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Abstract – A heteroskedastic random coefficients model was described for analyzing weight
performances between the 100th and the 650th days of age of Maine-Anjou beef cattle. This
model contained both fixed effects, random linear regression and heterogeneous variance com-
ponents. The objective of this study was to analyze the difference of growth curves between
animals born as twin and single bull calves. The method was based on log-linear models
for residual and individual variances expressed as functions of explanatory variables. An
expectation-maximization (EM) algorithm was proposed for calculating restricted maximum
likelihood (REML) estimates of the residual and individual components of variances and
covariances. Likelihood ratio tests were used to assess hypotheses about parameters of this
model. Growth of Maine-Anjou cattle was described by a third order regression on age for a
mean growth curve, two correlated random effects for the individual variability and independent
errors. Three sources of heterogeneity of residual variances were detected. The difference of
weight performance between bulls born as single and twin bull calves was estimated to be equal
to about 15 kg for the growth period considered.
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1. INTRODUCTION

The weight performances of animals, recorded repeatedly during their lives,
are a typical example of longitudinal data where the trait of interest is changing,
gradually but continually, over time. Until recently in quantitative genetics,
such records were frequently analysed fitting a so called “repeatability model”,
i.e. assuming all records were repeated measurements of a single trait with
constant variances. Other approaches have been (i) to, somewhat arbitrarily,
subdivide the range of ages and consider individual segments to represent
different traits in a multivariate analysis or (ii) to fit a standard growth curve to
the records and analyse the parameters of the growth curve as new traits.

Recently, there has been a great interest in random coefficient models [22]
for the analysis of such data. These models use polynomials in time to describe
mean profiles with random coefficients to generate a correlation structure
among the repeated observations on each individual. Instead of considering
only the overall growth curve, we assume that there is a separate growth
curve for each individual. These have by and large been ignored in animal
breeding applications so far, although they are common in other areas (see,
for example, [22] for a general exposition). Repeated measurements on the
same animal are more closely correlated than two measurements on different
animals, and the correlation between repeated measurements may decrease as
the time between them increases. Therefore, the statistical analysis of repeated
measures data must address the issue of covariation between measures on
the same unit. Modeling the covariance structure of repeated measurements
correctly is of importance for drawing correct inference from such data [5]. The
main advantages of longitudinal studies are increased power and robustness to
model selection [6]. In animal genetics, random regressions in a linear mixed
model context have been considered by Schaeffer and Dekkers [36]. Moreover,
the recently developped SAS procedure PROC MIXED greatly increases the
popularity of linear mixed models [40].

In quantitative genetics and animal breeding, heteroskedasticity has recently
generated much interest. In fact, the assumption of homogeneous variances
in linear mixed models may not always be appropriate. There is now a
large amount of experimental evidence of heterogeneous variances for most
important livestock production traits [14,33,43,44]. Major theoretical and
applied work has been carried out for estimating and testing sources of het-
erogeneous variances arising in univariate mixed models [4,9,11,12,15,30,31,
34,45].

In this paper, we extend the random regression model to a more general class
of models termed the heteroskedastic random regression. This class of models
assumes that all variances of random effects can be heterogeneous. Inference
is based on likelihood procedures (REML, restricted maximum likelihood,
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[29]) and estimating equations derived from the expectation-maximization
(EM, [2]) theory, more precisely the expectation/conditional maximization
(ECM) algorithm recently introduced by Meng and Rubin [23].

The selection of a global model requires the choice of fixed effects (model on
phenotypic mean vector E) and the choice of random effects (model on variance-
covariance matrix V). In fact, this choice is complex because the choice of
fixed effects depends on variance-covariance structure of observations, and in
particular on the number of random effects included in the model. In practice,
the strategy adopted is as follows: a structure of variance-covariance matrix V
is assumed and a model E is chosen (selection of significant fixed effects)
and subsequently, with a model E fixed, different structures for V are tested.
One alternative approach consists of obtaining an inference on fixed effects
by robust estimators (so-called “sandwich estimator”, [21]) with respect to the
structure on V. In this paper, the theory of the “sandwich estimator”is presented
and used to select significant fixed effects.

These procedures are illustrated and presented via an example in growth
performance of beef cattle. The aim of this study was to compare the growth
curve of animals born as singles or twins and to quantify the difference of
weight at different ages. The data analyzed in this paper comprised 943 weight
records of 127 animals of the Maine-Anjou breed and are presented in the
section “Materials and methods”. The methods section encompasses models,
estimation procedures and tests of hypotheses. Then, the results of the beef
cattle example are presented and discussed. The paper ends with concluding
remarks on longitudinal data analysis via random coefficient models.

2. MATERIALS AND METHODS

2.1. Data

All animals were raised at the experimental Inra herd of “La Grêleraie”
(Mayenne, France). This herd is part of a research project aimed at increasing
the rate of natural twin calvings in cattle. From an economic point of view,
breeders are also concerned with a comparison of growth performance of bull
calves born as twins or single. Data consisted of 943 weight performances
recorded between 100 and 650 days of age in 127 Maine-Anjou bulls (103
animals born as singles and 24 born as twins). There were on average
7 weight records per animal. The distribution of the number of records
per animal and all characteristics of the data set analysed are presented in
Table I.

