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Esmraldi: efficient methods for the fusion 
of mass spectrometry and magnetic resonance 
images
Florent Grélard1,2* , David Legland1,2, Mathieu Fanuel1,2, Bastien Arnaud1,2, Loïc Foucat1,2 and Hélène Rognia
ux1,2

Background
The identification of molecules in metabolic pathways is essential for the physiolog-
ical understanding of an organism. For instance, the growth of plant tissues is the 
result of various metabolic reactions. These reactions involve hundreds of molecules 
and depend on the water activity in localized regions of the plant [1]. In particular, 
the variations of the water viscosity across different stages of development is often 
responsible for the changes in tissue morphology [2]. In the wheat grain, water has 
a strong impact on the developmental stages, and on the functional properties for 

Abstract 

Background: Mass spectrometry imaging (MSI) is a family of acquisition techniques 
producing images of the distribution of molecules in a sample, without any prior 
tagging of the molecules. This makes it a very interesting technique for exploratory 
research. However, the images are difficult to analyze because the enclosed data has 
high dimensionality, and their content does not necessarily reflect the shape of the 
object of interest. Conversely, magnetic resonance imaging (MRI) scans reflect the 
anatomy of the tissue. MRI also provides complementary information to MSI, such as 
the content and distribution of water.

Results: We propose a new workflow to merge the information from 2D MALDI–
MSI and MRI images. Our workflow can be applied to large MSI datasets in a limited 
amount of time. Moreover, the workflow is fully automated and based on deterministic 
methods which ensures the reproducibility of the results. Our methods were evalu-
ated and compared with state-of-the-art methods. Results show that the images are 
combined precisely and in a time-efficient manner.

Conclusion: Our workflow reveals molecules which co-localize with water in bio-
logical images. It can be applied on any MSI and MRI datasets which satisfy a few 
conditions: same regions of the shape enclosed in the images and similar intensity 
distributions.

Keywords: Image fusion, Image processing, Image registration, Spectra processing, 
Mass spectrometry imaging, Magnetic resonance imaging
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milling and baking in the mature grain. Cell walls are believed to be key actors in 
water diffusion and distribution, similarly to the observations made for barley grains 
[3]. However, a clear correlation between cell wall structures and water distribution 
has never been established. We seek to identify the chemical structures of cell wall 
molecules which correlate spatially with the distribution of water.

This investigation can be led through image fusion, understood here as the joint 
analysis of images from two imaging techniques.

On one hand, Matrix assisted laser desorption ionization–mass spectrometry imag-
ing (MALDI–MSI) is an acquisition technique which produces ion images, that is 
to say images of ionized molecules on the surface of a tissue. This acquisition tech-
nique is increasingly popular, with applications ranging from clinical research [4], 
forensics [5], to plant biology [6]. Molecules are not tagged prior to the acquisition, 
which makes this technique extremely relevant for exploratory research. However, the 
dimensionality of the image data is very high: hundreds of ions, that is to say charged 
molecules, are detected. Moreover, their distribution does not necessarily reflect the 
anatomical structures in the tissue.

On the other hand, magnetic resonance imaging (MRI) images highlight the struc-
tural organization of a tissue. The intensity in the images reflects the proton den-
sity, which is essentially correlated to the amount of water. The difference in nature 
between the two imaging techniques makes it difficult to analyze the images jointly. 
Indeed, even though the pixel resolution is similar, the embedded objects do not 
strictly have the same geometrical shape. In fact, MRI is performed from the whole 
object while MSI operates from thin sections. In addition, several steps in MSI are 
required for tissue preparation, which induce local tissue deformations and shrink-
age. We propose a new workflow which addresses these discrepancies in order to 
merge the information from both images. This workflow ultimately makes it possi-
ble to identify molecules from MALDI–MS images whose distribution correlates with 
the distribution of water in MRI. We show one application of this workflow on wheat 
grain images.

