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Abstract: Plants adjust their growth and development through a sophisticated regulatory system
integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between
nutrients and hormones, an effective way of coupling nutritional and developmental information
and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and
trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and
root functioning throughout the plant life cycle. While their individual roles have been extensively
investigated, their combined effects have unexpectedly received little attention, resulting in many
gaps in current knowledge. The present review provides an overview of the relationship between
sugars and CKs signaling in the main developmental transition during the plant lifecycle, including
seed development, germination, seedling establishment, root and shoot branching, leaf senescence,
and flowering. These new insights highlight the diversity and the complexity of the crosstalk
between sugars and CKs and raise several questions that will open onto further investigations of
these regulation networks orchestrating plant growth and development.

Keywords: nutrient; hormones; development; seeds; flowering; branching senescence; meristem;
source–sink relationship

1. Introduction

The regulation of plant growth and development is crucial for yield and resistance
to abiotic and biotic constraints, which relies on fine-tuned interactions between nutri-
ents and hormones, influenced by environmental inputs. Among these central regulators,
sugars and cytokinins (CKs) play predominant roles while operating synergistically, antag-
onistically and sometimes independently to shape the final reaction of the plant. Sugars
growth-related metabolic activity and as signaling entities that drive a wide array of
mechanisms throughout the plant life cycle [1–5]. Briefly, sugar signaling is intimately
linked to developmental stages, hormonal signaling and environmental conditions, and
thereby is an integrative part of plant growth control [6–11]. Plants can sense a diversity
of soluble sugars such as sucrose, glucose, fructose and trehalose-6-phosphate (T6P). So-
phisticated sugar sensing networks have been identified, including hexokinase (HXK),
Regulator of G-protein signaling (RGS1), and two main sensors of nutrients and energy
status: sucrose-nonfermentation1-related protein kinase1 (SnRK1) and target of rapamycin
(TOR) kinase [12–18].

Int. J. Mol. Sci. 2021, 22, 1282. https://doi.org/10.3390/ijms22031282 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3588-8399
https://orcid.org/0000-0003-0037-9105
https://orcid.org/0000-0001-5941-2227
https://orcid.org/0000-0003-1407-2585
https://doi.org/10.3390/ijms22031282
https://doi.org/10.3390/ijms22031282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22031282
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/3/1282?type=check_update&version=3


Int. J. Mol. Sci. 2021, 22, 1282 2 of 21

CKs are a group of adenine derivatives involved in many central processes in plants,
such as development of vasculature, differentiation of embryonic cells, maintenance of
meristematic cells, shoot formation and leaf senescence delay [19–23]. There are two types
of CKs: adenine-type cytokinins represented by kinetin, zeatin, and 6-benzylaminopurine,
and phenylurea-type cytokinins like diphenylurea and thidiazuron. Most adenine-type cy-
tokinins are synthesized in roots. Cambium and other actively dividing tissues also synthe-
size CKs. CKs are viewed as one of the major long-distance root-to-shoot messengers [24].
Their biosynthesis depends on the activity of adenosine phosphate-isopentenyltransferases
(IPTs). Trans-zeatin is the most abundant form of CK in plants [25]. Initially identified in
rice, Lonely Guy (LOG), cytokinin nucleoside 54-monophosphate phosphoribohydrolases,
are involved in direct CK production [26,27]. CKs primarily regulate gene expression
through a phosphotransfer signaling cascade. This cascade is initiated by histidine ki-
nase cytokinin receptors, Arabidopsis Histidine Kinase2 (AHK2), AHK3 and AHK4, that
located in the endoplasmic reticulum membrane, and completed by cytosolic histidine
phosphotransfer proteins (AHP) [28]. AHPs shuttle between the cytosol and the nucleus
and transfer phosphate to nuclear response regulators (Arabidopsis Response Regulators,
ARRs) [19,23] that fall into two classes: type-A and type-B ARRs are negative and positive
regulators of CK signaling, respectively.

Sugars and CKs are individually viewed as major players in many aspects of plant
biology. Yet, their crosstalk has not been systematically investigated, hence many gaps
in current knowledge. Moreover, the available results underline that the crosstalk is very
complex and varies at least according to the nature of the organ and the physiological
process. This review aims to underline the interactions between sugars and CKs based
on their individual and combined roles in the regulation of key developmental processes
throughout the plant life cycle. Based on the results derived from different plant species,
sugars and CKs seem to act synergistically to take over the seedling emergency, shoot
meristem activity, shoot branching and flowering while doing antagonistically as strongly
suggested for seed germination, root meristematic activity, and even demonstrated for root
branching and leaf senescence (Figure 1). Here, the main results are discussed, potential
integrators of this crosstalk are proposed, and further lines of research are highlighted.

