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 25 

Abstract 26 

The discovery of the kisspeptin (Kp) system stirred a burst of research in the field of reproductive 27 

neuroendocrinology. In the last 15 years the organization and activity of the system including its 28 

neuroanatomical structure, its major physiological functions, and its main pharmacological properties 29 

were outlined. To this endeavor, the use of genetic tools to delete and to restore Kp system 30 

functionality in a specific tissue was essential. At present, there is no question as to the key role of 31 

the Kp system in mammalian reproduction. However, easily applicable genetic manipulations are 32 

unavailable for domestic animals. Hence, many essential details on the physiological mechanisms 33 

underlying its action on domestic animals require further investigation. The potentially different 34 

effects of the various Kp isoforms, the precise anatomical localization of the Kp receptor, and the 35 

respective role played by the two main populations of Kp cells in different species are only few of the 36 

questions that remain unanswered and that will be illustrated in this review. Furthermore, the 37 

application of synthetic pharmacological tools to manipulate the Kp system is still in its infancy but 38 

has produced some interesting results suggesting the possibility to develop new methods to manage 39 

reproduction in domestic animals. In spite of a decade and a half of intense research effort, much 40 

work is still required to achieve a comprehensive understanding of the influence of the Kp system on 41 

reproduction. Furthermore, Kp system ramifications in other physiological functions are emerging 42 

and open new research perspectives. 43 

Key words: Kisspeptin, reproduction, ovulation, GnRH, LH, pharmacology, agonist. 44 
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 46 

1. Introduction 47 

The discovery that reproduction in mammals is mastered by a brain neuropeptide, kisspeptin (Kp), is 48 

the most recent breakthrough in reproductive neuroendocrinology. Our knowledge of the Kp system 49 

has grown exponentially and several excellent reviews on the subject are available [1-4]. To elucidate 50 

Kp system functions, most studies used rodents or primates, but investigations in domestic animals 51 

are less copious. Nevertheless, these studies are extremely interesting from a comparative point of 52 

view and capable of opening new opportunities to manage livestock reproduction. In the following 53 

sections we will briefly delineate the biological action of Kp and point to a few outstanding questions 54 

that we deem particularly interesting. Namely, we will discuss the anatomical distribution of the Kp 55 

system, its main physiological effects in reproduction and some pharmacological aspects crucial for 56 

the development of applications to manage domestic animal reproduction. Many other important 57 

and exciting features of the Kp system still require a substantial research effort. To gain a broader 58 

perspective on these aspects the reader could refer to other reviews on domestic animals [5-8]. 59 

 60 

 61 

2. The Kp system 62 

A role for Kp in reproduction was first discovered in human patients showing loss of function 63 

mutations of the Kp receptor, KISS1R (also known as GPR54). These mutations lead to 64 

hypogonadotropic hypogonadism, lack of puberty and infertility [9, 10]. Further studies showing that 65 

GnRH neurons express Kiss1r [11], and the fact that Kp administration triggers GnRH release [12, 13] 66 

demonstrated that Kp stimulates the reproductive axis by a direct action on GnRH neurons. Kp also 67 

has a role in modulating the timing of puberty onset as shown in rodents, where repeated 68 

administration of Kp to prepubertal female rats advanced vaginal opening [14]. Two major 69 

populations of Kp neurons in the hypothalamus have been identified: one in the preoptic area (POA) 70 
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region and the other in the arcuate nucleus (ARC). Neurons of both populations bear estrogen 71 

receptor alpha, progesterone receptors and/or androgen receptors [15-18]. These finding and others 72 

[19] imply that Kp neurons are the target of sexual steroid feedback. Kp neurons in the ARC colocalize 73 

with neurokinin B and dynorphin and are referred to as KNDy neurons from the initials of the 74 

neurotransmitters they produce [20]. Localization and pharmacological studies have shown that 75 

