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PENALTY FUNCTION METHOD FOR THE MINIMAL TIME CRISIS PROBLEM

K. Boumaza1, T. Bayen2 and A. Rapaport3

Abstract. In this note, we propose a new method to approximate the minimal time crisis problem
using an auxiliary control and a penalty function, and show its convergence to a solution to the
original problem. The interest of this approach is illustrated on numerical examples for which optimal
trajectories can leave and enter the crisis set tangentially.

Résumé. Dans cette note, nous proposons une nouvelle méthode pour approcher le problème du
temps de crise en introduisant un contrôle additionnel et une fonction de pénalisation. Nous montrons
la convergence des solutions approchées vers une solution du problème original. L’intérêt de cette
approche est illustrée sur un exemple numérique pour lequel les trajectoires optimales peuvent entrer
ou sortir tangentiellement de l’ensemble de crise.

1. Introduction
The minimal time of crisis problem was introduced in [12] in the context of viability theory (see [1]). It

consists in minimizing the time spent by a solution of a controlled dynamics outside a given closed set K
(representing typically some constraints). It has been mainly studied in the context of ordinary differential
equations (ODEs). Notice however that a similar approach has been proposed for linear parabolic partial
differential equations (see [8, 9]) in connection with practical applications.

In the context of ODEs, the objective function of the time of crisis can be expressed via the indicator
function of the complementary of the set K, which is discontinuous with respect to the state variable, therefore
the Pontryagin Maximum Principle (PMP) cannot be directly applied to compute an optimal control. On the
other hand, the application of the Hybrid Maximum Principle (HMP) [10] can be used to express necessary
optimality conditions (see e.g. [3–6, 13]), but under a certain “transverse crossing condition” of the set K (see
also [13]). This condition requires that optimal trajectories enter and leave the set K non tangentially. In this
work, our main aim is to present a different approach to the time crisis problem, approximating its solutions.
This will allow us to bypass the discontinuity of the indicator function as well as the use of the transverse
crossing condition.

Our methodology relies on the introduction of an additional control function and on the definition of an
auxiliary optimal control problem with mixed state-control constraint, whose solutions exactly coincide with
the ones of the time crisis problem. This new problem is then approximated thanks to a penalty function which
is our main purpose in this paper.
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The paper is structured as follows. In Section 2, we introduce an auxiliary optimal control problem where
the discontinuity of the integrand with respect to the state is formulated using a new control with values in
{±1} and a mixed state-control constraint. Next, we show that it is equivalent to the time crisis problem.
Because of this new constraint, we then introduce a penalty method and study properties of the value function
associated with this approximated problem as well as properties of the regularization arising from the penalty
function. In Section 3, we prove convergence properties, namely that the sequence of value functions converges
to the value function associated with the time crisis problem. As well, convergence of optimal solutions of the
regularized problem to an optimal solution of the original problem is also provided (although the velocity set is
non-convex). Finally, these convergence results are illustrated in Section 4 on two academic examples for which
optimal trajectories can enter and leave the crisis set K tangentially.

2. A new formulation

2.1. Statement of the problem
Given a set K ⊂ Rn, a positive number T , a set U ⊂ Rm and a map f : Rn × U → Rn that fulfill the

following assumptions:

(H1) The set U is a non-empty compact subset of Rm,

(H2) The map f : Rn × U → Rn is continuous w.r.t (x, u), locally Lipschitz w.r.t x and satisfies the linear
growth condition there exist c1 > 0 and c2 > 0 such that for all x ∈ R and all u ∈ U , one has

|f(x, u)| ≤ c1|x|+ c2, (1)

we consider for any τ ∈ [0, T ] and y ∈ Rn, the following optimal control problem (”minimal time crisis”)

inf
u∈U

∫ T

τ

1Kc(xu,τ,y(t)) dt, (TC)

where xu,τ,y(·) : [τ, T ]→ Rn (simply denoted by x(·) hereafter) is the unique solution to the Cauchy problem

ẋ(t) = f(x(t), u(t)), a.e. t ∈ [τ, T ], x(τ) = y, (2)

associated with a control u ∈ U , the set of all measurable controls u : [0, T ]→ U . We also assume the following
hypotheses to be satisfied:

(H3) For any x ∈ Rn, the set F (x) := {f(x, u) ; u ∈ U} is a non-empty convex subset of Rn.