Figure 1. Relationship between sugars and cytokinins (CKs) in the main plant developmental pro-
cesses, including seed development, germination, seedling establishment, root and shoot branching,
leaf senescence, and flowering. The black arrows indicate stimulation or positive effect, and the red
lines mean repression or negative effect. This model results from a compilation of studies carried out
on different model plants (see references and description in the text).
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2. Seed Development, Germination and Seedling Establishment

Seed formation, as well as the seed-to-young-seedling transition through germina-
tion, involves sugar and hormone signaling [29,30]. Even though common key players
have been identified in the seed response to sugars and CKs, their molecular interaction
remains speculative.

2.1. Seed Development

Seed development covers morphogenesis phases characterized by active cell division
and embryonic organ formation and a maturation phase during which storage nutrients
accumulate in cotyledons and/or endosperm tissues, with a transfer of reserves between
these two compartments [31]. In this latter phase, the embryo acquires tolerance to desicca-
tion and a dormancy state before dispersal in the environment. Dormancy allows the seed
to cope with its adverse environment and secures the transition to a new life cycle. Previous
works have reported the contribution of sugars and CKs in the control of seed develop-
ment [32,33]. In cotyledons of Vicia faba, a high glucose-to-sucrose ratio is correlated with
cell division during the morphogenesis phase, whereas an increasing sucrose-to-glucose
ratio marks the sink–source transition to the storage phase [34]. The high glucose gradient
is related to both high cell-wall-bound invertase (CWINV) expression in the maternal seed
coat and hexose transporter (VfSTP1) expression in the embryonic epidermal cells [35,36].
Analyses of the CWINV-deficient mutant miniature1 (mn1), impaired in endosperm develop-
ment in maize caryopses, provide evidence that CWINV also contributes to CK-dependent
cell proliferation during the developmental transition to the storage phase [37–39]. Such a
CK effect may operate directly on cell cycle-related genes (CycD3) and indirectly through
(CWINV2)-mediated sugar signaling [37,40,41]. Nevertheless, the seemingly contradictory
phenotype of the CK-receptor-defective triple mutant ahk2 ahk3 cre1 exhibiting greater seed
size points to the complexity of the regulatory network [42]. Understanding how CKs
contribute to seed development will require considering the different levels of regulation
of CK metabolisms, such as the spatiotemporal accumulation and transport of CKs in seed
tissues, the dynamics of their biosynthesis (IPT) and inactivation (CKX), and their per-
ception. The transition from cell division and expansion (seed morphogenesis) to storage
activity (seed maturation phase) is associated with downregulated CWINV and IPT expres-
sion [43,44]. At this stage, sugars serve for seed storage accumulation by mediating sucrose
synthase induction for starch biosynthesis in maize kernels [33,45] or gibberellic acid (GA)
dependent α-amylase induction for storage remobilization in barley embryos [46]. Such
sugar-dependent regulation takes place at the transcriptional and post-transcriptional
levels [2]. The role of sugars in seed maturation could be complex and partially mediated
through T6P, considered as a proxy for sucrose availability in plants [47], and SnRK1 [48].
Sucrose positively regulates T6P accumulation in wheat at the seed pre-filling stage [49],
and its exogenous application stimulates seed filling and yield [50]. Accordingly, Arabidop-
sis seeds of the mutant tps1 (Trehalose-6-phosphate synthase 1) fail to proceed towards the
maturation phase [51,52]. In pea, SnRK1 deficiency hinders the maturation and storage
activity [53,54]. Accordingly, SnRK1 induces abscisic acid (ABA) synthesis and signaling
and the C/S1-group bZIP signaling pathways associated with carbon starvation [55,56].
This regulation is mediated by pFUS3 (The Arabidopsis B3-domain transcription factor
FUSCA3) phosphorylation, known to control ABA responses during seed maturation and
dormancy [57]. Transcriptomic comparison of CK metabolism and signaling in dormant
and non-dormant wheat seeds [58,59] highlights that CK controls the activity of many
genes involved in seed dormancy. The interactions of CKs with ABA metabolism and
signaling during seed maturation need to be further investigated and compared with sugar
signaling mediated at least by the T6P and SnRK1 pathways.