Fusion approaches for MSI combine other imaging modalities to supplement the 
information given by MALDI–MS images. Buchberger et al. [7] describe a typical work-
flow for the fusion of MALDI–MS images: (1) image pre-processing, (2) segmentation, 
(3) co-registration, (4) joint data analysis: correlation, prediction. In the following, we 
describe the steps which are shared by fusion workflows, regardless of the modalities 
chosen in combination with MS images. The pre-processing step usually involves reduc-
ing the amount of data in the MS images. Segmentation consists in extracting the object 
of interest in the images from each modality. In MS images, ion images enclose different, 
yet complementary information. The object of interest is generally segmented by using 
several carefully selected ion images. Registration methods align images from different 
modalities by estimating the transformation which ensures the best matching between 
the images. The local deformations in MS images can be compensated by deformable 
registration methods, such as a grid of B-spline control points [8]. Finally, the images 
from both modalities are analyzed jointly. For instance, the molecular distribution in MS 
images can be mapped in higher resolution images [9], or the localization of molecules 
can be found in labelled anatomical regions [10].
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Recent methods have been proposed to merge the information between MSI and MRI 
images. Verbeeck et al. [11] build a brain atlas by co-registering MSI and MRI images. 
First, the brain in the MS image is segmented by extracting a representative image. This 
image corresponds to a manually selected score image from the principal component 
analysis (PCA) decomposition of the MS image. Then, the representative image is regis-
tered onto the MRI image using a deformable method. Abdelmoula et al. [12] combine 
MRI and MSI data in order to identify the molecular distribution in different cell com-
partments. The shape is segmented in the MALDI–MS image by a hierarchical version 
of the t-SNE algorithm, which builds different levels of detail across several ion images. 
This segmented shape is registered onto the MRI image with a deformable registration 
method. Correspondences with the MRI are established visually. Both these methods 
use manual steps, which impedes the analysis process.

We propose a new workflow which aims at merging the information from MRI and 
MSI, to find molecules whose localization correlates with the distribution of water in the 
wheat grain (see Fig. 1). We select and propose efficient methods, which do not require 
manual steps. First, the grain is segmented in both images. The MRI image is denoised 
with an algorithm specifically suited for these images. The temporal dimension of the 
MRI image is reduced and a simple thresholding scheme allows to segment the grain. 
The MALDI–MS image is reduced in its spectral dimension by a new peak detection 
algorithm. Then, the grain is segmented by region growing on a subset of representa-
tive, non-noisy images. We propose a new measure to identify this subset. Secondly, 
the segmented shape from the MALDI–MS image is registered onto the segmented 
shape in the MRI image. An initial linear registration method is used, and allows for 
a global alignment of the shapes. However, this registration step does not compensate 
for the local geometrical deformations induced by the sample preparation in MALDI–
MSI. Thus, the first linear registration step is followed by a deformable registration step. 

a b c d
Fig. 1 Overview of the proposed workflow. Steps for the fusion the fusion of a MRI (top row) and MALDI–MS 
(bottom row) images of a wheat grain. b The first step consists in extracting a representative shape through 
image reduction and segmentation. c The segmented shape in MALDI–MS is registered onto the MRI shape. 
This step involves linear and deformable registration methods. d Joint correlative analysis of the images: 
selection of the ion images in MALDI–MS which exhibit a similar spatial distribution as the distribution of 
water in MRI
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Thirdly, we find spatial correlations between the water distribution in MRI images and 
the ion images from MALDI–MSI. This is achieved by finding proximities between the 
MRI image and the ion images in MSI in the space of components generated by matrix 
factorization techniques. This workflow is validated by an extensive evaluation with 
comparisons to state-of-the-art methods.

Methods
In this section, we introduce a new workflow for the fusion of 2D MALDI–MS and MRI 
images.

Image acquisition

Whole wheat grains (Triticum aestivum L. cv Recital, 250 degree celsius per day after 
flowering) are imaged in MRI without sample preparation. Proton density images are 
obtained using multi-slice multi-gradient echo pulse sequence. This sequence pro-
duces images of decreasing signal intensity over several discrete time steps, called ech-
oes (see Fig. 2). Here, eight echoes are obtained, starting at time t = 1.26 ms and spaced 
apart by one millisecond. The signal decreases over time following a negative exponen-
tial function. The resulting image is a four dimensional stack (3D + echo time) of size 
100× 100× 14 × 8 pixels. The transverse 2D slices have a pixel size of 50 µm , and a slice 
thickness of 0.5 mm. Various instrumental bias, such as magnetic field inhomogeneities, 
induce noisy intensities in the image with Rician distribution.