KNDy neurons express the neurokinin B receptor NK3R [21] and the K-opioid receptor that is the 76 

cognate dynorphin receptor [22]. These results were instrumental in formulating the hypothesis that 77 

by an autocrine mechanism neurokinin B would initiate Kp release from KNDy neurons and 78 

dynorphin would terminate it [23]. The concept that KNDy neurons are the GnRH pulse generator is 79 

now widely accepted [24]. 80 

 81 

3. KISS1 and KISS1R genes 82 

In vertebrates, three different genes encoding for Kp and four genes encoding for its receptor have 83 

been identified. In mammals, with the exception of the monotremata (e.g. platypus), only one gene 84 

for the Kp (KISS1) and one for its receptor (KISS1R) are present [25].  85 

KISS1R is a G protein-coupled receptor encoded by a highly conserved sequence. In humans KISS1R 86 

loss or gain of function mutations result in infertility [9, 10] and precocious puberty [26] respectively. 87 

Study in transgenic mice further support the importance of Kiss1R in puberty onset and fertility [27]. 88 

The existence of a loss of function mutation in a species or breed of domestic animals would be 89 

unexpected due to the importance of reproductive capacities in these animals and the resulting loss 90 

with such mutation. However, the identification of polymorphisms in the KISS1 or KISS1R and their 91 

correlation with reproductive traits is an interesting topic for investigation. In goat breeds the 92 

presence of specific KISS1 and/or KISS1R single nucleotide polymorphisms (SNPs) was correlated with 93 

variations in litter size and age at puberty [28, 29] as well as with an increase in circulating levels of 94 

estradiol and progesterone [30]. In Kiss1R haplo-insufficient mice, the litter size is reduced compared 95 
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to wild type mice [31]. This would concur with a role of the Kp system to define the litter size. 96 

Nevertheless, a more thorough characterization is required to establish firmly if the reported SNPs 97 

would be responsible or not for the modifications observed in these reproductive traits. A better 98 

understanding of the functional correlate of KISS1R SNPs may reveal new criteria for the genetic 99 

selection of domestic animals. 100 

Processing of the Kp precursor leads to several endogenous Kp isoforms. The shortest active 101 

sequence, 10 amino acids (Kp10), corresponds to the C-terminal part of the precursor. This sequence 102 

is extremely well conserved in mammals with only few variants identified. The remaining of the 103 

sequence is significantly less conserved. Three other Kp isoforms have been described, two short 104 

ones (Kp13 and Kp14, the number indicates the length of the amino acid sequence), and a longer one 105 

that varies among species studied (i.e. Kp54 in humans, Kp53 in cattle, in the sheep, and in the goat, 106 

and Kp52 in the mouse). Preliminary data obtained in the rat and in the sheep showed the existence 107 

of an additional isoform, Kp16, and suggested that Kp16 and Kp13 are actually the most abundant 108 

isoforms [32]. Unfortunately, a complete account of these results was never published. The presence 109 

of different isoforms raises a major question: do the different isoforms serve different physiological 110 

functions? This question remains at present unanswered. The vast majority of the knowledge gained 111 

on the Kp system was obtained by applying the Kp10 and to a much lesser extent the Kp54. The other 112 

isoforms have received very little attention. To the best of our knowledge, in vitro data are available 113 

only for the hKp13, showing binding affinity and potency in a calcium mobilization assay similar to 114 

that of hKp10 [33] . 115 

 116 

The small variations observed in the Kp10 sequence may have physiological consequences, but these 117 

are not easily predictable based on the sequence’s structure. Interestingly the human (h) and ovine 118 

Kp10 (hKp10 and oKp10) differ in the C-terminal: such that the last amino acid is a phenylalanine in 119 

the human sequence and a tyrosine in the sheep (figure 1A). This amino acid is part of the 120 

pharmacophore region, the region bearing the biological activity [34]. A modification of this region 121 
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could influence molecule’s activity. However, when tested in vitro in a calcium mobilization assay (for 122 

detail on the assay see [35]) hKp10 and oKp10 have superimposable profiles (figure 1B). 123 

Furthermore, when injected into the ewe both peptides produced an increase of LH and FSH plasma 124 

levels that were identical in amplitude and duration [36]. Studies in goats using intravenous 125 

administration of hKp10 produced similar results [37, 38]. Surprisingly, in Hereford cross-bred 126 

heifers, a comparison of the effect of hKp10 and cattle Kp10, that is structurally identical to oKp10 127 