2.2. Seed Germination and Seedling Establishment

The carbon stored in the mature seed will be remobilized during germination to ensure
seedling establishment before becoming heterotrophic. Seed germination is accomplished
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when the radicle protrudes through the outer layers of the embryo, i.e., the endosperm
and the teguments [60]. The related cellular and metabolic events are orchestrated by
complex signaling crosstalk involving the hormones ABA and GA, well known for their
role in inhibiting and inducing germination, respectively [61]. Sugars released from the GA-
mediated hydrolysis of storage compounds and cell wall loosening serve as osmotically
active solutes for radicle cell expansion. These sugars are potentially used as central
signals of the seed’s C status and are also a source of C for seedling growth during the
transition to autotrophy. Genetic and molecular analysis revealed a possible control of
germination by glucose based on HXK1-dependent and independent pathways and the
T6P pathway, interacting with different hormonal pathways [29]. Many reports also
showed that CKs contribute to the control of seed germination [42]. However, their
interactions with glucose are poorly documented. On the whole, glucose and CKs are
likely to operate antagonistically at different steps of the ABA biosynthesis and signaling
pathways (Figure 2). The contribution of glucose to the control of seed germination has long
been established and proven to be a concentration-dependent signal [62–64]. Exogenous
supply of high glucose contents delays seed germination through positive regulation of
ABA synthesis, accumulation and signaling [65–68]. At lower concentrations, glucose
stimulates germination by inducing ABA catabolism [69]. In germinating seeds, high
glucose supply upregulates two ABA biosynthesis genes (NCED3 and ABA2) through the
G Protein Alpha subunit AtGPA1 and the Regulator of G-protein Signaling AtRGS1, via
an HXK1-independent channel [70–72]. Glucose also repressed—the positive regulator of
seed germination AtGASA6 via an HXK1-dependent pathway [73,74]. AtGASA6 acts as
an integrator of ABI5-dependent ABA signaling and RGL2-dependent GA signaling [73].
Therefore, a high level of T6P promotes seed germination by decreasing seed sensitivity
to glucose and ABA [75–77]. In sum, the inhibition of seed germination under excessive
glucose supply conditions may be due to the activation of the ABA signaling pathway and
an imbalance in sugars/T6P [56].

Figure 2. Antagonistic effect of sugars and cytokinins (CKs) on seed germination. Blue stands for
players of sugar signaling pathways, and green highlights genes involved in CK synthesis or signaling
pathways. Black arrows and red lines indicate stimulatory and inhibitory effects, respectively. ABI,
abscisic acid insensitive; AHK, Arabidopsis histidine kinase; ARR, Arabidopsis response regulator; CRE,
cytokinin response; GASA, gibberellic acid-stimulated Arabidopsis; HXK, hexokinase, IPT: isopentenyl
transferase; RGS, regulator of G-protein signaling. This model results from a compilation of studies
carried out on different model plants (see references and description in the text).

The CKs are described to stimulate seed germination by an antagonistic effect on ABA
signaling [78–80]. In germinating seeds, increasing levels of CKs induce the expression
of type-A ARRs (ARR4, ARR5 and ARR6) that inactivate the ABI5-mediated inhibition
of germination [81,82] whereas glucose enhances ABI5 transcription [83] (Figure 2). In
turn, ABA intake represses CK biosynthetic genes such as AtIPT8 and CK signaling genes
such as type-A ARRs, and during seed dormancy, ABA signaling, including ABA receptor
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Pyrabactin Resistance (PYR/PYL), SnRK2s and ABI4, downregulates type-A ARRs [84]. In
dormant seeds, high ABA levels positively regulate ABI4, which inhibits the expression
of ARR6, ARR7 and ARR15. Either, Arabidopsis CK-receptor mutants exhibit a reduced
dormancy phenotype, and distinct CK-mediated seed germination regulation pathways
seem to exist [42]. In germinating seeds, many other regulatory pathways respond to
different forms of sugar signals. The exogenous sugar-dependent inhibition of seed ger-
mination is also regulated by the sucrose transporter SUT4/Cyb5-2-mediated signaling
pathway, independently of the ABA (ABI2/ABI4/ABI5)-mediated signaling pathway [85].
CK biosynthesis is noticeably concomitant with SUT gene expression during pea seed
germination. Therefore, we may wonder whether sugar transporters could be a convergent
target of sugars and CKs during this process [86].

Interestingly, promoters of the senescence-associated genes SAG12 and SAG13 are
inducible in the tomato seed micropylar endosperm [87], suggesting that a senescing mech-
anism known to be stimulated by HXK1-dependent sugar signaling (see Leaf Senescence
Section 5) could facilitate radicle protrusion. Ectopic expression of the IPT gene through
SAG12 and SAG13 promoters delayed endosperm senescence and germination, suggesting
that potential CK synthesis in the endosperm can antagonize the HXK-dependent sugar
senescing mechanism to negatively control germination. Therefore, CKs could be perceived
differently in a tissue-dependent manner during seed germination.

The crosstalk between sugars and CKs in the control of germination remains very
partially documented, and available results foresee very intricate mechanisms. All the
present results support antagonistic effects of glucose and CKs throughout the germination
process, which precedes seedling growth considered as a post-germinative phase.

2.3. Seedling Development

Upon radicle protrusion through the seed coat, the first post-germinative events initi-
ate seedling growth through hypocotyl elongation and root meristem development before
the activation of the photosynthesis machinery. Hypocotyl elongation occurs in darkness
and is fueled by C issued from the hydrolysis and mobilization of seed storage compounds.
The shoot apical meristem (SAM) is characterized by a heterotrophic metabolism, while
the development of the root apical meristem (RAM) occurs only under light conditions
and is controlled by cotyledon-derived photosynthetic sucrose that acts as a long-distance
signal [88].