The same wheat grains are imaged in MALDI–MSI. The sample preparation is 
described in Fanuel et al. [13]; first, the tissue is sectioned in several transverse slices, 
then the tissue is digested by specific enzymes, and the MALDI–MS matrix is sprayed 
onto the sample. Images are acquired using a rapiFlex TissueTyper MALDI-MS spec-
trometer (Bruker, Daltonics, Bremen). Molecule ionization is done by a 355 nm laser 
operating at 10 kHz (BIA-BIBS platform). The resulting MALDI–MS image is an hyper-
spectral image, that is to say a three dimensional datacube with two spatial dimensions 
(image height and width) and a spectral dimension (see Fig. 3). Molecules on the spectral 
dimension are characterized by their mass-to-charge (m/z) ratio. Each pixel corresponds 
to a spectrum, and encloses the molecular distribution at this position. The image size 
is 152× 138× 65000 pixels (width, height, number of points in a spectrum). The pixel 

Fig. 2 MRI images obtained at different echoes. a first echo, b second echo and c third echo. The intensity is 
decreasing over time following an exponential function
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size is 25 µm , and the spectral resolution is 0.017. The space between consecutive slices 
is 80 µm.

The steps of the proposed workflow are detailed in the following sections, with an 
emphasis on the new proposed methods and their efficiency.

Pre‑processing of MRI images

The MRI images are denoised using a non-local means method specifically suited for the 
removal of Rician noise [14]. This method replaces a pixel value by the average intensity 
in the image, weighted by the intensity similarity to the target pixel.

The 3D density image, that is to say the image at time t = 0 , is estimated by fitting a 
mono-exponential function on the signal intensities. This function is adjusted by non-
negative least squares regression, with the Levenberg–Marquardt algorithm.

The intensities between the grain and the background are clearly separated. Thus, a 
simple thresholding scheme is used for the segmentation of the wheat grain. The outer 
structure of the wheat grain, called pericarp, is not visible on MS images. It is removed 
from the segmented image by applying a morphological opening for the subsequent reg-
istration step (see Fig. 4), with the radius of the structuring element set to 2 pixels [15].

Finally, a 2D transverse slice (x–y plane) is chosen in the 3D density image to match the 
2D MALDI–MS image. It is chosen as the MRI slice that is the closest to the analyzed 

Fig. 3 MALDI–MS image: 3D datacube, or hyperspectral image. A spectrum (in red) is associated to each 
pixel and describes the molecular content at this position. Each molecule is associated to an ion image, and is 
characterized by its mass-to-charge ratio (m/z) and relative ion intensity

Fig. 4 Segmentation of MRI images. a Original MRI image and b resulting segmented image. The pericarp 
(outer structure) of the wheat grain is removed in the segmented grain so as to compare MRI and MALDI–MS 
images more easily
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MALDI–MS slice along the z-axis, and is found by utilizing the resolution and the slice 
thickness of both images.

Pre‑processing of MALDI–MS images

The spectral dimension in the MALDI–MS image is reduced using peak detection and 
peak alignment.

Spectra processing MALDI–MS images mainly contain non relevant information, 
due to the large amount of points associated with noise in the spectral dimension. Peak 
detection consists in identifying local maxima in the spectra whose intensity is above the 
signal noise. Ideally, the peak detection methods must be complete, that is to say they 
identify all true peaks across all spectra; specific, that is to say they contain no false posi-
tives; and efficient. Yang et al. [16] compare existing methods for peak detection in MS 
images, and conclude the continuous wavelet transformation achieves the best trade-off 
between completeness and specificity. However, the computation time is prohibitive as 
the number of points increases.

We propose a complete and efficient peak detection method, based on the prominence 
of the peaks relative to the signal noise [17]. The prominence of a peak is defined as 
the height of this peak relative to the height of the neighbouring peaks. This measure 
discards local maxima which come from irregularities in the signal. Let y(x) be a spec-
trum, P the set of local maxima y, p = (xp, yp) ∈ P a peak, w the half-length of a window, 
and mp = (xm, ym) ∈ P the peak such that mp is the closest peak to p with ym ≥ yp for 
x ∈ [−w,w] . If xm  = xp , the prominence of p is the vertical distance between p and the 
local minimum between p and mp , else the prominence is equal to yp.