(H4) The set K is a non-empty closed subset of Rn described by

K := {x ∈ Rn ; ϕ(x) ≤ 0},

where ϕ : Rn → R is a locally Lipschitz continuous function that takes value in R.

Note that the existence of an optimal solution to this problem is standard (see, e.g., [4, Proposition 2.1]). Since
the integrand defining (TC) is discontinuous, we cannot apply the Pontryagin Maximum Principle (PMP) that
requires data to be Lipschitz continuous w.r.t. the variable x. There exist many ways to approximate the
indicator function with a sequence of Lipschitz continuous functions (see, e.g., [16]) in such a way to obtain
a sequence of optimal trajectories converging to an optimal solution of the original problem. With Lipschitz
data, one can use different numerical techniques, such as direct methods, or the Hamilton-Jacobi-Bellman (HJB)
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equation (to obtain a sequence of Lipschitz continuous value functions, from which one can construct a sequence
of optimal trajectories). If one approximates the indicator function with more regular functions, say C1, then
the (classical) PMP can be used to characterize a sequence of optimal trajectories. Here, we discuss another way
to represent the discontinuity of the indicator function with the use of an additional control, taking advantage
that in classical optimal control theory, control functions are naturally sought among measurable functions (thus
discontinuous).

2.2. Formulation with mixed constraint
Let V be the set of all measurable controls v : [0, T ] → Ω where Ω := {±1}, and consider the mixed

state-control constraint
v(t)ϕ(x(t))− |ϕ(x(t))| = 0 a.e. t ∈ [τ, T ], (3)

where x(·) is any admissible solution, and v(·) any control function in V. We define a new optimal control
problem with mixed state-control constraint

inf
(u,v)∈U×V

∫ T

τ

(
1 + v(t)

2

)
dt subject to the constraint (3), (TCR)

for the controlled dynamics (2). Note that, given any admissible solution (x(·), u(·), v(·)) satisfying the constraint
(3), one has

v(t) = sign(ϕ(x(t))),
provided that ϕ(x(t)) 6= 0, and v(t) ∈ Ω if ϕ(x(t)) = 0. It is known that the lack of regularity of the integrand
w.r.t. the state is bothersome, whereas it is common for an optimal control to be discontinuous w.r.t. t. In this
new formulation, the lack of regularity of the integrand defining (TC) has been replaced by the addition of the
new control variable v that only takes two values +1 and −1 together with the mixed state-control constraint
(3). We now prove that problems (TC) and (TCR) are equivalent.

Lemma 2.1. Let u? ∈ U . Then (x?, u?) is an optimal solution of (TC) if and only if (x?, v?, u?) is an optimal
triple for Problem (TCR), where v? ∈ V is defined for any t ∈ [τ, T ] as

v?(t) :=
{
sign(ϕ(x?(t))) ifϕ(x?(t)) 6= 0,
−1 otherwise.

(4)

Proof. Notice first that for any admissible solution x?, the control v? defined by (4) satisfies the constraint (3)
and thus one has ∫ T

τ

(
1 + v?(t)

2

)
dt =

∫ T

τ

1Kc(x?(t))dt .

Therefore, if (x?, u?, v?) is an optimal triple for (TCR), then the pair (x?, u?) is also optimal for (TC). Con-
versely, let (x?, u?) be an optimal solution of (TC), and suppose by contradiction that there exists an optimal
pair (ū, v̄) ∈ U × V for Problem (TCR) such that∫ T

τ

(
1 + v̄(t)

2

)
dt <

∫ T

τ

1Kc(x?(t))dt .

Let x̄ be its associated trajectory. Since (x̄, v̄) satisfies the constraint (3), it follows that one has

v̄(t) = sign(ϕ(x̄(t))) a.e. t ∈ [τ, T ] s.t. ϕ(x̄(t)) 6= 0 .
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Hence, we deduce that ∫ T

τ

1Kc(x̄(t))dt ≤
∫ T

τ

(
1 + v̄(t)

2

)
dt,

which contradicts the optimality of x? and concludes the proof. �

2.3. Approximation with a penalty function
The penalty method is a common technique in optimization to approximate constrained optimization prob-

lems with a sequence of unconstrained optimization problems [11,14,15,18]. In this section, we apply a penalty
approach to (TCR). Let us start by introducing the following penalty function P : Rn × R → R+ associated
with the constraint (3) as follows:

P (x, v) :=
(
vϕ(x)− |ϕ(x)|

)2
,

and the following auxiliary optimal control problem defined by

inf
(u,v)∈U×V#

∫ T

τ

(
1 + v(t)

2 + nP (x(t), v(t))
)
dt, (TCR#

n )

where V# is the set of all admissible controls v : [0, T ] → co(Ω), where co(Ω) := [−1, 1], and x(·) is a solution
of (2). Since the mapping

v 7→ 1 + v

2 + nP (x, v)

is convex for any x ∈ Rn, the extended velocity set{[
f(x, u)

1+v
2 + nP (x, v) + w

]
, (u, v, w) ∈ U × [−1, 1]× R+

}
is convex for any x ∈ Rn. The existence of an optimal solution for Problem (TCR#

n ) follows by a direct
application of Filippov’s Theorem [10], under Assumptions (H1)-(H2)-(H3)-(H4). Next, Vn : [0, T ) × Rn → R
will stand for the value function associated with (TCR#

n ). For each fixed n ∈ N, Problem (TCR#
n ) is a classical

optimal control problem of Bolza type with Lipschitz bounded data, for which its value function Vn is then
locally Lipschitz continuous over [0, T ) × R (see, e.g., [2]). In addition, Vn is the unique viscosity solution to
the following HJB equation

∂tV (t, y) + sup
(u,v)∈U×co(Ω)

Hn(x,∇yV (t, y), u, v) = 0, (t, y) ∈ [0, T ]× Rn, (5)

with the boundary condition
V (T, y) = 0, y ∈ Rn, (6)

where the Hamiltonian Hn : Rn × Rn × Rm × R→ R is defined as

Hn(x, p, u, v) := p · f(x, u)−
(

1 + v

2 + nP (x, v)
)
.

By maximizing the Hamiltonian w.r.t. v, the expression of a maximizer vn is given by

vn(x) = max
(
−1, sign(ϕ(x))− 1

4nϕ(x)2

)
, x ∈ Rn, n ∈ N?.
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One can also check, thanks to the above expression of vn, that the following inequality holds

1 + vn(x)
2 + nP (x, vn(x)) ≤ 1, x ∈ Rn, n ∈ N?.

Without any loss of generality, we can then write Vn as

Vn(τ, y) = inf
(u,v)∈U×V#

∫ T

τ

min
(

1, 1 + v(t)
2 + nP (x(t), v(t))

)
dt.

Let us now introduce a slight variation of the previous optimal control problem in which controls v(·) are with
values in Ω, and not in co(Ω):

inf
(u,v)∈U×V

∫ T

τ

min
(

1, 1 + v(t)
2 + nP (x(t), v(t))

)
dt, (TCRn)

and for which, we denote by V n the associated value function. By using a similar argumentation as above, one
can show that V n is the unique viscosity solution of the following HJB equation

∂tV (t, y) + sup
(u,v)∈U×Ω

Hn(x,∇yV (t, y), u, v) = 0, (t, y) ∈ [0, T ]× Rn, (7)

with the boundary condition (6) and the Hamiltonian Hn defined as

Hn(x, p, u, v) := p · f(x, u)−min
(

1, 1 + v

2 + nP (x, v)
)
.

Note that the extended velocity set associated with this optimal control problem is not convex, due the fact
that we consider controls v taking values −1 or 1 only. Therefore, one cannot apply Filippov’s Theorem to
ensure the existence of an optimal solution. To investigate the behavior of (Vn), let V : [0, T )×Rn → R be the
value function associated with the auxiliary Problem (TCR) defined as

V (τ, y) = inf
(u,v)∈U×V

∫ T

τ

(
1 + v(t)

2

)
dt under constraint (3).

Proposition 2.1. For each n ∈ N and for each (τ, y) ∈ [0, T )× Rn, one has the following inequality

Vn(τ, y) ≤ V n(τ, y) ≤ V (τ, y). (8)

Moreover, the problem (TCRn) admits an optimal solution for any n ∈ N.