CK and glucose signaling are involved in controlling different aspects of seedling
growth and development, with auxin signaling components as downstream targets. From
a physiological point of view, both glucose and CKs could control radicle growth in
light conditions, hypocotyl length in darkness, chlorophyll and anthocyanin contents [89].
CKs interact with glucose via an HXK1-dependent pathway for the control of radicle
and hypocotyl elongation [30,90]. SnRK1 overexpression can delay seed germination
and increases sensitivity to glucose and ABA during seedling establishment [91]. When
glucose is supplied to seedlings, T6P acts antagonistically to SnRK1 by inhibiting ABA
synthesis and signaling and, in turn, the seed sensitivity to glucose [92]. Noteworthily, CKs
antagonize ABA signaling by inhibiting SnRK2 activity via type-B ARRs and thus promote
seedling establishment [93].

3. Meristem Establishment and Functioning

Sugars and CKs are fully part of the regulation of the dynamic balance between
cell division and cell differentiation, which determines organ shape and size. Sugars can
activate the expression of key cell cycle regulators, such as cyclin-dependent kinases (CDKs)
and their interacting cyclins (CYCs), promoting the G2/mitosis transition in Arabidopsis
seedling meristematic tissues [88,94–97]. CK signaling contributes to the stimulation of cell
division and meristem initiation/formation [98,99].
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3.1. Root Apical Meristems

The root system consists of two principal root-types: the primary root (PR), which is
formed embryonically and secondary roots, which form post-embryonically [100]. Glu-
cose influence root meristematic activity through many pathways, including the macro-
autophagy/autophagy degradation pathway, which acts downstream of SnRK1 and TOR
kinase [101]. High concentrations of glucose reduce the size of the root meristem zone
via ABI5, which represses the auxin efflux carrier PIN1 required for auxin accumulation
in the meristem (Figure 3) [102]. Either, mounting evidence also indicates that SnRK1
and ABA can control root meristem activity cooper actively [103–105]. Overexpression of
SnRK1.1 results in an ABA-hypersensitive phenotype [104] due to its interaction with the
regulator of ABA response PP2C phosphatase protein [106–108]. ABI5, the main node of
the glucose and ABA pathways, is directly phosphorylated by SnRK1 [56,109,110]. Glucose
induces ABI5 expression, which reduces the size of the root meristem zone. ABI5 can
coordinate and adjust physiological and metabolic demands with growth, but also interact
with TOR kinase—a highly conserved eukaryotic phosphatidylinositol-3-kinase-related
kinase—through TAP46 (2A Phosphatase Associated Protein of 46 KD) to influence the
ABI5 signaling pathway negatively [111–113]. TOR-kinase also plays a major role in the
regulation of growth and metabolism in plants [114]. Glucose-driven TOR-kinase signaling
regulates root meristem activation independently of hormonal and hexokinase signaling
pathways and involves the upregulation of the elongation factor E2Fa [115]. In response to
metabolic demands, the tonoplast sugar transporter (TST) imports sucrose, fructose and
glucose into the root vacuoles to maintain cytosolic sugar homeostasis [116]. Yet Another
Kinase (YAK) acts as a member of the dual-specificity tyrosine phosphorylation-regulated
kinase and may be involved downstream of this TOR signaling-mediated control of root
meristem activity in Arabidopsis [117].

Figure 3. Antagonistic effect of sugars and cytokinins (CKs) on the functioning of the root meristem.
Blue indicates sugar signaling pathways, and green highlights genes involved in CK synthesis
or signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects,
respectively. Solid line, direct effect; dotted indirect effect. ABI5, abscisic acid insensitive 5; AHK3,
Arabidopsis histidine kinase 3; ARR, Arabidopsis response regulator; CRF, cytokinin response factor;
HXK1, hexokinase 1; E2FA, elongation 2 factor A; IPT, isopentenyl transferase; PIN1, PIN-FORMED
1; SnRK1, SNF1-related kinase1; SPL10, Squamosa Promoter Binding Protein-Like 10; TAP46, type
2A phosphatase associated protein of 46KD; TOR, target of rapamycin protein kinase; YAK1: Yet
Another Kinase. This model results from a compilation of studies carried out on different model
plants (see references and description in the text).

CKs are essential to promote cell differentiation in the root meristem [118–120]. This
is due to trans-zeatin, whose accumulation slows down the root growth rate and the
cell transition to elongation, leading to prolonged mitotic cycles [121]. Mutants defec-
tive in all CK receptors display severely reduced sizes of their shoot and root meris-
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tems [122,123]. This CK-dependent reduction of the root meristem size could involve a
two-component receptor histidine kinase and type A-ARR transcription factor, such as
AHK3/ARR1, AHK3/ARR12, that regulates the rate of meristematic cell differentiation
(Figure 3) [123–125]. The Squamosa Promoter Binding Protein-Like (SPL) transcription factor
is one of the targets of microRNA156 (miRNA156). miRNA156 and SPL have opposing
expression patterns; high miRNA156 levels induce reduced root meristem size, while
overexpression of SPL10 increases it [126]. Furthermore, meristem activity is regulated
by SPL10, probably through the reduction of CK responses via the modulation of type-B
Arabidopsis Response Regulator1 (ARR1) expression. This points to a cooperative regulation
of root meristem activity by CK responses via miRNA156-targeted SPL10 [126]. Given
that miRNA156 is a central component of sugar signaling [127], it will be of high inter-
est to investigate whether sugars could take part in this regulatory network. CKs also
cooperate with other hormones to regulate root meristem development. In Arabidopsis
roots, the IAA3/Short Hypocotyl 2 (SHY2) gene is an important hub of the crosstalk between
CKs, auxin and brassinosteroids (BRs) [128]. This calls for investigating its regulation by
sugars. CK response factors (CRFs) are a group of related AP2/ERF transcription factors
transcriptionally induced by CKs [129]. Overexpression of CRFs in Arabidopsis results in
a larger root apical meristem. Disruption of CRFs was accompanied by low sensitivity
to CKs in a root elongation assay, along with a reduced expression level of ARRs and of
the homeobox gene STIMPY (STIP or WOX9) required for root and shoot apical meristem
maintenance [19]. Although being acted antagonistically to regulate root meristem activity,
additional investigations are required to bring the first mechanistic insights associated with
molecular integrators involved in sugars and CKs crosstalk.