The animals were grouped by year of birth and calving season. For each
performance of an animal, the weight, the age at weighting, the calving parity of
the mother and the birth status (single vs. twin) were recorded. These variables
are presented in Table I.
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Table I. Characteristics of the data set.

(a)
Number of records Number of animals Number of animals

per animal born as single born as twins
4 15 6
5 10 3
6 12 2
7 18 1
8 8 3
9 17 3

10 14 2
11 7 2
12 2 0
13 0 2

103 24

(b)
Number of animals Number of animals

Season of birth born as single born as twins
1- Autumn 58 12
2- Spring 45 12

103 24

(c)
Number of animals Number of animals

Year of birth born as single born as twins
1990 4 0
1991 8 4
1992 14 2
1993 12 3
1994 11 0
1995 15 3
1996 21 5
1997 18 7

103 24

(d)
Number of animals Number of animals

Rank of calving of the mother born as single born as twins
1- Heifers 36 5
2- Ranks 2 and 3 38 10
3- Ranks ≥ 4 29 9

103 24
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2.2. Models

In this data set, animals can differ both in the number of records and
in time intervals between them. One of the frequently used approaches is
the linear mixed effects model [19] in which the repeated measurements are
modeled using a linear regression model, with parameters allowed to vary over
individuals and therefore called random effects.

2.2.1. Models for data

To characterize the effect of twinning on the growth curve between days 100
and 650, a mixed linear model including random effects and heterogeneous
variances was used. The classical random coefficient model involves a random
intercept and slope for each subject. The model considered here combines
random regression with heteroskedastic variances; it can be written as follows:

yijl = x′ijlβ+ σu1iz1ijlu
∗
1l + σu2iz2ijlu

∗
2l + eijl (1)

where yijl is the jth (j = 1, . . . , nk) measurement recorded on the lth
(l = 1, . . . , q) individual at time tjl in subclass i of the factor of heterogeneity
(i = 1, . . . , p); x′ijlβ represents the systematic component expressed as a linear
combination of explanatory variables (x′ijl) with unknown linear coefficients
(β); (σu1iz1ijlu∗1l+σu2iz2ijlu∗2l) represents the additive contribution of two random
regression factors (u∗1l is the intercept effect and u∗2l is the slope effect) on covari-
able information (z1ijl and z2ijl) and which are specific to each lth individual; σu1i

and σu2i are the corresponding components of variance pertaining to stratum i.
The random effects u∗1l and u∗2l are correlated and this correlation is assumed
homogeneous over strata and equal to ρ. The eijl represent independent errors.

In matrix notation, the model can be expressed as:

yi = Xiβ+ σu1iZ1iu∗1 + σu2iZ2iu∗2 + ei (2)

where u∗1 = (u∗11, . . . , u∗1l, . . . , u∗1q)
′ is the vector of normally distributed

standardized intercept values N(0, Iq), u∗2 = (u∗21, . . . , u∗2l, . . . , u∗2q)
′ is the

vector of normally distributed standardized slope effects N(0, Iq), and ei is
the vector of normally distributed residuals for stratum i N(0, Iσ2

ei
). The

regression components (u∗1 and u∗2) and environmental effects ei are assumed
to be independent. Then,

var

(
u∗1
u∗2

)
=

(
Iq ρIq

ρIq Iq

)

with the correlation coefficient ρ defined as previously.
It would have been possible to introduce additional levels of random coeffi-

cients without any difficulty. But for the sake of simplicity, this example only
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considers two random regression components: the standard random intercept-
slope model. However, the equations shown in the appendix apply to both
general (k = 1, . . . ,K) and particular (K = 2) cases.

More generally, a heteroskedastic random coefficient model with K random
coefficient components can be written as follows:

yi = Xiβ+
K∑

k=1

σukiZkiu∗k + ei.

2.2.2. Models for variances

There are situations where variances are heterogeneous, i.e., variances are
assumed to vary according to several factors. A convenient and parsimonious
procedure to handle heterogeneity of variances is to model them via a log-linear
function [20,27]. This approach has the advantage of maintaining parameter
independence between the mean and covariance structure. As compared to
transformations, it also avoids “to destroy a simple linear mean relationship
making the interpretation and estimation of the mean and covariance parameters
more difficult...” [46].

In the heteroskedastic model, residual variances (σ2
ei

), for example, were
assumed to vary according to several factors such as twinning, season of birth,
rank of calving of the mother, age at weight. The idea was to find a model
for the variance that describes the heterogeneity among p different subclasses
(usually a large number in animal breeding) in terms of a few parameters.
Following Foulley et al. [10] and San Cristobal et al. [34] among others, the
residual variances were modeled as:

ln σ2
ei
= p′iδ

where δ is an unknown (r×1) vector of parameters, and p′i is the corresponding
(1 × r) row incidence vector of qualitative (e.g., twinning, rank of calving of
the mother) or continuous covariates (e.g., age at weight).