We define the local prominence as the ratio between the prominence and the esti-
mated local noise in the signal. This local measure is specifically suited to peak detection 
for varying peak intensities across the m/z-axis. In practice, all spectra are considered 
individually. The local noise is estimated as the median of absolute deviations in a win-
dow. First, local maxima are extracted and constitute an initial set of peaks. Then, this 
set is refined by selecting peaks whose local prominence values are above a given noise 
threshold.

Small m/z variations are observed for the same molecule at different pixel locations, 
due to instrumental instabilities and sample preparation imprecisions (irregularities in 
the tissue flatness). Peak alignment consists in mapping the previously detected peaks 
to a common m/z value, in order to facilitate spectrum comparison. Here, peaks are 
aligned by matching peaks to detected peaks in the mean spectrum [18].

Segmentation After peak detection and alignment, selected ion images do not neces-
sarily reflect the shape of the embedded object (see Fig.  5). Moreover, ion images might 
highlight different parts of the wheat grain. Thus, a complete segmentation of the wheat 
grain is obtained by region growing on a subset of relevant images, that is to say images 
where parts of the wheat grain are apparent.

First, we extract a subset of relevant ion images. Alexandrov and Bartels [19] intro-
duce a new measure called spatial chaos, which quantifies abrupt intensity variations in 
an image. This measure characterizes how points with high intensity values are spread, 
using various binarized versions of the image. The spatial chaos values are generally low 
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for relevant ion images, and high for noisy images. This does not hold for noisy images 
with intensity artefacts (see Fig. 5a), and when the variance noise is low (see Fig. 5b).

Our method is adapted to discard these images and builds on the approach proposed 
by Alexandrov and Bartels [19]. We define a new measure, called spatial coherence. Our 
measure considers the area of the largest connected component in different binarized 
versions of the image. In the following, the intensities of each ion image are normalized 
between 0 and 255. Let I be an ion image, t a threshold, T a set of thresholds, Bt(I) a 
binarized version of I obtained with t, C(B) the set of connected components in B, then 
the spatial coherence S(I) is defined as :

In practice, we choose T as a set of thresholds defined by the following quantiles of 
intensity values : [0.6, 0.7, 0.8, 0.9]. The spatial coherence values are low for noisy images, 
and high for relevant images. A subset of relevant ion images is obtained by selecting 
images whose spatial coherence values are above a given threshold.

Second, a region growing procedure is applied on the subset of relevant ion images. 
The initial seed point is chosen as the point with the highest intensity in the subset. An 
initial segmented shape is obtained by applying the region growing procedure on the 
ion image containing the seed point. This segmented shape is refined incrementally by 
iterating over each ion image, and ultimately captures the shape of the wheat grain (see 
Fig. 6). The pixel intensities in the segmented shape correspond to the average intensities 
in the subset of relevant images.

Registration

At this stage, both segmented shapes in MALDI–MS and MRI images can be matched. 
Registration methods aim at finding the transformation which best aligns two objects. 
The transformation parameters are estimated by optimizing a metric which quantifies 
the similarity between both images. This metric can be based on intensity values, or the 
geometrical shape of the objects. In the following, we are interested in automatic meth-
ods to register the segmented wheat grain in MALDI–MSI with respect to its counter-
part in MRI. First, we globally align the objects with a linear registration method using 
an affine transform. Then, we use a deformable registration method to compensate for 
the local geometrical deformations induced by sample preparation in MALDI–MSI (see 

S(I) = min
t∈T

max
c∈C(Bt (I))

| c |

Fig. 5 Examples of MALDI–MS images exhibiting differences in intensities for different mass-to-charge 
ratios. a 432.92, b 476.28 and c 611.33. a Image resulting from an artefact: high signal detected outside of the 
sample. b Noisy image. c Spatially coherent image
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“Image acquisition” section). We choose the MR image as the reference image because 
it encloses the non-deformed shape. The resulting deformed MS image is thus easier to 
interpret biologically because molecules are distributed across anatomical regions of the 
tissue.