(figure 1A), on LH plasma concentration showed that hKp10 elicited a more pronounced effect than 128 

cattle Kp10. In addition, repeated injections of hKp10 over a 2-hour period triggered ovulation, but 129 

this was not the case when cattle Kp10 was used [39].  130 

The equine Kp10 (eKp10) also has a single amino acid difference compared to the oKp10, in position 131 

2 an arginine is substituted by a valine. This position is outside the Kp10 pharmacophore [34] and, 132 

therefore, this modification should bear no consequence on the activity. At odds with this prediction, 133 

when tested in a calcium mobilization assay on HEK293 cells transfected with the human KISS1R, the 134 

eKp10 was actually less potent that oKp10 and hKp10 (figure 1B). Consistent with this result when 135 

injected iv in the ewe (15 nmol/ewe, N=5 per group) the eKp10 is less potent in vivo than the oKp10 136 

(figure 1C and D). The effect of eKp10 was extensively studied in the horse, where it was able to 137 

stimulate the release of gonadotropins. However, in contrast to what found with oKp10 in the sheep 138 

[36], it was unable to trigger or advance ovulation [40] and significantly disrupted normal sexual 139 

receptivity in the estrous mare [41]. At present, it is difficult to draw any conclusion from this 140 

scattered data. Nonetheless, they indicate that a single amino acid modification could result in a 141 

significant change of Kps’ capacity to activate the receptor of a different species. Considering that 142 

often the hKp10 was used to study the physiology of the Kp system in other mammals, these data 143 

point to the importance of using the appropriate endogenous ligand for the species under evaluation 144 

in order to obtain meaningful physiological data. 145 

 146 

4. Anatomical localization of the Kp system 147 
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Initial studies by RT-PCR reported the expression of KISS1R gene in several tissues including the brain, 148 

the pituitary gland, the placenta and the pancreas [42-44]. Subsequent research focusing on the 149 

brain showed its presence in the hypothalamus [45]. However, only a handful of studies describing a 150 

more precise brain localization of Kiss1r are available. This information was obtained by applying in 151 

situ hybridization in the rat [46, 47] and in the rhesus monkey [48] or by using a β-gal reporter gene 152 

in the mouse [11]. Receptor expression was detected in several brain regions including the olfactory 153 

bulb, the hypothalamus, the septum, the hippocampus, the thalamus, and the brainstem. The 154 

distribution pattern appears significantly discordant between species suggesting either a different 155 

sensitivity of the methods or a species-specific dependent expression of the receptor. This last 156 

possibility deserves further investigation because it might have important implications to understand 157 

the physiological role of the Kp system in different species. 158 

On the other hand, double labelling studies in rats, monkeys and ewes consistently reported the 159 

expression of KISS1R gene in GnRH neurons [47-49]. These data confirm that a direct effect of Kp on 160 

GnRH neurons is a common feature. 161 

Detection of the KISS1R protein has proven a difficult task.  Most of the available antibodies are 162 

insufficiently characterized lacking for example specificity validation performed in Kiss1r knockout 163 

animals. Evaluation of the antibody using western blotting often results in multiple bands and 164 

inconsistent molecular weights. Furthermore, use of antibodies raised against the rodent or human 165 

receptor to detected KISS1R in other species without performing stringent controls in the target 166 

species is common, leading to arguable results. This represents an obstacle to our understanding of 167 

Kp action. The development of new tools, either dependable antibodies against the receptor or 168 

tagged molecules allowing its detection and localization, would be an important advance in the field. 169 

An attempt in this direction has been done by the creation of synthetic Kp-based probes labelled 170 

with a fluorescent tag [50]. These probes were characterized successfully in in vitro systems, but 171 

were not assessed for receptor localization on tissue. We have recently described the synthesis of a 172 
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tagged Kp-derived molecule capable of covalently binding KISS1R in vitro [51]. Further development 173 

of this molecule to improve its stability is ongoing and might become a valuable tool for receptor 174 

localization studies. 175 

The expression of the KISS1 gene and that of the related protein has been investigated in several 176 

species. In mammals, two main neuronal populations sited in the diencephalon have been described. 177 