3.2. Shoot Meristem

The shoot meristem contains a central zone (CZ) that harbors pluripotent stem cells
and surrounding regions in which cells start to differentiate, and organ primordia are initi-
ated. Sucrose and Glucose have long been known to promote meristem growth [1,130,131],
and this effect could be mediated by the upregulation of CDKs and CYCs expression,
which are required for the G1/S and G2/M transitions (Figure 4) [97,132]. While glucose
signaling is sufficient to activate TOR kinase in root apexes, both glucose and light signals
are required for TOR activation in shoot apices [133]. SnRK1 is expressed in the meristem
and young leaf primordia; its low activity is required for CK biosynthesis [54,56,134], hence
a link between nutrient/energy availability and CK production. In contrast with their
role in roots, CKs promote shoot cell division through the regulation of a variety of key
genes related to plant meristem activity and are essential to maintain undifferentiated
cells [119,135,136]. The CLAVATA (CLV) ligand–receptor system and two transcription
factors, SHOOTMERISTEM-LESS (STM) and WUSCHEL (WUS), are involved in meristem
growth [137–139]. WUS, a positive regulator of stem cell proliferation, directly downregu-
lates several type-A ARR transcription factors (ARR5, ARR6, ARR7 and ARR15), which
act in the negative feedback loop of CK signaling (Figure 4) [140,141]. More interestingly,
CK signaling precedes the de novo expression of WUS in the leaf axil to promote axillary
meristem initiation via the direct binding of the type-B ARR transcription factor to the
WUS promoter (Figure 4) [98]. Moreover, CK signaling can activate the meristem and
maintain its fate by inducing STIMPY expression in meristematic tissues [142,143]. The
IPT and LONELY GUY (LOG) genes, which encode a novel CK-activating enzyme operat-
ing in the final step of bioactive CK synthesis, are both pivotal for the conversion of CK
hormone precursors into active hormones within the shoot meristem [26,136]. In line with
this, CK deficiency mutants display low activity of the vegetative and floral shoot apical
meristems [144]. However, an opposite effect has been reported in Azolla as compared to
Arabidopsis [145].
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Figure 4. Synergetic effect of sugars and cytokinins (CKs) on the functioning of the shoot meristem.
Blue indicates sugar signaling pathways, and green highlights genes involved in CK synthesis
or signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects,
respectively. Solid line, direct effect; dotted indirect effect. A-ARR, type-A Arabidopsis response
regulator; B-ARR, type-B Arabidopsis response regulator; CRF, cytokinin response factor; CDKs, cyclin-
dependent kinases; CYCs, cyclins; E2FA, elongation 2 factor A; IPT, isopentenyl transferase; SnRK1,
SNF1-related kinase 1; TOR, target of rapamycin protein kinase; Tre6P, trehalose-6-phosphate; TSS,
TPR-DOMAIN SUPPRESSOR OF STIMP; WUS, WUSCHEL. This model results from a compilation
of studies carried out on different model plants (see references and description in the text).

Transcriptomic analysis identified that glucose could stimulate CK accumulation
through the induction of IPT3 expression and the repression of cytokinin oxidase (CKX4)
and also control the expression of 76% of CK-regulated genes at the whole-genome level in
Arabidopsis seedlings [90]. This study highlights that the interaction between glucose and
CKs plays a key and synergistic role in shoot meristem activity. Additional work would be
required to identify the main convergent node of the crosstalk between sugars and CKs.
One approach would be to use the promoter of some common genes such as CYCs, CDKs
to identify the upstream regulators.

4. Root and Shoot Branching

Plants comprise two distinct parts: (i) the shoot system for photosynthesis and re-
productive functions, and (ii) the root system for water and nutrient uptake from the soil
and anchorage. These two parts have evolved a complex branching strategy to increase
their total surface area, ensuring a better adjustment of plants to their abiotic and biotic
environments.