Regarding the linear registration method, the affine transformation involves transla-
tion, rotation and scaling and is initialized by aligning both centers of the objects using 
moments. Both images have a bimodal intensity distribution. Thus, we choose the 
mutual information for the similarity metric, which is a measure estimating the statisti-
cal dependence between the intensity distributions of both images. This metric is opti-
mized by a regular gradient descent optimization algorithm.

The quality of a deformable registration method is determined by the shape resem-
blance and the intensity fidelity between the two images, after registration. Deformable 
registration methods can be classified into different categories depending on the para-
metrization of the model [20]. Parametric methods, such as B-spline free form deforma-
tions (FFD), involve a transformation with a small number of parameters. However, it 
is difficult to choose an adequate number of parameters to obtain a good compromise 
between shape resemblance and intensity fidelity. On the other hand, non-parametric 
methods, often referred to as variational methods, map each pixel in the image to a 
displacement vector. Modersitzki [21] describes variational methods as the minimiza-
tion of a functional involving two terms: (a) external forces: the similarity metric, and 
(b) internal forces: the regularization term. The minimization of the similarity metric 
brings similar pixels close to one another, whereas that of the regularization term avoids 
local irregularities in the vector field. This is particularly important in regions where the 
intensity difference between both images is null or low. We choose the sum of squared 
differences as the metric because both images of the wheat grain have similar intensities. 
In a more traditional multimodal case, the mutual information metric is more suited 
because intensities do not necessarily match. Moreover, we choose the elastic regulariza-
tion strategy because its parameters µ and � grant a fine control over the rigidity of the 
material, which is necessary to preserve the internal shape of the object [22].

Finally, the estimated affine and deformable transformations are applied to the 
MALDI–MSI datacube, that is to say to each individual ion image. For both registration 
steps, the intensities are obtained by nearest-neighbor interpolation, so as to not create 
extraneous intensities in the ion images.

Fig. 6 Segmentation method for MS images. Refinement of a segmented shape by region growing on a 
subset of relevant ion images. a Initial ion image and b associated segmented shape obtained by region 
growing. c Complete segmentation obtained by applying the region growing procedure on the full subset of 
images
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Joint statistical analysis

We aim at finding the molecules in MALDI–MSI ion images whose distribution cor-
relates with the water distribution in MRI, and identify groups of molecules who 
share the same distribution pattern. Ovchinnikova et al. [23] evaluated several meas-
ures to identify spatial correlations between pairs of images. For measures requiring 
no machine learning, the cosine distance yielded the closest results to those obtained 
by experts. However, the complexity is quadratic when searching for groups of similar 
ion images.

We opt for a matrix-factorization approach. Statistical analysis is achieved in three 
steps: (a) matrix factorization of the MALDI–MS image, (b) projection of the density 
MRI image in the reduced space produced by matrix factorization and (c) selection of 
the MALDI–MS ion images which are closest to the MRI image in this space.

The intensities of each indivual ion image are normalized on a 0–255 range. The 
MALDI–MSI datacube is reshaped into a two-dimensional matrix where the rows cor-
respond to pixels and the columns to mass-to-charge ratios, that is to say molecules. Siy 
et  al. [24] evaluate several matrix factorization techniques in the context of MALDI–
MS images : Principal Component Analysis (PCA), Non-Negative Matrix Factorization 
(NMF), Independent Component Analysis (ICA). These methods produce two smaller 
matrices with a fixed number of components and whose product is an approximation of 
the original matrix. One matrix encloses component images, that is to say the contribu-
tion of each pixel in the components, and the second matrix corresponds to the contri-
bution of molecules in the components. Both ICA and NMF produce component images 
with less noise than PCA. We choose NMF because its non-negativity constraint makes 
it possible to interpret the component images more easily.

Results
In this section, the efficiency of our workflow is shown by comparison to state-of-the-
art methods, using wheat grain images as an example. Additional information about 
input files, parameters, and result reproducibility is available in Additional file 1.

