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Abstract  1 

In tree-based intercropping systems, roots of trees and crops are interacting and could 2 

influence ecosystem services provided by soil microorganisms. Here, the analysis of 3 

diversity of arbuscular mycorrhiza fungi (AMF) associated with roots of walnut and 4 

maize reveals differences. Of interest, Funneliformis genus is mainly associated with 5 

maize roots, and one OTU related to an uncultured Glomus, might form a common 6 

mycorrhizal network linking roots of both plants. In addition, the analysis of 13C of 7 

mycelium living in the surrounding environment of roots, suggest that part of the 8 

carbon derived from walnut trees could be transferred to maize plants. Our results 9 

suggest that in temperate agroforestry ecosystems, AMF could participle in the 10 

redistribution of nutrients between connected plants. 11 

 12 

Main Text  13 

Agroforestry combine, in the same plot of land, silvicultural and/or forestry 14 

productions with agricultural production (crops or livestock), and is synonymous with 15 

agro-sylvo-pastoralism (www.worldagroforestry.org). In one system of agroforestry, the 16 

tree-based intercropping systems, crops are located in alleys between rows of trees (Jose 17 

et al., 2000; Bainard et al., 2011). Productivity of these systems depends on the net 18 

difference between benefits and costs among uses and biophysical components of the 19 

agro-environment (Thevathasan and Gordon, 2004). In tree-based intercropping 20 

systems, tree benefits are both economical and ecological by (i) producing wood, (ii) 21 

maintaining and improving soil structure and biodiversity conservation (Price and 22 

Gordon, 1999; Stamps and Linit, 1998), (iii) reducing wind speed and soil evaporation 23 

(Jose et al., 2004), (iv) increasing carbon (C) storage both in wood and soil, (v) recycling 24 

leached nutrient through deep tree roots (Jose et al., 2004) and (vi) allowing a better 25 

resilience to climate change (Moorhead and Dickens, 2012; Nehrlich et al., 2012). In 26 

contrast, trees could have negative impacts on growth and yield of crops as they could 27 

reduce light access by shading crops, with C4 plants more vulnerable than C3 (Reynolds 28 

et al., 2007), and as they are better competitors for soil nutrients. In these system, 29 



reducing the application of inorganic fertilizers (Thevathasan and Gordon, 2004) lead to 30 

lowering yield.  31 

Roots of trees and crops are intermingled, and their interaction could influence soil 32 

microorganisms, playing a central role in nutrient cycling and in the production of tree-33 

based intercropping systems by ecosystem services they provide. These include 34 

arbuscular mycorrhizal fungi (AMF), living in a mutualistic symbiosis with the majority 35 

of plant roots. AMF belong to the phylum Glomeromycota (Tedersoo et al., 2018), with 36 

more than 200 species described based on spore morphology (Schüssler and Walker, 37 

2010). AMF receive carbon from their host plant (Bryla and Eissenstat, 2005). In return, 38 

the extra-radical mycelium (ERM) forage the soil and provide the host plant with 39 

mineral nutrients (Smith and Read, 2008). AMF display a little host specificity and their 40 

ERM can colonize simultaneously several plants from the same or different species 41 

(Barto et al., 2012), forming a Common Mycorrhizal Network (CMN), allowing to 42 

transfer and exchange nutrients and signals among plants (Wipf et al., 2019). In 43 

temperate agroecosystems, the abundance and community composition of AMF as well 44 

as the functioning of CMN are strongly and negatively influenced by conventional 45 

agricultural practices and crop management techniques as tillage and inorganic 46 

fertilization (Helgason et al., 1998; Oehl et al., 2003; Jumponen et al., 2005; Brito et al., 47 

2012; Brigido et al., 2017). Sustainable management practices may lead to positively 48 

influence the composition, the richness and the abundance of AMF communities when 49 

comparing agricultural fields with grasslands (Burrows and Pfleger, 2002; Jansa et al., 50 

2003; Sturmer and Siqueira, 2011). In addition, tree-based intercropping systems may 51 

lead to the maintenance of the CMN regarding low soil disturbance or tillage 52 

(Hailemariam et al., 2013) and to the faster establishment of root colonization by AMF 53 

when switching from one crop to another (Mason and Wilson, 1994). However, the 54 

influence of tree-based intercropping systems on diversity of AMF communities, both 55 

on tree and crop roots, and on the functioning of the CMN is poorly understood in 56 

temperate regions (Chifflot et al., 2009; Lacombe et al., 2009) compared to tropical 57 

regions (i.e. Snoeck et al., 2010; Jalonen et al., 2013; Dobo et al., 2018). CMN have been 58 



studied in many systems, both in field (Babikova et al., 2014) and controlled conditions 59 

(Walder et al., 2015; Rezacova et al., 2018a, 2018b), and were focused on how the network 60 

benefits the plant hosts. Diversity of AMF forming the CMN and associated with roots 61 

as well as the C contribution of plants in the building of CMN, was never assessed in the 62 

field. Here, we used walnut trees (Juglans nigra L., a C3-plant) and maize (Zea maïs L., a 63 