Just as was done with the residual variances, the individual variances σ2
u1i

and
σ2

u2i
can be heteroskedastic and are also modeled with a structural model [11]:

ln σ2
u1i
= h′1iη1

ln σ2
u2i
= h′2iη2

where ηj with j = (1, 2) is an unknown vector of parameters and h′ji is the
corresponding row incidence vector of qualitative or continuous covariates.
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2.3. Estimation of dispersion parameters

For the model developed in this paper, REML (restricted maximum like-
lihood, [29]) provides a natural approach for the estimation of fixed effects
and all (co)variance components. To compute REML estimates, a generalized
expectation-maximization (EM) algorithm was applied [7,8,11]. The theory
of this method is described by Dempster et al. [2].

Let γ = (δ′,η′1,η
′
2, ρ)

′ denote the vector of parameters. The application
of the generalized EM algorithm is based on the definition of a vector of
complete data x (where x includes the data vector and the vector of fixed and
random effects of the model, except the residual effect) and on the definition
of the corresponding likelihood function L(γ; x) = ln p(x|γ). L(γ; x) can be
decomposed as the sum of the log-likelihood Qu of u∗ as a function of ρ and
of the log-likelihood Qe of e as a function of δ,η1,η2. The E step consists of
computing the function Q(γ|γ[t]) = E[L(γ; x)|y, γ[t]] where γ[t] is the current
estimate of γ at iteration [t] and E[.] is the conditional expectation of L(γ; x)
given the data y, δ = δ[t], η1 = η[t]1 , η2 = η[t]2 , ρ = ρ[t]. The M step consists of
selecting the next value γ[t+1] of γ by maximizing Q(γ|γ[t]) with respect to γ.
The function to be maximized could be written as:

Q(γ|γ[t]) = C − 1

2

p∑

i=1

ni ln(σ2
ei
)− 1

2

p∑

i=1

σ−2
ei

E[t]c [e′iei]

− 1

2
ln |G| − 1

2
E[t]c [u∗′G−1u∗] (3)

where ei = yi − Xiβ− σu1iZ1iu∗1 − σu2iZ2iu∗2, C is a constant, ni is the number
of records in subclass i, E[t]c [.] is a condensed notation for a conditional expect-
ation taken with respect to the distribution of the complete data x given the
observation y and the parameter γ set at their current value γ[t].

For example,

E[t]c [ei] = yi − Xiβ− σu1iZ1iE[u∗1|y, γ = γ[t]] − σu2iZ2iE[u∗2|y, γ = γ[t]].
For more complex functions, the same rules apply as shown in the appendix.

And G = var(u∗) = var

(
u∗1
u∗2

)
=

(
Iq ρIq

ρIq Iq

)
.

Q(γ|γ[t]) can be decomposed into two parts:

Q(γ|γ[t]) = C + Qe + Qu (4)

where

−2Qe =
p∑

i=1

ni ln(σ2
ei
)+

p∑

i=1

σ−2
ei

E[t]c [e′iei]
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and

−2Qu = ln |G| + E[t]c [u∗′G−1u∗].

Note that Qu depends only on ρ. Thus, the maximisation of Q(γ|γ[t]) with
respect to ρ is reduced to the maximisation of Qu with respect to ρ.

The REML estimates can be obtained efficiently via the Newton-Raphson
algorithm for δ, η1 and η2 estimates and via the Fisher scoring algorithm for
the parameter ρ. The corresponding systems of equations and their necessary
inputs are shown in the appendix.

2.4. Tests of hypotheses

Tests of hypotheses involving fixed effects are more complex in mixed than
in fixed effects models. The intuitive reason is clear: the fixed effects model has
only one variance component and all fixed effects are tested against the error
variance; a mixed model, however, contains different variance components
and a particular fixed effects hypothesis must be tested against the appropriate
background variability which can be expressed in terms of variance components
present in a model.

Fitting linear mixed models implies that an appropriate mean structure as
well as covariance structure needs to be specified. They are not independent
of each other. Adequate covariance modeling is not only useful for the
interpretation of the variation in the data, it is essential to obtaining valid
inferences for the parameters in the mean structure. An incorrect covariance
structure also affects predictions [1]. On the contrary, since the covariance
structure models all variability in the data which is not explained by systematic
trends, it highly depends on the specified mean structure.

2.4.1. Testing fixed effects

An approach based on robust estimators (“sandwich estimators”, [21]) was
chosen to select significant fixed effects. This method is defined as follows:

Let α denote the vector of all variance and covariance parameters found
in V. If y ∼ N(µ,V) with µ = Xβ and α is known, the maximum likelihood
estimator of β, obtained by maximizing the likelihood function of y conditional
on α, is given by [19]:

β̂ =
(

N∑

i=1

X′iWiXi

)−1 (
N∑

i=1

X′iWi yi

)
(5)
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and its variance-covariance matrix equals:

Var(β̂) =
(

N∑

i=1

X′iWiXi

)−1 (
N∑

i=1

X′iWiVar(yi)WiXi

)(
N∑

i=1

X′iWiXi

)−1

(6)

Var(β̂) =
(

N∑

i=1

X′iWiXi

)−1

(7)

where Wi equals V−1
i .