Peak detection

Our peak detection algorithm is compared to the method based on continuous wavelet 
transformation (CWT), which Yang et al. [16] found to give the most complete results, 
with the lowest amount of false positive peaks. Both methods are compared using syn-
thetic simulated data and real data. The synthetic simulated dataset is a MALDI–MS 
image containing a hundred spectra, where theoretical peaks are known [25]. The real 
dataset is a subset of a hundred pixels of the MALDI–MS image of the wheat grain. The 
spectra were annotated manually and produce a subset of theoretical peaks.

For both CWT and our algorithm, the parameters were set such that the totality 
of theoretical peaks were identified with as few false positive peaks as possible. The 
efficiency of our method is assessed by two metrics: (a) the completion time t per 
spectrum, in milliseconds (b) the precision p, i.e. the ratio between the number of 
theoretical peaks with respect to the number of detected peaks.
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The results are presented in Table 1. Our method has lower precision values (9.68% 
and 11.2% vs. 13.0% and 14.8% for the synthetic and real dataset, respectively), which 
means our method yields slightly more false positive results. In practice, 18 supple-
mentary peaks are detected on average by our method. This is negligible with regard 
to the average number of detected peaks ( n = 600 ). The computation time per spec-
trum for our method is much lower, which makes it the best candidate for large MSI 
datasets.

Segmentation

Our segmentation method is assessed by analyzing the images extracted in the rel-
evant set, and quantifying how much each image in the relevant set adds to the final 
segmentation.

The segmented objects are compared by estimating the correlation between the cur-
vature distributions of the object contours. The curvature is estimated locally at each 
point of the object contour using the Voronoi Covariance Measure (VCM, Cuel et  al. 
[26]). The VCM is a covariance measure of Voronoi cells located around the target point. 
This measure is linked to the curvature, since Voronoi cells are restricted in areas with 
extreme curvature values, and are elongated in flat areas. The curvature distributions 
of the MSI and MRI images are compared by computing the Spearman correlation 
coefficient.

Our method is compared to the spatial chaos method (see “Pre-processing of MALDI–
MS images” section). For both methods, we assess whether the shapes in the segmented 
MS and MR images are similar. We compare the distributions of curvature values on the 
shape boundary between the MR image and the segmented MS image. First, the curva-
ture values are estimated using the Voronoi covariance measure (VCM) estimator [26]. 
Then, the curvature distributions are compared using the Spearman correlation coef-
ficient [27], which measures the strength of a monotonic relationship between two dis-
tributions. The threshold on either the spatial coherence or the spatial chaos measures 
are chosen such that the Spearman correlation coefficient is the highest, that is to say the 
shapes in the segmented MS and MR images are most similar.

The curvature distributions follow the same trend (see Fig. 7). The Spearman corre-
lation coefficient [27] for the final segmentation is 0.540 with our measure, and 0.438 
for the spatial chaos. This discrepancy is due to the number of ion images found and 
used by each method: 31 images for our measure versus 8 images for the spatial chaos 

Table 1 Precision p and  computation time t per  spectrum (in milliseconds) for  peaks 
detected on synthetic and real data, using our algorithms (Ours) and continuous wavelet 
transformation (CWT) 

The best values for each parameter appear in bold

CWT is not suited to large MALDI–MS images because of its computation time

p t (ms)

Synthetic CWT 0.130 1200

Ours 0.0968 19
Real CWT 0.148 8600

Ours 0.112 47
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measure. The spatial chaos approach misses several relevant ion images, which results 
in an incomplete segmented image. Thus, our method provides a segmentation which is 
more precise.

Registration

The registration approach is evaluated by quantifying the similarity between the pixel 
intensities of the original and the registered MALDI–MS image. This is achieved by 
computing the mutual information mI . Moreover, various metrics are used to measure 
the shape resemblance between the MRI and registered images. The segmented images 
are binarized, and three metrics are used: (a) the precision p, i.e. the ratio between the 
number of common pixels and the number of pixels in the MALDI–MS image, (b) the 
recall r, i.e. the ratio between the number of common pixels and the number of pixels in 
the MRI image and (c) the F-measure F = 2 ·

p×r
p+r.