One, located in the ARC, has been recognized in rodents [52-54], in primates [48, 55-57], in the sheep 178 

[15, 58], in the goat [59, 60], in the horse [61], in the pig [62], in cattle [63], in the dromedary camel 179 

[64], and in the cat [65]. The presence of the second one, located in the POA, has been reported in 180 

rodents [52-54], in the sheep [15, 58], in the goat [59], in cattle [63], in the dromedary camel [64], 181 

and in the cat [65], but data are contradictory in the horse [61, 66] and in primates [56, 57]. The 182 

precise localization of this second population also varies with species: in rodents it is adjacent to the 183 

ventricle whereas it is more lateral in other mammals [53]. 184 

Discrepancy on the localization of Kp in the horse could arise from the use of different antibodies. In 185 

one study, Kp-like immunoreactivity was found not only in the POA but also in the dorso-medial 186 

nucleus [66]. In this study an antibody from Phoenix Pharmaceutical was used, which have shown to 187 

have cross reactivity with other members of the RFamide family [67] and NPVF (the precursor mRNA 188 

for RFamide-related peptide 3) has been detected in the dorsomedial paraventricular hypothalamic 189 

nuclei of the mare [68]. This antibody gave similar results in the sheep [69], but there is no evidence 190 

of the presence of mRNA encoding for Kp in the dorso-medial region of the sheep hypothalamus 191 

[58]. There is a single report of this antibody labelling GnRH neurons in the sheep [69], but these 192 

results could not be reproduced using an antisera specific for Kp [53]. It is likely that this antibody 193 

cross reacts with other neuropeptides of the RFamide family, such as NPVF, showing a sequence 194 

similar to that of Kp. Nevertheless, the existence of a Kp POA population  cannot be ruled out  based 195 

on antibody cross-reactivity alone because NPVF was not detected in the POA [68]. 196 
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In addition, the Kp POA population is sexually dimorphic with females having a larger number of cells. 197 

Indeed, several reports indicate an important role of sex steroids, in particular estrogens (Es), in 198 

regulating the size of this population [1]. High levels of E, similar to that observed during the pre-199 

ovulatory period, would increase the number of neurons expressing Kp. In contrast, ovariectomy, 200 

ablating ovarian E production, would decrease it to an almost undetectable level. The study reporting 201 

the absence of Kp in the POA of the mare was performed on brain dissected  between 2 and 4 hours 202 

after ovulation [61]. At this stage of the ovulatory cycle E concentration is rapidly declining and is 203 

lowered by 2/3 compared to its maximal level [70], leading to an E negative feedback. It is possible 204 

that localization studies performed at a moment of the cycle when circulating E is high (i.e. the pre-205 

ovulatory phase) may confirm the existence of a neuronal population expressing Kp in the POA of the 206 

mare. 207 

The question about the existence of this neuronal population is not trivial. In the current view, the Kp 208 

ARC population would be mainly involved in controlling the pulsatile release of GnRH and submitted 209 

to the E negative feedback. Optogenetic studies in rodents [71-73] and combined pharmacological 210 

and electrophysiological analyses in goats [74] converge in favor of this hypothesis. On the other 211 

hand, the POA population would relay the E positive feedback triggering the increase of GnRH 212 

secretion that leads to the pre-ovulatory surge [75]. However, in the sheep data are less clear-cut. 213 

Some data suggest a rodent-like mechanism showing an activation, concomitant with the LH surge, 214 

of POA neurons, but not of ARC neurons [76]. Others support a combined contribution of the two 215 

populations in generating the ovine pre-ovulatory surge [77, 78]. Finally, an E implant in the 216 

mediobasal hypothalamus induces a surge [79], and cells expressing KISS1R mRNA in the caudal ARC 217 

were more abundant in the pre-ovulatory period than during the other phase of the cycle. These 218 

data suggest a prominent role for the ARC Kp population in pre-ovulatory surge induction [80].  219 

