peaks are related to the presence of lignin, pectin, and hemicellulose.
For STFD, this could mainly be due to the ethanol/water solution in which the silane was mixed during
the treatment. Hemicellulose and pectin have been reported to be partially eliminated in ethanol/water
solution (Rachini et al. 2009; Zhou, Cheng, and Jiang 2014). However, The spectra showed an absence of
silane peaks which should be present at 766 and 847 cm−1 (Asim et al. 2016). It is possible that the
amount of silane on the surface was so negligible that it has not been detected by FTIR (Sgriccia, Hawley,
and Misra 2008). In the case of ATFD, these peaks (2920 cm−1, 2856 cm−1 and 1740 cm−1) could be
related to the presence of waxy substances (Saravanakumar et al. 2014), which could indicate
a degradation of these components. However, the absorption band 3600–3000 cm−1 became less intense,
this could be due to the interaction between CH3-CO-OH and the -OH groups causing a decrease in the
amount of the latter (Chung et al. 2018). It has been reported from the literature that IR spectra of
acetylated plant fibers should show new peaks at 1740 cm−1, 1369 cm−1, 1222 cm−1 (Chung et al. 2018)
related to the stretching vibration of the (C = O) ester groups bonds, the bonds C-CH3 and C-O of the
acetyl groups, respectively. For the present work no significant changes were raised on these peaks. This
could be explained by the fact that the quantity CH3 was not enough graft on the surface to be detected.

In the case of TTFD, these changes could be due to the partial degradation of some non-cellulosic
unstable components in this temperature range such as lignin (Rong et al. 2001). The latter is slowly
degraded over a wide temperature range of 150-900°C (Yang et al. 2007).

Thermal stability

The thermal degradation of treated and untreated TFDs was studied by thermogravimetric analysis.
The Table 2 shows the different peaks and percentages of mass losses associated with each stage of
the pyrolysis determined by TG and DTG curves, respectively.

TheDTG curve of UTFD reached a peak at 109°Cwith a loss ofmass of 9%, which could be attributed to
moisture absorbed by the fibers (Rachini et al. 2009). Another more intense peak was observed at 294°C.
The latter could correspond to the degradation of hemicellulose and pectin (Zhou, Cheng, and Jiang 2014),
and the loss of mass due to this degradation is 27%. A last peak appeared at 353°C with a mass loss of 32%,
which could be due to cellulose degradation (Yang et al. 2007). However, the degradation of lignin could be
produced in the temperature range of 150 to 900°C (Yang et al. 2007).

Figure 7. Infrared spectra of treated and untreated TFD.
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For the NTFD, the temperature of the second peak became higher (318°C) and the mass loss ratio
significantly decreased (Table 2). This could be due to the partial degradation of hemicellulose and
pectin after the alkaline treatment (Zhou, Cheng, and Jiang 2014). The mass loss corresponding to
the cellulose degradation was remarkably higher compared to UTFD: 46.5%. This could be attributed
to the increase of cellulose quantities after this treatment. For STFD and ATFD (Table 2), the three
peaks that appeared in the DTG curve were shifted to higher temperatures. For the STFD, the
thermal decomposition of the grafted silane is observed in the temperature range of 300–600°C
(Rachini et al. 2009). This explains the improvement of the UTFD thermal stability: the silane grafted
on the surface could play the role of a protective layer. For the ATFD, the same observations were
made by Chung et al. (2018) on kenaf fibers. This improvement in thermal stability could be due to
the CH3-CO-OH groups grafted onto the surface, which protects the Diss fibers components.
Concerning TTFDs at 140°C (Table 2), a decrease was observed regarding the intensity of the first
peak. This increase in UTFD hydrophobicity could be due to the degradation of certain hydrophilic
components after this treatment, such as waxy substances.

Tensile tests

Figure 8 shows the tensile stresses and Young’s modulus of untreated and treated TFDs. The UTFD
showed a tensile strength, a Young’s modulus and an ultimate deformation, of 273 ± 36 MPa,
11.46 ± 2.2 GPa and 2.6% ± 0.6, respectively. This resistance was the same magnitude order as for
Kenaf fibers (Asim et al. 2016), Oil palm (Sreekala et al. 2000), pineapple leaves (Asim et al. 2016).

Bourahli and Osmani (2013) have found an average Young’s modulus and tensile stresses of diss
fibers of 8,7 GPa and 149 MPa, respectively. These results are close to those found by Bourahli
(2018) where the average tensile stresses is 110 MPa, and a Young’s modulus is 7.6 GPa. As a result,
this extraction method better preserves the mechanical properties of the diss fibers.

After the various treatments, it was found that the average tensile stress significantly improved
after the silane treatment with 15%. However, the tensile stress decreased after the alkaline treatment

Table 2. TG and DTG results of treated and untreated Diss fibers.

Pic (°C) mass var (%) Pic (°C) mass var (%) Pic (°C) mass var (%) rest

UTFD 109 8.8 294 26.6 353 32.2 32.4
TTFD 108 4.3 294 27.5 354 32.7 35.5
ATFD 123 7.5 326 21.9 372 34.3 36.3
STFD 124 8.4 319 25.0 373 35.5 31.1
NTFD 96 6.3 318 19.3 354 46.5 27.9
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with −10%. In contrast, thermal and acetic acid treatments showed no significant change in the
average tensile stress, respectively, with + 3% and −4%. Young’s modulus significantly improved by
an increase of 26%, 34%, 55% and 60% for respective different treatments: thermal, acetylation,
alkaline and silane, respectively.

Conclusion

This work aims to highlight the potential of the Diss fibers elements by assessing their use as
reinforcement for polymer matrices (bio-composite). For that, Diss fibers were extracted by
a manual method, which is based mainly on the morphology of this plant. After, these fibers have
been treated with alkaline, silane, acetic acid and thermal treatments. The treated and untreated
fibers underwent physicochemical characterizations to evaluate the effect of these treatments.

The untreated Diss fibers (UTFD) exhibited a low density of 0.93 g/cm3, its chemical composition
consisting mainly of glucose (32,6%), xylan (24.9%) and lignin (20.6%). UTFD exhibited a tensile strength,
a Young’s modulus, and an ultimate strain of 273 ± 36 MPa, 11.4 ± 2.2 GPa, and 2.67% ± 0.6, respectively.

Comparing to the UTFD, the chemical treated diss fibers showed a clean surface with a small
diameter. In addition, the alkaline and silane treatments have significantly improved the stability of
these fibers. Moreover, the acetic acid and silane treatments improved the Diss fiber thermal stability.

The Diss harbor interesting physicochemical characteristic that deserve to be test as
a reinforcement in the polymer matrix.
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