The registration method was evaluated by comparison with a free form deformation 
model (FFD) consisting in a grid of B-spline control points. Two sets of parameters were 
used to obtain the best F values ( FFD1 ) on one hand, and the best mI values ( FFD2 ) on 
the other hand.

The results are presented in Table 2 and Fig. 8. Our method gives the best F-measure 
(0.963) by comparison to the FFD method. The intensities before and after registration 
are close, with a mutual information value of 0.454 bits. By contrast, the registered image 
with FFD1 is less similar in shape (96.1%), and very different in terms of intensities (see 
Fig. 8d). The registered image with FFD2 is more faithful in terms of intensities, but the 
shape is not as precise (see Fig. 8e). Indeed, the deformation of the variational method is 
more homogeneous than the one obtained with FFD1 , and more precise in terms of vec-
tor orientations than the one obtained with FFD2 (see Fig. 9). The selected method offers 
the best compromise between intensity fidelity and shape resemblance.

Joint statistical analysis

We choose the number of components for NMF such that the coefficient of determina-
tion R2 is greater than 0.95. Spatial correlations were evaluated by comparison to those 
found by the cosine distance, which was shown to be the most precise measure (see  

a b c

Fig. 7 Validation of the segmentation approach. Curvature values are computed on the contours of the a MR 
image, and MALDI–MS segmented images using b our method and c the spatial chaos measure. The values 
range from low (flat areas, in blue) to high (salient points, in red). The values are close in all images, but the 
spatial chaos measure yields high curvature values in the posterior part of the tissue (circled in red) which 
are low for the MR image. This reflects a slightly incomplete segmentation in the case of the spatial chaos 
measure
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a b c

d e

Fig. 8 Registration of the MALDI–MSI image onto the MRI image. Registration of the segmented MALDI–
MS image onto the a denoised MRI image: b linear registration followed by c the variational method of 
Modersitzki [21] or d, e free form deformation models with two different parameters ( FFD1 and FFD2 ). e The 
circled area (in red) shows a difference in shape compared to the MRI image

Table 2 Registration metrics for the evaluation of the used method (affine + variational) 
by  comparison to  the  free form deformation model with  two sets of  parameters  (FFD1 
and   FFD2): precision p, recall r, F-measure, and  mutual information mi. The variational 
method offers the best compromise between intensity fidelity and shape similarity

p r F mI

Affine 0.876 0.890 0.883 0.994

Affine + Variational 0.951 0.975 0.963 0.454

Affine + FFD1 0.940 0.984 0.961 0.419

Affine + FFD2 0.871 0.958 0.912 0.471

Fig. 9 Vector fields obtained by deformable registration methods. The vectors correspond to the 
displacements applied to the MS image to match the MR image, obtained by : a the variational method of 
Modersitzki [21] or free form deformation models with two different parameters b FFD1 , c FFD2 . The vector 
field resulting from the variational method is more homogeneous than that of FFD1 and more precise than 
that of FFD2
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“Joint statistical analysis” section). Each ion image was ranked according to its similarity 
to the MRI image. On average, ion rankings deviate from the rankings obtained by the 
cosine distance by 2.9%. Thus, our method provides similar results.

NMF yields several component images which highlight specific regions in the wheat 
grain (see Fig. 10). The contribution matrix showed ions assigned to arabinoxylans (i.e. 
polysaccharides) with low degrees of polymerization were located in the grain lobes (see 
Fig. 10a), feruloylated arabinoxylans (i.e. arabinoxylans with ferulic acid residues) were 
in the posterior outer layers of the wheat grain (see Fig.  10b), and arabinoxylans with 
various degrees of polymerization and without chemical modification were observed in 
the center of the grain (see Fig. 10c). The distribution of feruloylated arabinoxylans in 
posterior areas of the grain was previously observed in the literature [28].

Spatial correlations are established with the projection of the MRI image onto the 
reduced space produced by NMF. The projected image is formed by a linear combina-
tion of the NMF component images. We aim at quantifying the amount of lost informa-
tion induced by the projection. The average absolute difference in intensities between 
the original MRI image and the projected image is only about 4.2% (see Fig. 11). Thus, 
the projection in the NMF space preserves the intensities of the original image.