4.1. Lateral Root Growth

Shoot branches are formed by an actively dividing shoot meristem, whereas lateral
roots are derived from the pericycle, located beyond the root subapical meristem zone [146].
Auxin regulates lateral roots (LRs) positioning, which determines the spatial distribution
of lateral root primordia and LRs along with primary roots [147]. Auxin also regulates
root outgrowth and LRs emergence through interaction with sugars and CKs. Sugars
promote lateral root initiation using different pathways that are not always associated
with auxin [148,149]. Map-based cloning revealed that a neutral invertase gene (AtCYT-
INV1) had a significant influence on lateral root development by controlling the hexose
concentration within cells [150]. Photosynthetically generated sugars induce AtIPT3 and
CYP735A expression to promote CK accumulation in roots [151]. This effect operates
through the heterotrimeric G-protein complex (hexokinase-independent pathway), which
regulates auxin distribution in the root and thereby induces lateral root formation [149].
More precisely, WOX7, a member of the WUSCHEL related homeobox (WOX) family
of transcription factors, plays a major role in coupling lateral root development with
the sugar status in plants [146]. WOX7 acts as a transcriptional repressor in lateral root
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development. Genetic, physiological, transcriptomic and grafting approaches evidenced
that C-Terminally Encoded Peptide Receptor 1 (CEPR1) inhibited lateral root growth in
response to sugars (including sucrose) and elevated light intensity [152].

CKs represses lateral root initiation and promote lateral root elongation [153–155].
They block cell cycling in the pericycle founder cells at the G2/M transition phase [156]
and then disturb lateral root initiation in plants [157], confirming that the earliest stages
of lateral root formation are very sensitive to the inhibitory effect of CKs [158]. Cytokinin
Response Factor2 (CRF2), a component of the CK signaling pathway, plays an important
role in regulating Arabidopsis lateral root initiation [159]. In Arabidopsis again, the mutation
of CYP735A genes required for trans-zeatin biosynthesis causes strong defects in lateral
root positioning, indicating a determining role for CK metabolites in the regulation of
lateral root initiation [160].

The crosstalk between CKs and sugars also regulates root branching (Figure 4). Com-
bined analysis in roots of grafted apple revealed that root growth and development of
rootstocks were mainly influenced by the sugar metabolism, auxin, and CK signaling [161].
Furthermore, the crosstalk between glucose and CKs regulates root development in Ara-
bidopsis [89]. These authors showed that CKs interact with glucose via an HXK1-dependent
pathway for root length control. Wild-type (WT) roots cannot elongate without glucose,
but roots elongate even in the absence of glucose in the CK-receptor mutant Arabidopsis
Histidine Kinase4 (ahk4) and type-B ARR triple mutant arr1 (Arabidopsis Response Regulator1),
arr10, arr11 compared with the WT. Although 60 genes related to root growth are regulated
by both CKs and glucose, nothing is known on the physiological relevance of the crosstalk
between sugars and CKs in the control of root-lateral formation.

4.2. Shoot Branching

Shoot branching is a strictly regulated process that involves a very finely tuned hor-
monal and nutrient regulatory network [162–165] and is highly governed by environmental
inputs [166]. In this intricate process, sugars and CKs behave as inducers, while auxin and
strigolactones (SLs) act as repressors. However, whether sugars and CKs act synergistically
or independently in this process remains unknown (Figure 5). Auxin derived from the
young growing leaves of the apical meristem is transported down the stem through a
specific polar auxin transport (PAT) stream and indirectly inhibits bud outgrowth through
the opposite action of CKs and SLs [162,167]. The inducer effect of CKs has long been
known [168]. This effect could occur through (i) the downregulation of the main inhibitor
of shoot branching, Teosinte Branched 1/Branched1 (TB1/BRC1), within the bud [165],
(ii) the stimulation of the sink strength of the buds for sugars [169,170], and/or (iii) the
promotion of auxin export from axillary buds to the main stem [171]. This latter mechanism
is considered as a prerequisite for bud outgrowth in Arabidopsis and relies on the downreg-
ulation of a CK-signaling transcription factor (ARR1) and the upregulation of three auxin
efflux carriers (PIN3, 4 and 7) [171–174]. PIN3/4/7 contributes to the local auxin transport
between the PAT stream and surrounding tissues, referred to as connective auxin transport
(CAT) [174]. The role of sugars in bud outgrowth is at the core of the historical nutrient di-
version theory, which states that bud outgrowth is restricted by competition for the carbon
resource in favor of the faster growing apical zone [175,176]. In addition, sugar starvation
of the buds is tightly correlated to their dormancy status [163,177]. Sugars act as signaling
molecules, as supported by their ability to downregulate BRC1 [165,178] and by the fact
that nonmetabolizable sugar analogs promote bud outgrowth in rose and pea [178–180].
Positive systemic signaling associated with sugar has been reported for etiolated stem
branching in potato [181]. The T6P signaling pathway takes part in the local and systemic
sugar-dependent regulation of bud outgrowth in Arabidopsis and in pea [182,183]. All these
findings indicate that sugar mediates bud outgrowth through different sugar-signaling
pathways, and additional investigations are needed to understand how they drive bud
outgrowth individually and/or collectively.
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Figure 5. Synergistic effect of sugars and cytokinins (CKs) on bud outgrowth. Black arrows and red
lines indicate stimulatory and inhibitory effects, respectively. SLs: strigolactones; BRC1: Branched1.