C4-plant), which display distinctly different ratios of 13C/12C (∂13C), to trace the delivery 64 

of plant C to AMF. In 2017, an old walnut tree orchard was replanted in several row 65 

distanced of 8 m with Fernette walnut variety after a light vibra-shank cultivator 66 

treatment. On May 30 2018, 8 rows of maize were planted, at a density of 81000 67 

seeds/ha, in the area between two walnut rows. Young roots, from the walnut trees and 68 

from the maize plants of the second row (5m-away), were sampled for AMF diversity, 69 

and traps, buried at 15 cm for 4-months, were used to collect fungal mycelium for ∂13C 70 

measurements. Hyphal traps were 0.45L bags (15 x 15 x 2 cm), made with 21 µm-nylon 71 

meshes and filled with a mixture of zeolithe (Symbion, Czech Republic) and sand (1 : 1 72 

v/v). 73 

The AMF diversity was assessed by Illumina sequencing targeting the AMF large 74 

ribosomal sub-unit. All the detected OTUs belonged to the Glomerales order (Figure 1) 75 

with one OTU, (Glomus sp Cluster 1) showing a homology of 98.8% with an uncultured 76 

Glomus (HQ243144), grouped 33% and 22% of the sequences isolated, respectively from 77 

the maize or the walnut root system. OTUs belonging to the Rhizophagus and 78 

Septoglomus genus grouped respectively 29% and 13% of the total sequences. They 79 

grouped respectively 38% and 21% of the sequences in walnut roots, and only 21% and 80 

4% in maize roots. Claroideoglomus was also 10 times more present in walnut roots than 81 

in maize roots. On the opposite, sequences belonging to the Funneliformis genus were 82 

nearly exclusively detected in maize roots (33%) compared to walnut roots (0.01%), with 83 

29% of the sequences detected in maize corresponded to the F. mosseae species. These 84 

observations are in agreement with other reports showing that Funneliformis are often 85 

reported as tolerant to soil disturbance (Jansa et al., 2002, 2003; Borriello et al., 2012; Avio 86 

et al., 2013; Wetzel et al., 2014; Peyret-Guzzon et al., 2016).  87 



In order to determine the plant source of the carbon found in the fungal mycelium, 88 

values of ∂13C were determined as previously described (Courty et al., 2011) in the 89 

walnut or maize plant leaves as well in the mycelium. The ∂13C of walnut leaves (-32 ‰) 90 

was significantly different from the ∂13C of maize leaves (-14‰) (Figure 2). Mycelium 91 

collected from the traps close to walnut and maize roots displayed significant ∂13C 92 

values of ca. -26‰ and ca. -21‰, respectively, suggesting a strong influence of 93 

neighboring plants to support AMF C needs. In addition, differences in the ∂13C values 94 

between the common mycelium collected under maize plants and walnut trees, could 95 

reflect a mycelium extending from the walnut trees to the maize plants. In fact, we may 96 

consider that the AMF mycelium close to maize roots was receiving C, not only from 97 

maize, but also from walnut trees. We do recognize that the collected mycelium could 98 

have different origins (i.e. AMF, saprobes) and thereby impact the ∂13C values. However, 99 

the fact that one of the most predominant OTU was detected in the roots systems of both 100 

plants allows to hypothesize the presence of a CMN between these plants. 101 

In summary, ∂13C analysis and OTUs suggest that walnut of walnut-based intercropping 102 

systems could have an impact on the C distribution. This experiment gives some 103 

evidence of a physiological connection through the ERM between a perennial and a crop 104 

plant. Further experiments should be carried out to investigate of the seasonal dynamics 105 

of this exchange as well as the possible seasonal modifications of the AMF community. 106 
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 250 

Figure 1 251 

Stacked bar of the taxonomic assignation of the OTU obtained from the maize (MAR) or 252 

walnut (WAR) associated roots representing 90% of the total sequences. The DNA was 253 

extracted from five independent walnut or maize root samples and the AMF large 254 

ribosomal sub-unit amplified as previously described (Brigido et al., 2017), with the 255 

exception that the FLR3-FLR4 primers used for the second PCR were linked to Illumina 256 



Miseq adaptors. Samples were pair-end sequenced on an 2x250 Illumina platform. The 257 

sequences obtained were clustered using the FROGS pipeline (Escudié et al., 2017) 258 

implemented on the Galaxy platform (Drain et al., 2019) and taxonomically assigned 259 

against the MaarjAM database (Öpik et al., 2010). Using as filter parameters the 260 

abundance of < 0.0005, 17880 OTU representing 11% of the sequence abundance were 261 

removed. The final 93 identifyied OTU belonged all to the Glomeronycota. The relative 262 

abundance data were obtained after rarefaction of all samples to the lowest number of 263 

reads in a sample (12524). 264 

 265 

Figure 2  266 

∂13C values of walnut and maize roots, as well as mycelium collected from trapped 267 

(n=5). Different lowercase letters indicate significant differences according to pairwise t-268 

tests (Bonferroni corrected, P <0.01)  269 
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