Both these results support the relevance of the selected matrix factorization approach.
The molecules which correlate the most with the distribution of water are arabinoxy-

lans with low degrees of polymerization and an acetyl group. These molecules are dis-
tributed mainly in the lobes of the grain (see Fig. 12). We suspect that the acetylation of 
arabinoxylans renders the cell wall network better able to uptake water by changing the 

Fig. 10 Component images and molecule distribution. Selected component images resulting from NMF, 
exhibiting different molecule distributions across the wheat grain: a lobes, b outer layers, c transfer cells

Fig. 11 Projection of the MRI image in the NMF reduced space. Difference between a the original MRI image 
and the b MRI image projected in the NMF space and obtained by linear combination of the component 
images. Both images have similar intensities. The NMF does not result in major information loss
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hydrophobicity properties of the polysaccharides, as hinted in Gille and Pauly [29]. Thus, 
the joint analysis of MSI and MRI images identified acetylated arabinoxylans as new can-
didates likely to contribute to the absorption of water in the developing grain.

Discussion
Applicability

The proposed workflow is particularly suited for exploratory research. The present study 
allows for the discovery of new candidates involved in the uptake and distribution of 
water in the wheat grain. The workflow does not depend on the case study and can 
be applied on any dataset which satisfy two main conditions. First, our segmentation 
approach relies on the hypothesis that the object has the same overall shape, or contain 
similar features in both images. Second, our registration and statistical analysis methods 
make the assumption that the intensity distribution is comparable between MRI images 
and at least one ion image in MSI. These broad conditions make our workflow applicable 
to a large number of MSI and MRI images.

Our workflow can be reused in combination with other modalities. MSI and fluores-
cence microscopy can be merged in order to discover molecular partners of fluorescent 
proteins, such as the study led in Jones et  al. [30]. On another note, MSI and Raman 
spectroscopy images can be analyzed jointly to identify specific regions in the sample 
[31].

Research prospects

Registration methods aim at matching two ore more images by finding correspondences 
between images. However, correspondences do not always exist in specific areas of the 
images. For instance, the signal might be extremely low in certains areas of the tissue in 
MS images. In our case, the pericarp of the wheat grain is apparent in MRI images but 
absent from MS images. We alleviated this problem by discarding the pericarp during 
the segmentation of the MRI image. We are currently working on finding missing cor-
respondences automatically during the registration. This can be done by building proba-
bilistic correspondence maps [32] or using geometrical constraints [33].

Our workflow processes 2D MALDI–MS images. In the future, several images will be 
imaged, providing a 3D representation of the molecule distribution across the sample. 
Three-dimensional extensions of our methods need to be considered. Regarding the 

Fig. 12 Example of strong spatial correlations between MRI and MSI. Example of a close spatial correlation 
between a the MRI image and b the MALDI–MS ion image of m/z 785.30, corresponding to an arabinoxylan 
with a degree of polymerization of 5 with two acetyl groups
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segmentation procedure, the spatial coherence measure is independent of the dimen-
sionality, and a 3D region growing procedure can be used. The variational registration 
method of Modersitzki [21] is suited to 3D images. In order to perform the joint statisti-
cal analysis in 3D, multiblock methods , such as multiple co-inertia analysis [34], can be 
used.

Conclusions
In this article, we have proposed a new workflow for the fusion of MRI and MSI images 
which involves precise and efficient methods. There are two main challenges using 
MALDI–MS images in an image fusion task. First, these images enclose a large amount 
of data. Secondly, tissue preparation induces local sample deformations. The selected 
and proposed methods are specifically suited to address these problems. In particular, 
we proposed a new peak detection method which achieves fast computation while being 
complete. Our new segmentation approach utilizes the information contained in numer-
ous ion images, which provides a complete and precise segmented MALDI–MS image. 
The selected registration approach compensates for local irregularities. Finally, the spa-
tial correlations are established by a dimension reduction technique which limits data 
loss. We validated each step of our workflow by a quantitative evaluation involving com-
parison with state-of-the-art methods. Our workflow provides accurate results across all 
steps, which demonstrates its relevance in an image fusion task involving MSI.
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