Proof. Let (x?, u?) be an optimal pair for Problem (TC). According to Lemma 2.1, the triple (x?, u?, v?), where
v? is defined by (4), is optimal for Problem (TCR). It follows that one has P (x?(t), v?(t)) = 0 for any t ∈ [τ, T ],
which gives V n(τ, y) ≤ V (τ, y) for any n. Clearly, since Problem (TCRn) is sought for the same criterion than
Problem (TCR#

n ), but for a smaller set of control functions, we get the inequality Vn ≤ V n for any n ∈ N.
Consider now Problem (TCRn). By maximizing the Hamiltonian Hn w.r.t. v (with values ±1 only), one

obtains the expression of a maximizer vn, for each n ∈ N, as follows

vn(x) =

1 if ϕ(x) > 1
2
√
n
,

−1 otherwise.
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By replacing v into (TCRn) with the expression of vn(x), one obtains the optimal control problem

inf
u∈U

∫ T

τ

Qn(ϕ(x(t)))dt, (TCR′n)

with

Qn(z) :=


0 if z ≤ 0,

4nz2 if 0 < z ≤ 1
2
√
n
,

1 if 1
2
√
n
< z,

(9)

which is classical Bolza problem with Lipschitz data, for which the value function is the unique viscosity
solution of the HJB equation (7) with boundary condition (6). By uniqueness of solutions of (7)-(6) in the class
of Lipschitz functions, we deduce that its value function coincides with V n for any n ∈ N. Moreover, Problem
(TCR′n) admits an optimal pair (xn, un), thanks to Filippov’s Theorem (under Assumptions (H1) to (H4)).
Then, the triple (xn, un, vn), where vn(t) := v̄n(xn(t)) for any t ∈ [τ, T ], is optimal for Problem (TCRn). �

2.4. Discussion in terms of regularization of the indicator function
We give next some properties of this approach in terms of regularization of the indicator of Kc defining the

time crisis function. Indeed, Problems (TCR#
n ) and (TCRn) amount to consider two different regularizations

of the indicator function, considering that an optimal control function v(·) has to maximize the corresponding
Hamiltonian at almost any t, and that its maximizing expression can be merely replaced in the integrand. One
can straightforwardly show the following results.

Proposition 2.2. Define the function

Q#
n (z) :=


0 if z ≤ 0,

4nz2 if 0 < z ≤ 1
2
√

2n
,

1− 1
16nz2 if 1

2
√

2n
< z.

Then, one has for Problem (TCR#
n )

max
v∈[−1,1]

−
(

1 + v

2 + nP (x, v)
)

= −Q#
n (ϕ(x)),

and for Problem (TCRn), one has

max
v∈{−1,1}

−
(

min
(

1, 1 + v

2 + nP (x, v)
))

= −Qn(ϕ(x))

where Qn(·) is defined in (9).

At this step, one can observe the following properties:
(1) One has Q#

n (ϕ(x)) ≤ Qn(ϕ(x)) ≤ 1Kc(x) for any x and Qn(ϕ(x)) = 1Kc(x) when ϕ(x) /∈ [0, 1
2
√
n

],
while Q#

n (ϕ(x)) < 1Kc(x) for any x ∈ Kc (see Fig. 1). Therefore, the criterion of Problem (TCRn)
gives a much better estimate of the time crisis than (TCR#

n ) for any admissible trajectory.
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(2) Q#
n is differentiable. Provided that ϕ is differentiable, one can then use the (regular) PMP to characterize

optimal pairs (xn, un) for Problem (TCR#
n ) considering the single control u. On the opposite, Qn is not

differentiable at z = 1
2
√
n
. However, it is possible to use the PMP provided that the Problem (TCRn)

is considered as a problem with two controls u and v, since the function P is differentiable w.r.t. x.

Figure 1. Example of graphs of the functions Q#
n and Qn (for n = 5).

These facts justify the interest of considering Problem (TCRn) (with two controls) instead of (TCR#
n ), as an

approximation procedure of Problem (TC), strengthened by the fact that this problem admits optimal solutions
despite the lack of convexity of its augmented velocity set. However, the consideration of Problem (TCR#

n ) has
been useful to justify the choice of the bounded penalization min

(
1, 1+v

2 + nP (x, v)
)
instead of the unbounded

one given by 1+v
2 + nP (x, v) in the criterion. From a purely numerical viewpoint, having to consider only two

possible values for the control v can be an advantage if one considers numerical schemes based on dynamic
programming, as we did in examples in Section 4.

3. Convergence results
We now provide convergence results of solutions to the penalized optimal control problems (namely (TCRn)

and (TCR#
n )) to an optimal solution of (TC).