Note that a sufficient condition for (5) to be unbiased is that the mean E(yi)

is correctly specified as Xiβ. However, the equivalence of (6) and (7) holds
under the assumption that the covariance matrix is correctly specified. Thus,
an analysis based on (7) will not be robust with respect to model deviations in
the covariance structure. Therefore Liang and Zeger [21] propose inferential
procedures based on the so-called “sandwich estimator” for Var(β̂), obtained
by replacing Var(yi) by (yi − Xiβ̂)(yi − Xiβ̂)

′. Liang and Zeger [21] showed
that the resulting estimator of β is consistent, as long as the mean is correctly
specified in the model. To that respect the simplest choice consists of β̂ in (5)
fitted by ordinary least squares, i.e., β̂ = (∑N

i=1 X′iXi)
−1(

∑N
i=1 X′iyi). However,

it might be worthwhile to consider more complex structures for the working
dispersion matrix Wi, or generalized least squares estimation.

When α is not known but an estimate α̂ is available, we can set

V̂i = Vi(α̂) = Ŵ
−1

i and estimate β by using the expression (5) in which
Wi is replaced by Ŵi. Estimates of the standard errors of β̂ can then be
obtained by replacing α by α̂ in (6) and in (7) respectively, which are both
available in the SAS MIXED procedure [35]. However, as noted by Dempster
et al. [3], they underestimate the variability introduced by estimating α. The
SAS MIXED procedure accounts to some extend for this downward bias by
providing approximate t- and F-statistics for testing about β [18].

Practically, the resulting standard errors can be requested in the SAS MIXED
procedure by adding the option “empirical” in the proc mixed statement. Note
that this option does not affect the standard errors reported for the variance
component in the model. For some fixed effects, however, the robust standard
errors tend to be somewhat smaller than the model-based standard errors,
leading to less conservative inferences for the fixed effects in the final model,
but for others, there are larger with opposite effects on the real size of the
test [41]. In any case, this procedure relies on asymptotic properties and
therefore should be applied with at least a minimum number of individuals
(about 100).

In this study, comparisons between robust and standard estimators will be
presented for different homogeneous models: (0) a fixed effect model with
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independent errors, (1) a classical mixed model with one random effect and
independent errors, (2) a fixed effect model with errors following a first order
autoregressive process and (3) a random coefficient model with two correlated
random effects (intercept and slope effects) and independent errors.

After selection of fixed effects in the model, random effects and factors of
heterogeneity can be tested.

2.4.2. Testing random effects

Although the estimation of the parameters in the model is generally the main
interest in an analysis, tests of hypotheses are usually required in assessing the
significance of effects and in model selection. Tests of significance of random
effects usually involve testing whether a single variance component is 0. For
example, testing the significance of a random-intercept effect involves testing
whether σ2

u1
= 0. These tests are carried out by using residual maximum

likelihood ratio tests. However, the null hypothesis places the parameter on the
boundary of the parameter space and the non-regular likelihood ratio theory
is required [37]. Stram and Lee [38] considered the specific issue of tests
concerning variance components and random coefficients.

For a single variance component, the asymptotic distribution of the likeli-
hood ratio test is a mixture of a Dirac mass at zero and of a chi-square with
a single degree of freedom with mixing probabilities equal to 0.5 [38]. The
approximate P-value for the residual likelihood ratio statistic δ = −2 log(Λ) is
easily calculated as 0.5Pr(X > d) where X ∼ χ2

1 under the null hypothesis and
d is the observed value of δ. The residual maximum likelihood ratio test for the
test that p variance components are 0 involves a mixture of χ2-variates from
0 to p degrees of freedom. The mixing probabilities depend on the geometry
of the situation [37]. Stram and Lee [38] found that the likelihood ratio test
is conservative and for the residual maximum likelihood ratio test this was
confirmed in a limited simulation study reported in Verbyla et al. [42]. A
similar application was presented in Robert-Granié et al. [32].

3. RESULTS AND DISCUSSION

3.1. Plot of data

With longitudinal data, an obvious first graph to consider is the scatterplot
of the weight of animals against time. Figure 1 displays the data on weight of
bulls in relation to age at weight. This simple graph reveals several important
patterns. All bulls gained weight. The spread among all animals was sub-
stantially smaller at the beginning of the study than at the end. This pattern
of increasing variance over time could be explained in terms of variation in
the growth rates of the individual animals. In the case of the beef cattle data,
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Figure 1. Growth curve of Maine Anjou beef cattle.

the choice of a linear function between the 100th and the 650th days seemed
appropriate for fitting the mean growth curve.