In the ewe the caudal portion of the Kp neurons of the ARC are less sensitive to E negative feedback 220 

during the breeding season [81]. The abundance of the estrogen receptor α in the Kp neurons of the 221 

ARC of pre-pubertal ewe was compared in ovariectomized (OVX) and OVX and E (OVX+E) replaced 222 
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animals. The OVX+E showed a decrease of estrogen receptor α in the rostral part on the nucleus and 223 

a tendency to a decrease in the medial part and no effect on the caudal portion. Similar results were 224 

obtained for the number of neurons expressing Kp [82].  The possibility that the ARC Kp neurons of 225 

the ewe (and perhaps other species) would convey both positive and negative estrogen feedback to 226 

GnRH neurons is an interesting hypothesis that remains to be further substantiated. If the absence of 227 

a POA Kp population in the mare is confirmed, this species would be an interesting research model to 228 

test this hypothesis. 229 

In the ewe, a combined regulatory effect of sexual steroids and photoperiod has also been observed. 230 

In OVX+E ewes, a lower level of Kp was observed in the mediobasal hypothalamus and in POA during 231 

the non-breeding season compared to the breeding season [19] and switching from long to short 232 

photoperiod induced an increase of Kp expressing neurons in POA and ARC [83]. 233 

 234 

A third population of Kp neurons has been detected in the medial amygdala of rodents [52, 84], a 235 

region shaping social, emotional as well as sexual behaviors. Kp expression in these neurons is 236 

sexually dimorphic, with males showing a larger population. Gonadectomy decreased Kiss1 237 

expression in both sexes whereas treatment with either testosterone or E increased it [84]. 238 

Application of anterograde and retrograde tracers showed the existence of reciprocal connections 239 

between Kp neurons located in the amygdala and the accessory olfactory bulb. A direct connection of 240 

amygdala Kp neurons with GnRH neurons of the POA was also observed. Therefore, Kp neurons in 241 

the medial amygdala could be part of the pathways relaying information controlling sexual behaviors 242 

related to odor cues [85]. In small ruminants the so-called male effect, applied to resume the 243 

ovulatory cycle during the seasonal anoestrus, is mediated mainly by odor cues. In the goat,input 244 

from the medial nucleus of the amygdala to Kp neurons of the ARC has been proposed to play a role 245 

in the male effect [86]. However, in domestic animals the role of Kp neurons located in the central 246 

amygdala in processing and relaying odor cues remains unexplored. Actually, even the existence of 247 
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such a population in domestic species has not been demonstrated yet. This interesting research area 248 

warrants further investigation. 249 

 250 

The presence of the Kp system in the pituitary gland and an in vitro direct effect of Kp administration 251 

on LH and FSH secretion and gene expression was reported in several species  [42-44, 87-91] (see 252 

[92, 93] for review on the subject). Even though available results suggest a potential direct 253 

stimulation of gonadotrophs by Kp, nevertheless effects were mainly of small amplitude. The most 254 

compelling evidence has suggested a minor, if any, role of Kp in stimulating the pituitary gland. In 255 

particular, rescue of Kp signaling in GnRH neurons in Kiss1r KO mice completely reinstates a 256 

reproductive phenotype [94, 95]. In hypothalamo-pituitary disconnected ewes there was no 257 

temporal correlation between Kp levels recorded in the portal blood and LH pulsatile pattern 258 

measured in the jugular vein [88]. Conversely, Kp peripheral administration is highly correlated with 259 

GnRH release and its effect on gonadotropin secretion is blocked by a GnRH receptor antagonist [48, 260 