Proposition 3.1. The functions Vn, resp. V n, converge pointwise to the function V in [0, T ]×Rn. Moreover,
any optimal sequence xn, resp. xn, for Problem (TCR#

n ), resp. (TCRn), converges, up to a sub-sequence,
uniformly to an optimal solution x? of Problem (TC), and their derivatives weakly to ẋ? in L2(τ, T ;Rn).

Proof. Since for each (τ, y) ∈ [0, T ) × Rn, the sequence (Vn(τ, y))n is non-decreasing, bounded above, and
Lipschitz continuous, it converges pointwise to some function V∞(τ, y) ≤ V (τ, y). It can be also observed that
Problem (TCR#

n ) can be equivalently rewritten as a Mayer problem in Rn+2:

Vn(τ, y) = inf
(u,v)∈U×V#

l(T ) + np(T ),

subject to the augmented dynamics
ẋ(t) = f(x(t), u(t)), x(τ) = y

l̇(t) = 1 + v(t)
2 , l(τ) = 0

ṗ(t) =
(
v(t)ϕ(x(t))− |ϕ(x(t))|

)2
, p(τ) = 0

(10)
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Under hypotheses (H1) up to (H4), Filippov’s Theorem gives the existence of an optimal solution (xn, ln, pn)
associated with a pair of controls (un, vn) ∈ U × V#, for any n ∈ N. Then, from the standard compactness
properties of trajectories (see, e.g., [10, Theorem 1.11]), there exists a sub-sequence, also denoted (xn, ln, pn),
and a pair of controls (u?, v?) ∈ U × V such that (xn, ln, pn) uniformly converges to a solution of (10) denoted
by (x?, l?, p?) and associated with the control (u?, v?). In addition, the sequence (ẋn, l̇n, ṗn) weakly converges
to (ẋ?, l̇?, ṗ?) in L2(τ, T ;Rn). Let us now show that the pair (x?, u?) is optimal.

First, note that one has
0 ≤ ln(T ) + npn(T ) ≤ V (τ, y), n ∈ N

where ln, pn are non-negative functions. Therefore, pn(T ) has to converge to 0 when n tends to +∞, which
implies p?(T ) = 0. Since p? is absolutely continuous with p?(τ) = 0 and satisfies ṗ? ≥ 0 a.e., we deduce that
the function p? is identically null. Then, one has the equality

p?(T )− p?(τ) =
∫ T

τ

(
v?(t)ϕ(x?(t))− |ϕ(x?(t))|

)2dt = 0,

from which we deduce
v?(t)ϕ(x?(t))− |ϕ(x?(t))| = 0 a.e. t ∈ [τ, T ].

Thus, (x?, v?) satisfies the constraint (3) and we conclude that one has

V∞(τ, y) = l?(T ) =
∫ T

τ

1 + v?(t)
2 dt ≥ V (τ, y).

(by definition of V ) which proves the equality V∞(τ, y) = V (τ, y) and that (x?, u?) is optimal for Problem (TC).
Consider now Problem (TCRn). From Proposition 2.1, we obtain that V n converges pointwise to the function

V as well, and the existence of a sequence of optimal trajectories xn for Problem (TCRn), with associated
controls (un, vn) in U × V ⊂ U × V#. Let now (ln, pn) be the solution of (10) associated with those controls.
Using again the compactness properties of trajectories of the solutions of (10) for controls in U ×V#, we obtain
the uniform convergence of (xn, ln, pn), up to a sub-sequence, to a certain1 (x?, l?, p?) and we conclude as before
that x? is optimal for Problem (TC). �

Remark 3.1. The "strong-weak" compactness of the set of trajectories does not in general provide the con-
vergence of controls. Nevertheless, here, one can see that optimal controls (vn) for Problem (TCR#

n ) or Prob-
lem (TCRn) converge a.e. to v? defined in (4) (up to a sub-sequence). Indeed, since ṗn weakly converges to
zero and ṗn ≥ 0 a.e., it converges a.e. to zero (up to a sub-sequence). It follows that

∫ T
τ

(1 + vn(t))/2 dt →∫ T
τ

(1 + v?(t))/2 dt = V (τ, y), and from Lemma 2.1, v? is then given by (4).