3.2. Model selection

As explained in the section “Tests of hypotheses”, fixed effects were selected
using robust estimators [21]. Comparisons between robust and standard estim-
ators are presented for four homogeneous models with different structures of
the variance-covariance matrix. The four models chosen are traditional models
in longitudinal data analysis [13]:

(0) a fixed effects model: y = Xβ + e, with independent errors, with y
normally distributed, and with a variance-covariance matrix equal to Iσ2

e ;
(1) a classical homogeneous mixed model: y = Xβ + Zu + e, with u ∼

N(0, Iσ2
u) and e ∼ N(0, Iσ2

e );
(2) a fixed effect model: y = Xβ+ e, with first order autoregressive errors,

e ∼ N(0,Σ) where Σij = σ2
eρ
|ti−tj|, ρ is a real positive number, and |ti − tj|

representing the distance between measurements i and j of the same animal.
The error term corresponds to the contribution of a stationary Gaussian time
process, where the correlation between repeated measurements decreases as
the time between them increases;

(3) a random coefficient model: y = Xβ + Z1u1 + Z2u2 + e, with u1 ∼
N(0, Iσ2

u1
), u2 ∼ N(0, Iσ2

u2
), Cov(u1,u2) = σ12, and e ∼ N(0, Iσ2

e ).
For each model, all fixed effects were tested. Table II presents the value

of the F-test and the P-value associated with each fixed effect and each model
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Table II. Selection of fixed effects.

Fixed effects Model (0) Model (1) Model (2) Model (3)

F a P-value F a P-value F a P-value F a P-value

Twins b5.57 0.0209 1.86 0.1726 1.54 0.2192 2.67 0.1027

8.11 0.0057 4.52 0.0337 5.78 0.0187 6.10 0.0138

Rank of calving b3.90 0.0246 1.40 0.2469 1.28 0.2846 1.17 0.3111

3.75 0.0282 4.06 0.0176 4.86 0.0104 4.28 0.0142

Period of birth b5.34 0.0001 3.40 0.0001 1.47 0.1410 4.90 0.0001

7.35 0.0001 8.34 0.0001 6.31 0.0001 14.74 0.0001

Age b17.94 0.0001 57.86 0.0001 60.17 0.0001 104.82 0.0001

22.55 0.0001 26.25 0.0001 62.41 0.0001 48.37 0.0001

Age b9.47 0.0001 24.71 0.0001 6.71 0.0001 10.09 0.0001

* period of birth 10.16 0.0001 10.87 0.0001 10.96 0.0001 14.89 0.0001

Age * twins b0.05 0.8247 0.84 0.3589 0.30 0.5842 0.08 0.7809

0.10 0.7505 0.60 0.4398 0.63 0.4283 0.16 0.6868

Age b0.07 0.9366 0.02 0.9810 0.01 0.9869 0.04 0.9652

* rank of calving 0.08 0.9210 0.01 0.9919 0.02 0.9828 0.05 0.9535

Twins b0.51 0.6052 0.23 0.7941 0.40 0.6722 0.24 0.7874

* rank of calving 0.25 0.7807 0.65 0.5209 1.01 0.3683 0.49 0.6158

Twins b6.52 0.0001 0.96 0.4732 1.00 0.4462 1.04 0.4045

* period of birth 8.96 0.0001 7.93 0.0001 21.33 0.0001 2.53 0.0073

Rank of calving b11.61 0.0001 1.48 0.0678 1.24 0.2433 1.80 0.0126

* period of birth 149.42 0.0001 147.80 0.0001 143.37 0.0001 44.62 0.0001

Age 2 b10.84 0.0010 20.40 0.0001 10.11 0.0015 10.38 0.0017

12.53 0.0004 8.72 0.0032 10.81 0.0011 4.38 0.0388

Age 3 b14.12 0.0002 25.86 0.0001 12.30 0.0005 13.20 0.0004

14.76 0.0001 10.19 0.0015 12.72 0.0004 5.01 0.0272

Twins: variable representing bulls born as single or twins.
Period of birth: variable combining year and season of birth.
(a) Value of F-test.
(b) First line: standard estimator and second line: robust estimator.
Model (0): y = Xβ+e with errors independent and normally distributed, with variance-
covariance structure equal to Iσ2

e ;
Model (1): y = Xβ+ Zu+ e with u ∼ N(0, Iσ2

u) and e ∼ N(0, Iσ2
e );

Model (2): y = Xβ + e with first order autoregressive errors, e ∼ N(0,Σ) where
Σij = σ2

eρ
|ti−tj|;

Model (3): y = Xβ + Z1u1 + Z2u2 + e with u1 ∼ N(0, Iσ2
u1
), u2 ∼ N(0, Iσ2

u2
),

Cov(u1,u2) = σ12 and e ∼ N(0, Iσ2
e ).
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Table III. Selection of random effects.