96-98]. 261 

 262 

Expression and localization data indicate the presence of Kp and its receptor also in the reproductive 263 

organs. In the female of various species, both Kp and its receptor have been localized in the ovary, in 264 

the uterus and in the placenta [93]. Immunoreactivity was observed in granulosa cells, cumulus cells, 265 

theca cells, stromal cells, trophoblast giant cells, etc. Localization differs between species and 266 

sometime contrasting results in the same species were reported [99]. Contradictory findings could be 267 

explained partially by the use of tissue obtained at different times of the estrus cycle under the 268 

influence of a different hormonal milieu. Nevertheless, this variability is puzzling and methodological 269 

biases are a concern. Some immunohistochemistry results suffer from poor characterization of the 270 

antibodies that make them unreliable. Caution should be taken also when considering expression 271 

data obtained by RT-PCR. They are sometime undependable due to an excessively high number of 272 

amplification cycles leading to the generation of false positives.  273 
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Despite these notes of caution, some convincing results for a local role of Kp on the female 274 

reproductive apparatus of rodents are available. In Kiss1r null mice ovary and uterus have a reduced 275 

weight and no ovulation occurs [9]. In these mice, a treatment combining GnRH and gonadotrophins 276 

triggers ovulation. However, null mice release a significantly reduced number of oocytes than WT 277 

suggesting that Kiss1r in the ovary is required for a full recovery of ovarian activity [31]. In line with 278 

this result Kiss1r haplo-insufficient mice display a syndrome resembling premature ovarian failure 279 

with decline in ovulatory rate and reduction of pre-antral follicles [31]. The potential implication of 280 

Kp in this phenomenon was discovered by studying the neurotrophin BDNF (brain-derived 281 

neurotrophic factor) and its receptor NTRK2 (neurotrophic tyrosine kinase receptor type 2). In mice a 282 

specific deletion of NTRK2 in oocyte results in oocyte death and early adulthood infertility similar to 283 

that observed in Kiss1r haplo-insufficient mice. Experimental data suggest that Kp would act in 284 

concert with BDNF to mediate the effect of gonadotropins on NTRK2 and on ovarian function [100]. 285 

Clarifying the physiological action of Kp in the ovary of domestic animals would be particularly 286 

interesting and relevant to optimize ovulation rate. Expression of the Kp system in the uterus has 287 

been associated with embryo implantation [101]. In Kiss1-/- mice application of E and gonadotropins 288 

coupled to a superovulation protocol induces normal ovulation, egg fertilization and initial embryo 289 

development; however implantation fails. When Kiss1-/- embryos are transferred to a WT female 290 

they implant successfully, indicating a maternal defect in the Kiss-/- females. Kiss1r expression in the 291 

uterus is greater in Kiss-/- females and the distribution within the subluminal epithelium is different 292 

from the WT females. Treatment with Kp10 failed to rescue embryos’ implantation in Kiss1-/- mice 293 

[101]. In the uterus of Kiss1-/- mice endometrial glands are poorly developed [101, 102] evoking the 294 

possibility that this defect is the consequence of the lack of a Kp local action during uterus 295 

development. Results showing that E treatment of Kiss1-/- mice or selective restoration of Kp 296 

signaling in GnRH neurons of Kiss1r-/- mice only partially restored endometrial gland formation 297 

support this hypothesis [95]. Furthermore, the expression of the cytokine leukemia inhibitory factor, 298 
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essential for embryo implantation, is reduced in Kiss1-/- uterine gland. Administration of leukemia 299 

inhibitory factor to hormone-primed Kiss1-/- partially rescued implantation [101]. 300 

Similarly to rodents, endometrial gland formation in sheep and pigs takes place during the postnatal 301 

period, pointing to the relevance of these results for the physiology of domestic animals. 302 

The presence and physiological significance of the Kp system in the male reproductive apparatus has 303 

received less attention. In the mouse, the most convincing data indicate that the expression of the 304 

genes for Kp and Kiss1r in the gonad is restricted to haploid spermatids. However, no protein for Kp 305 

was detected, suggesting a translational repression, and Kp administration had no effect on 306 

testosterone release from an immortalized Leydig cell line [103]. Conversely, in Leydig cells from goat 307 

testes Kiss1 and Kiss1r genes expression was increased by gonadotropins treatment. Incubation of 308 

Leydig cells with the Kp antagonist Kp234 reduced testosterone secretion implying a potential role of 309 