4. Numerical examples
We provide two examples illustrating numerically the convergence of approximated optimal solutions (to the

penalized problem) to an optimal solution of the minimal time crisis problem. These two examples have the
particularity that the optimal trajectories enter and leave tangentially to the set K, which does not allow the
use of the HMP. Moreover, in the second example, the optimal trajectory stays on the boundary of K for a
non-null duration. As controlled dynamics, we consider the planar system, as in [4]{

ẋ1(t) = −x2(t)(2 + u(t)),
ẋ2(t) = x1(t)(2 + u(t)),

(11)

1Note that the limits of (xn, ln, pn, un, vn) and (x̄n, l̄n, p̄n, ūn, v̄n) in the appropriate topology may not be the same.
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with initial condition (x1(0), x2(0)) = (0, 1) and u(t) taking values in [−1, 1], but here with different sets K.
The function ϕ (defining K) is given by:

Example 1: ϕ(x1, x2) = x2
1 + 4 min(0, x2)2 − 1

Example 2: ϕ(x1, x2) = x2
1 + max(− 1

2 , x2, 2x2)2 − 1

In the first example, the initial condition lies inside the set K whereas it is outside of K in the second one.
Both examples highlight the possibility of entering or leaving the set K tangentially (see Fig. 2).

-1 10 x1

x2

-1 10 x1

x2

Figure 2. Illustration of a trajectory entering and leaving the set K tangentially for the first
example (left) and the second (right).

In the present context, we introduce the so-called myopic strategy (see [5, 6]) defined as the feedback

u[x] =
{

+1 if x /∈ K,
−1 if x ∈ K.

(12)

Roughly speaking, taking u = +1 outside K drives the state as fast as possible inside K whereas taking u = −1
in K allows the system to spent as much time as possible in K. This feedback clearly minimizes the time spent
by the trajectory outside the set K in both example. The corresponding trajectories and time crisis can then
serve as a test of numerical methods solving Problem (TCR#

n ) or Problem (TCRn) for different values of n. We
have used here the BocopHJB software (see [7,17]) which solves the HJB equation (but other numerical methods
could be used) to compare the optimal solution of Problem (TC) with the approximated solutions.

For numerical purposes we took τ = 0, T = 5 in both examples. Numerical results are depicted in Fig. 3,
Fig. 4. We can see the convergence of the approximated trajectories to the myopic solution, which illustrates
our convergence results. One can also observe the convergence of controls un, although we are not able to
prove it here. As expected, the solution of Problem (TCRn) is closer to the optimal solution, compared to the
solution of Problem (TCR#

n ) (in particular in the first example). Finally, optimal values for the various costs
are reported in Table 1. This highlights the interest of choosing v ∈ {±1} despite the lack of convexity.
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Figure 3. Example 1. (1): Problem (TCR#
n ), (2): Problem (TCRn) (a), (b): trajectories

x1,n, x2,n, (c): controls un (— n = 10, — n = 100, — n = 1000, — myopic solution)
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Figure 4. Example 2. (1): Problem (TCR#
n ), (2): Problem (TCRn) (a), (b): trajectories

x1,n, x2,n, (c): controls un (— n = 10, — n = 100, — n = 1000, — myopic solution)
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TCR#
n TCRn TC

(1) n = 10 1.076 1.13126 1.38333
n = 100 1.19337 1.26485 1.38333
n = 1000 1.32697 1.3516 1.38333

TCR#
n TCRn TC

(2) n = 10 1.72829 1.7746 1.98333
n = 100 1.90914 1.96223 1.98333
n = 1000 1.95686 1.96378 1.98333

Table 1. Costs of the optimal trajectories. (1): Example 1. (2): Example 2.

5. Conclusion
In this note, we have proposed a new smoothing procedure for the minimal time crisis problem by introducing

an additional control v with values in {±1}, replacing the original problem with discontinuous integrand by
a regular optimal control problem involving a mixed state-control constraint. We have then used a penalty
method to avoid to deal with this constraint. This has led us to the study of a sequence of unconstrained
optimal control problems. We have proved the convergence of the value function and optimal trajectories of
the regularized problem to the solution to the original problem. Our numerical examples illustrate these results
and validate the good performance of the proposed method. We observed that considering an additional control
with only two possible values is quite efficient from a numerical view point, despite the lack of convexity of
the augmented velocity set. This regularization technique authorizes trajectories to leave and enter a set K
without requiring a transverse condition on optimal paths nor convexity of the set K. In a future work, we
shall investigate necessary optimality conditions of (TC) using this approach.
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