Models −2L d Test δ e Degree Conclusion
of freedom f

(a) Fixed 9127.26
(b) Random intercept 8462.80 (b) against (a) 664.46 0:1 Significant

(c) Random intercept
and slope 8297.44 (c) against (b) 165.36 1:2 Significant

Model (c): model where intercept and slope are assumed correlated.
d: −2 log-likelihood.
e: Likelihood ratio statistic.
f : Asymptotic distribution of the likelihood ratio under the null hypothesis:
Chi-square or mixture of Chi-square distributions.

considered. In each case, standard and robust estimators are given. Whatever
the method considered, the interactions “age*twins”, “age*rank of calving”and
“twins*rank of calving”were not significant at the 5% level. The robust method
led to the same conclusions whatever models were considered with respect to
fixed effects. In contrast, using the standard approach, interactions “rank of
calving*period of birth” and “twins*period of birth” were either significant or
not significant depending on the structure of the variance-covariance matrix.

Despite the linear trend shown in Figure 1 for the mean growth curve of the
animals, age2 and age3 were statistically significant, and thus, were kept in the
model.

Finally, the list of the fixed effect retained in the model was: age, age2,
age3, twins, rank of calving, period of birth, age*period of birth, rank of
calving*period of birth and twins*period of birth; the non significant interaction
age*twins was included in the model because this parameter is of primary
interest to evaluate the difference in growth rate between single and twin born
bulls.

In a second step, a set of random effects was chosen for the covariance
model. A selection of random effects is summarized in Table III. The choice
of random effects was based on the set of fixed effects selected with the robust
procedure presented in the first step. Likelihood ratio tests (REML version)
were used for comparisons among the following models:

(a) a fixed effect model: y = Xβ+ e, with e ∼ N(0, Iσ2
e );

(b) a classical homogeneous mixed model with a random intercept for each
subject: y = Xβ+ Zu+ e, with u ∼ N(0, Iσ2

u) and e ∼ N(0, Iσ2
e );

(c) a homogenous random coefficient model with a random intercept and
slope for each animal with two random effects assumed correlated: y = Xβ+
Z1u1 + Z2u2 + e, with u1 ∼ N(0, Iσ2

u1
), u2 ∼ N(0, Iσ2

u2
), Cov(u1,u2) = σu12

and e ∼ N(0, Iσ2
e ).
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The results in Table III show large values for the likelihood ratio statistics.
The model finally accepted is a homogeneous mixed model with two correlated
random effects and independent errors. This model includes a three degree
polynomial function in time to describe the mean growth curve; an intercept
and a slope for each animal.

From the model defined above (model including as fixed effects age, age2,
age3, twins, rank of calving, period of birth, age*period of birth, rank of
calving*period of birth, age*twins and twins*period of birth and as random
effects an intercept and a slope for each animal), sources of heterogeneity
(e.g., rank of calving, season of birth, twins or age at weight) were tested on
different variances (intercept, slope or residual variances) of the model. Only
residual variances were found to be heterogeneous according to rank of calving,
season of birth and age at weight. No heterogeneity of variances was observed
for individual intercepts and slopes. Final estimates of variance-covariance
parameters are presented in Table IV. The correlation between the two random
effects is negative and equal to−0.34; i.e., if an animal’s intercept is larger than
the others, its slope will tend to be smaller as well. The individual variability
for the intercept is very large and equal to 827.65. The variance of the slope is
equal to 0.012 which corresponds to a value of the coefficient of variation of
12% indicating a rather substantial variability in the growth rate of bulls. The
results about the heterogeneity of variances suggest an increasing variance of
weight records in time and a larger variability for bulls born in the spring and
out of heifers.

3.3. Results for a heteroskedastic random coefficient model

Figure 2 presents the graph of mean growth curves estimated from the last
model (heteroskedastic random coefficient model presented in Tab. IV) for
bulls born as twins or single. It shows that single born bulls were larger at
birth than twins and the weights of both of them increased linearly; the growth
difference between single and twin bulls was approximately constant and equal
to about 15 kg during the period of growth considered.

Figure 3 shows the differences under two models between the mean growth
curves of single born bulls or twins: (a) fixed effects model and (d) heteroske-
dastic random coefficient model with the same fixed effects as in model (a). The
difference between singles and twins shows two opposite patterns: increasing
under model (a) and decreasing under model (d). For instance, at 550 days,
the difference is estimated to be 11 kg under model (a) and 17 kg under
model (d). How can this be explained given that both estimators are a priori
unbiased. Actually they are not unbiased. The downward pattern seen under
OLS (Ordinary Least Squares) can be explained as follows: usually heavier
bulls are going to be slaughtered earlier resulting in an apparent decrease of
growth rate with time. These missing data do not arise completely at random.
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Table IV. Estimation of variance-covariance parameters.

Variances Estimates

Intercept variance σ2
u1

827.65

Slope variance σ2
u2

0.012

Correlation between random intercept and slope ρ −0.34

Residual variances∗

ln σ2
ei
= p′iδ

Intercept 5.08

Calving effects

(1–3) 0.29

(2–3) −0.25

Season of birth effects

(1–2) −0.24

Age 0.002

Model (d): yi = Xiβ + σu1Z1iu∗1 + σu2Z2iu∗2 + ei with ei ∼ N(0, Iσ2
ei
)

and ln σ2
ei
= p′iδ.