Current evidence shows crosstalk between sugars and SLs in rose, pea and rice [5,184].
In contrast, the basic regulatory mechanisms related to the sugar/CK interplay in the
driving of shoot branching is still unknown. Sugars stimulated CK synthesis in one-node
cuttings in vitro [178], and CKs could promote the expression of genes associated with the
sink strength of buds for sugars [185]. Additional investigations are obviously required
to elucidate how sugars and CKs synergistically regulate bud outgrowth. BRC1, which
is under the control of sugars and CKs, could be an interesting hub for this regulation
(Figure 5) [165].

5. Leaf Senescence

Leaf senescence can be a constitutive process of age-related development or an in-
ducible mechanism triggered by unfavorable environmental conditions [186]. During this
process, leaf cellular constituents and metabolites are actively recycled and exported to sink
organs [22,187,188]. Leaf senescence is driven by sugars and hormones [22,87,187,189,190].
While acting cooperatively in growing leaves, sugars and CKs take on opposite roles
in senescing leaves. Sugars promote the appearance of senescence symptoms [191,192].
Glucose highly promotes the expression of PAP1 and PAP2, two senescence-associated
MYB transcription factor genes, and of the senescence-specific gene SAG12 [193]. This
sugar-dependent induction of senescence could involve different sugar-related signaling
pathways that may work in opposite manners. The best-characterized one is the HXK-
dependent signaling pathway: tomato or Arabidopsis HXK-overexpressing mutants exhibit
high sensitivity to glucose and an accelerated senescence phenotype [194,195], while de-
layed senescence occurs in HXK knockout mutants [196,197]. Either increased T6P levels
or reduced AtTOR activity triggers leaf senescence [198,199].

By contrast, CKs delay leaf senescence, as evidenced by results from exogenous
supply of CKs, engineered plants with enhanced endogenous CK concentrations, and
mutants deficient in CK signaling [200–203]. However, elevated expression of IPTs or
LOG7a, two CK-encoding genes, has been unexpectedly reported in detached senescing
leaves [43,204,205]. Delayed CK-mediated senescence is dependent on the activity of cell
wall invertases (CWI) [206]. The tomato mutant deficient in INVINH1, an inhibitor of CWI
activity– accordingly exhibited low leaf senescence [207]. The role of CWI in retarding
leaf senescence is still unclear and may be more related to sugar signaling than to C
nutrient provision [208]. CKs could be involved in the regulation of the progression of leaf
senescence by ensuring multiple roles, including scavengers of reactive oxygen species
(ROS) or the maintenance of mitochondrial integrity [188,201]. Silencing the expression of
RhPR10.1 (pathogenesis-related PR-10) in rose both accelerated flower senescence reduced
CK levels and downregulated three CK signaling pathway genes– RhRR3, RhRR8 and
RhRR9 [209]. Additional key components of the CK signaling pathways, including a CK
receptor (AHK3), a CK-response factor (CRF6), the type-B response regulator (ARR2) and
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the CRF-related AP2/ERF transcription factor family, also take part in the senescence-
retarding role of CKs [19,210,211].

Although sugars and CKs clearly have opposite effects on leaf senescence, the basic
mechanism behind this crosstalk is still mostly unclear. One potential node may be the
photosynthetic activity that influences the initiation of leaf senescence [212,213]. Photo-
synthetic activity is promoted by CKs [214] and repressed by sucrose and other derivative
sugars accumulation through HXK-dependent signaling [215,216]. This mechanism in-
volves Abscisic Acid Insensitive4 (ABI4), which encodes an ABA-regulated AP2 domain
transcription factor [78]. Involved in the CK-dependent regulation of lateral root devel-
opment [217], ABI4 may be an integrator of the antagonistic control of leaf senescence
by sugars and CKs. Alternatively, a double mutant overexpressing IPT and HXK also
showed early senescence-related characteristics comparatively to the IPT-overexpressing
mutant and the WT, indicating a dominant role of sugars in the establishment of leaf
senescence [218]. This is consistent with the presence of a set of sugar–signal-related motifs
(e.g., YBGAHV, TATCCAOSAMY and ACGTABBOX) in the Glycine max promoter region
of the IPT gene [219]. Future lines of research could target the way IP and root-derived
CKs operate to antagonize the inductive effect of sugars on leaf senescence.