β = { Age, Age2, Age3, Twins, Rank of calving, Period of birth,
Age*Period of birth, Rank of calving*Period of birth, Age*Twins,
Twins*Period of birth }.
δ = { Rank of calving, Season of birth, Age }.
∗ Model selected: intercept + parity (3 levels; 1, 2, 3) + season of birth
(2 levels; 1, 2) + age at weight (in days).

This missingness process is not taken into account under OLS which leads to
an apparent smaller difference between bulls born as single and twins (heavier
bulls being in general single born).

3.4. Concluding remarks

This study illustrates a way to analyze repeated measurements with models
that use variance-covariance structures for the observations modeled as func-
tions of time. Random coefficient models are convenient tools for modeling
such data. They not only reduce the number of parameters, as compared to
multiple traits but they can also easily cope with irregular recording patterns
in time. They are easily interpretable and manageable under mixed model
methodology. For instance, they are of great interest in practice, since they
allow for easy calculation of trait performance at typical ages (e.g., here weights
at 100, 200, 400 days). They can also be very useful in genetic evaluation for
breeding purposes [36].
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Figure 2. Comparison of mean growth curves between bulls born as single or twins.
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 Figure 3. Difference of weights between bulls born as single or twins estimated under
two models.

More generally, random coefficient models provide a valuable tool for
modeling repeated records in animal breeding adequately, especially if traits
measured change gradually over time (e.g., analysis of lactation curves in dairy
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cattle, of feed intake or growth curves in beef cattle, etc.). However, there
are critical issues to be aware of in order to use these models properly and
efficiently. With respect to fixed effects, a critical question lies in the order
of the polynomials used to model response. In many studies especially in
animal breeding, the authors assume the same regression structure on the fixed
and random effects [24–26,28,39]. This is neither mandatory in theory nor
desirable in practice, since the variation between populations and between
subjects within populations does not necessarily follow the same pattern. In
practice, the order of polynomials for fitting the random part of the model
(adjusted individual profiles) is usually lower than that for the fixed part
(population trend), as was the case here.

In addition, semiparametric methods (e.g., splines or kernel methods) can
be applied at the fixed effect level, while the between subject variation is fitted
via random regression [16,42,47,48].

With respect to the random part, dispersion models can be improved signi-
ficantly (i) by the application of stochastic time processes to take into account
the existing correlations between successive measurements, e.g. autoregressive
processes [6,13,41] and (ii) by allowing for heterogeneity of variances, as was
done here (see also [46]).
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APPENDIX

Estimation of dispersion parameters

The function to be maximized is:

Q(γ|γ[t])

= C − 1

2

p∑

i=1

ni ln(σ2
ei
)− 1

2

p∑

i=1

σ−2
ei

E[t]c [e′iei] − 1

2
ln |G| − 1

2
E[t]c [u∗′G−1u∗]

(A.1)

where C is a constant, ni is the number of records in subclass i, E[t]c [.] is
a condensed notation for a conditional expectation taken with respect to the
distribution of x|y, δ = δ[t],η1 = η[t]1 ,η2 = η[t]2 , ρ = ρ[t],

ei = yi − Xiβ− σu1iZ1iu∗1 − σu2iZ2iu∗2
and

G = var(u∗) = var

(
u∗1
u∗2

)
=

(
Iq ρIq

ρIq Iq

)
·

More generally, for K random regression components, G = G0 ⊗ Iq where G0

is a correlation matrix with (k, l) element: g0,kl = ρkl with k = 1, . . . ,K and
l = 1, . . . ,K.

In the general case, the random coefficient model can be written as follows:

yi = Xiβ+
K∑

k=
σukiZkiu∗k + ei.

The REML estimates can be obtained efficiently via the Newton-Raphson
algorithm for δ,η1,η2, . . . ,ηK estimates and via the Fisher scoring algorithm
for the parameter ρ = {ρ12, ρ13, . . . , ρ1K, ρ23, . . . , ρ2K, . . . , ρK−1,K}, vector of
correlations ρkl.
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Numerically, the current estimates δ[t+1],η[t+1]
1 ,η[t+1]

2 , . . . ,η[t+1]
K of δ,

η1,η2, . . . ,ηK are computed with the following iterative system:

(
∂2Qe

∂γ2

)[t] (
γ[t+1] − γ[t]

) =
(
−∂Qe

∂γ

)[t]

⇐⇒



P′WδδP P′Wδη1H1 · · · P′WδηK HK

H′1Wη1δP H′1Wη1η1H1 · · · H′1Wη1ηK HK
...

...
...

...
H′KWηKδP H′KWηKη1H1 · · · H′KWηKηK HK




[t]


∆δ
∆η1
...

∆ηK




[t+1]

= −




P′νδ

H′1νη1
...

H′KνηK




[t]

.

In the general case, −2Qu = ln |G| + Ec[u∗′G−1u∗] = q(ln |G0| + tr[G−1
0 D∗])

with D∗ =
{

d∗kl = 1
q Ec(u∗′k u∗l )

}
.

And the current estimate of ρ is computed from the following equation:

E

(
∂2Qu

∂ρ∂ρ′

)[t]
(ρ[t+1] − ρ[t]) =

(
−∂Qu

∂ρ

)[t]

where

∂(−2Qu)

∂ρkl
= qtr

[
G−1

0

∂G0

∂ρkl

]
− tr

[
G−1

0

∂G0

∂ρkl
G−1

0 D
]

= qtr

[
(G−1

0 − G−1
0 D∗G−1

0 )
∂G0

∂ρkl

]

and

E

[
∂2(−2Qu)

∂ρkl∂ρ
′
k′l′

]
= qtr

[
∂G0

∂ρkl
G−1

0

∂G0

∂ρk′l′
G−1

0

]
.

Calculations have been made easier by taking advantage of the simple expres-
sion of the Fisher information matrix since E[D∗] = G0. This system reduces
to a third degree polynomial equation, i.e.

ρ3 − d∗12ρ
2 + (d∗11 + d∗22 − 1)ρ− d∗12 = 0.

This equation can be solved either analytically or numerically.
If individuals are not independent, one has to replace G by G0

⊗
A, where

A is a symmetric, positive definite matrix of known coefficients.
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After deleting [t] for reasons of simplicity, we have:

P′ = (p1, . . . , pi, . . . , pp);
H′1 = (h11, . . . ,h1i, . . . ,h1p),H′2 = (h21, . . . ,h2i, . . . ,h2p), . . . ,
H′K = (hK1, . . . ,hKi, . . . ,hKp).

Wδδ = Diag{wδδ,ii}
Wδη1 = Diag{wδη1,ii}
...
WδηK = Diag{wδηK ,ii}
Wη1η1 = Diag{wη1η1,ii}
...

Wη1ηK = Diag{wη1ηK ,ii}
...

WηKηK = Diag{wηKηK ,ii}

with

wδδ,ii = σ−2
ei

Ec[e′iei]
wδη1,ii = σu1iσ

−2
ei

Ec(u∗′1 Z′1iei)
...

wδηK ,ii = σuKiσ
−2
ei

Ec(u∗′K Z′Kiei)

wηkηk,ii = 0.5σukiσ
−2
ei
[−Ec(u∗′k Z′kiei)+ σukiEc(u∗′k Z′kiZkiu∗k)], ∀k = 1, . . . ,K

wηkηl,ii = 0.5σukiσuliσ
−2
ei

Ec(u∗′k Z′kiZliu∗l ), ∀k 6= l

and,
νδ = {νδ,i}
νη1 = {νη1,i}
...

νηK = {νηK ,i}
with

νδ,i = ni − {σ−2
ei

Ec[eiei]}
νηk,i = σukiσ

−2
ei

Ec(u∗′k Z′kiei), ∀k = 1, . . . ,K

based on ei = yi − Xiβ −∑K
k=1 σukiZkiu∗k ; σ2

ei
= exp(p′iδ); σ2

uki
= exp(h′kiηk),

∀k = 1, . . . ,K.
Finally, the expectation step of the EM algorithm consists of determining

all conditional expectations at each iteration. In the EM-REML algorithm and
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after deleting [t] for reasons of simplicity, E[t]c (.) can be expressed as follows:

Ec[(yi − Xiβ)
′(yi − Xiβ)] = (yi − Xiβ̂)

′(yi − Xiβ̂)+ tr[X′iXiCββ]
Ec[(yi − Xiβ)

′Zkiu∗k ] = (yi − Xiβ̂)
′Zkiûk

∗ − tr[X′iZkiCβuk ],
∀k = 1, . . . ,K

Ec[u′kZ′kiZliu∗l ] = ûk
′Z′kiZliûl

∗ + tr[Z′kiZliCuluk ],
∀k = 1, . . . ,K and ∀l = 1, . . . ,K

where β̂, û1
∗
, û2
∗
, . . . , ûK

∗ are solutions of the mixed model equations [17]
Cs = r where the coefficient matrix C is equal to:



[l]
p∑

i=1
X′iXiσ

−2
ei

p∑
i=1

X′iZ1iσu1iσ
−2
ei

· · ·
p∑

i=1
X′iZKiσuKiσ

−2
ei

p∑
i=1

Z′1iXiσu1iσ
−2
ei

p∑
i=1

Z′1iZ1iσ
2
u1i

σ−2
ei
+ g11

0 · · ·
p∑

i=1
Z′1iZKiσu1iσuKiσ

−2
ei
+ g1K

0

...
...

...
...

p∑
i=1

Z′KiXiσuKiσ
−2
ei

p∑
i=1

Z′KiZ1iσu1iσuKiσ
−2
ei
+ gK1

0 · · ·
p∑

i=1
Z′KiZKiσ

2
uKi

σ−2
ei
+ gKK

0




r =




[l]
p∑

i=1
X′iyiσ

−2
ei

p∑
i=1

Z′1iyiσu1iσ
−2
ei

...
p∑

i=1
Z′KiyiσuKiσ

−2
ei




and s =




β̂

û∗1
...

û∗K




where gkl
0 is element (k, l) of G−1

0 .