6. Flowering

Flowering is an important developmental process that ensures plant survival. The
transition from the vegetative to the flowering stage must occur in a timely manner to
maximize reproductive success. This developmental juvenile-to-adult reproductive switch
is controlled by six major regulatory pathways that integrate different environmental and
endogenous signals: the photoperiod, vernalization, gibberellins, ambient temperature,
autonomous, and age [220]. This flowering network converges toward the major floral
integrator gene FLOWERING LOCUS T (FT), its closest homolog TWIN SISTER OF FT
(TSF), Suppressor of Overexpression of Constans 1 (SOC1), and FLOWERING LOCUS D
(Figure 6) [220–222]. In Arabidopsis, a facultative long-day plant, sucrose concentrations
in leaf exudates increase in response to inductive long days [223]. These increases in
sucrose export levels result from carbohydrate mobilization rather than increased pho-
tosynthesis [224]. In line with this, sucrose supply can promote flowering in Arabidopsis
and tomato [225,226]. However, high sucrose concentrations can have an inhibitory ef-
fect on floral transition [227]. Besides sucrose, glucose plays a major role in this process
through the miR156/SPLs regulatory module identified as a key component of the ag-
ing pathway (Figure 6). Thus, the glucose-induced repression of miRNA156 is partly
dependent on the signaling activity of HXK1 [228]. Sugar-mediated flower induction may
also involve the signaling metabolite T6P, whose accumulation depends on T6P synthase
1 (TPS1) activity [229]. These authors showed that T6P pathway signaling in leaves is
essential for both FT and TSF expression under inductive photoperiod. In addition, the
T6P pathway also acts as a local signal in the SAM through the miRNA156-SPLs module
independently of the photoperiod pathway. Transgenic Arabidopsis plants overexpressing
jatropha T6P phosphatase (JcTPPJ) display a delayed flowering under inductive long days
as compared to the WT [230]. Nevertheless, the Arabidopsis knockout mutant tppi exhibited
the opposite phenotype, i.e., late-flowering under non-inductive conditions. This question
means the regulation of flowering time by T6P, but also by downstream products of the
T6P pathway like trehalose [231]. TSF inhibits the fructose phosphorylating activity of
fructokinase 6 (FRK6) through direct interaction [232]. This potential regulatory role of
the TSF-FRKs nexus in determining the flowering time of Arabidopsis is supported by the
delayed flowering of the frk6 mutant under short-day conditions. In plants, CKs should
be considered as an obligatory component of floral induction and may act both in leaves
and shoot apices [233,234]. CK supply to Arabidopsis roots indeed promotes flowering
and induces transcription of TSF in leaves as well as FD and SOC1 under short-day conditions
independently of FT (Figure 6) [234]. Additionally, exogenous treatment with CKs could
also induce SOC1 in the shoot meristem [233]. Gain-of-function variants of AHK2 and
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AHK3, two CK receptors, displayed enhanced CK signaling, resulting in early flowering
under long-day conditions [235]. Consistent with these results, the rice hk5 hk6 mutant,
disrupted for two HK cytokinin receptor genes, displayed severely delayed flowering [236].
SOC1, FD and ARR5-like were upregulated in sweet cherry tree buds during flowering
induction when the highest amount of CKs was applied [237], as they were in apple tree
buds when CKs were applied [11].

Figure 6. Synergistic effect of sugars and cytokinins (CKs) on flowering. Blue words indicate
sugar signaling pathways. Black arrows and red lines indicate stimulatory and inhibitory effects,
respectively. FD, FLOWERING LOCUS D; FT, FLOWERING LOCUS T; HXK1, hexokinase1; SOC1,
Suppressor of Overexpression of Constans1; SPL, Squamosa Promoter-Binding Protein-Like; Tre6P:
trehalose-6-phosphate; TSF, TWIN SISTER OF FT.

The role played by the crosstalk between sugars and CKs in the control of flowering is
still almost unknown. Additional research is required to evaluate whether TSF, the paralog
of FT, could be the main node of the combined effect of T6P and CKs.

7. Conclusions

Sugars and CKs play a pivotal role in morphogenesis and plant development because
they are predominant during both the vegetative and reproductive stages of plant life
(Figure 1). However, the detailed mechanism whereby these two regulators interplay is
still puzzling, and many mechanistic scenarios are plausible. Many questions still remain
open, include which molecular actors, which hubs could be involved at the crossroads of
the sugar and CK signaling pathways. As the sugar/CK interplay can have antagonistic or
agonistic outcomes, its regulatory network is expected to be complex and multifactorial
depending on developmental and environmental inputs. Sugars and CKs both regulate the
relationships between source and sink organs at the whole plant level. As a consequence,
we may wonder about the relevance of the main energy and nutrient status sensors
(Sucrose non-fermenting-related kinase (SnRK1)/target of rapamycin (TOR kinase)) in this
process. The involvement of these mechanisms in this crosstalk deserves to be investigated.
Meanwhile, our knowledge about the roles of sugars and CKs in the plant response to
stressors is well investigated, but data about their crosstalk is again still very limited. Such
an understanding is crucial to building up a comprehensive picture in different biological
contexts throughout plant life. Further works are thus needed to fully investigate the
regulatory networks behind the crosstalk between sugars and CKs. This will undoubtedly
help to suitably manage plant physiology in view of increasing agronomy and resilience
performances in an ever-changing environment.
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