Kp in androgen production [104]. The conflicting results obtained in these studies could be due to a 310 

physiological difference between species or due to the use of a cell line versus cells from primary 311 

culture. A drawback of the goat study is the lack of evidence about a positive effect (i.e. stimulation 312 

of testosterone production by Kp administration). Of note, Kp234 has been applied to counteract the 313 

effect on Kp in various experimental systems [105]. However, in the dog it was unable to block the 314 

effect of Kp both in vitro and in vivo [106]. Furthermore, it has been reported that p234 and p356, 315 

the next generation analog of p234, exhibit weak agonist activity at Kiss1r in mice [107] and in vitro 316 

[106]. These findings raise doubts that the observed effect would be mediated by the Kp system. The 317 

fact that GnRH-specific rescue of Kiss1r null mice was sufficient to restore a normal fertile phenotype 318 

and testes were not different from that of WT [94] support a minor role, if any, of Kp in modulating 319 

testicular functions. Nevertheless, further studies on the subject would be welcome to clarify this 320 

issue.  321 

 322 

 323 
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5. Pharmacological modulation of the kisspeptin system 324 

A thorough understanding of Kp system functions requires the capacity to pharmacologically 325 

modulate its action. Modulation of the Kp system was initially explored by injecting the endogenous 326 

Kps. Of the various isoforms, Kp10 has been the most broadly used because it is easy to synthesize 327 

and highly efficacious. Except in humans, where the effects of hKp54 have been quite well studied 328 

(see [108] for a review on the subject), few studies have evaluated the effect of the longer isoforms.  329 

The effect of mKp52 was tested by icv injection in the mouse, showing that at femtomolar 330 

concentration it was able to increase the plasma concentration of LH and FSH [52]. In the cow, 331 

intravenous administration of cattle Kp53 triggered an increase of LH, but not FSH, plasma 332 

concentration and ovulation in 1 out of 4 cows [109]. In females of several species (rodents, ewe, 333 

goat, cow, pig, horse, and dog) a single injection of Kp10 triggers a rapid, albeit short-lasting, increase 334 

of LH and/or FSH [36, 37, 40, 45, 52, 54, 97, 110-113]. In the ewe during the non-breeding season a 335 

perfusion of Kp10 lasting 24 hours or longer induced the ovulation in about 75% of the treated 336 

animals [36, 114]. In prepubertal ewes, hourly administration of Kp10 for 24 hours induced an 337 

increase of LH and ovulation [115]. These results corroborated the idea that the Kp system would be 338 

an interesting target to modulate the female reproductive cycle. A major drawback in using Kp10 is 339 

its short half-life due to rapid degradation and excretion. This is a relevant obstacle when prolonged 340 

activation of the system is required, as in the case of ovulation induction or for the treatment of 341 

chronic reproductive pathologies in humans (e.g. hypothalamic amenorrhea). 342 

A possible way to overcome this problem is the use of the longer isoforms eliciting a protracted 343 

activation of the system. In the male rat rKp52 produced an increase of LH of larger amplitude and 344 

longer duration never matched, even at high doses, by rKp10 or hKp10 [116]. Consistently, 345 

experiments performed in the male mouse indicated an increase of LH of longer duration and larger 346 

amplitude after hKp54 compared to hKp10 injection [117]. At odds with these results, however, a 347 

study on human males reported no significant difference in the effect of hKp10 and hKp54 [118]. The 348 

hKp54 isoform was also used in women but a prolonged action was only obtained after perfusion for 349 
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several hours [119]. Interestingly, in women administration of hKp54 increased plasma LH and FSH 350 

level regardless to the phase of the ovulatory cycle. Conversely, hKp10 is effective on the pre-351 

ovulatory phase but not in the follicular phase [120]. In ruminants Kp10 injection during the luteal 352 

phase triggered an increase of LH [37, 121, 122] even though, at least in the ewe, it was lower than 353 

that induced during the mid and late follicular phase [122, 123].  354 

Regardless to the different effects observed between sexes, isoforms, or different phases of the 355 

ovulatory cycle the overall duration of the stimulation after a single injection remains relatively short. 356 

To tackle this problem synthetic analogs based on Kp10 structure were designed to reduce 357 

degradation and increase their circulating half-life. Their potential use to manage livestock 358 

reproduction has been recently reviewed [7, 124]. The effects of these analogs (TAK683 and C6) have 359 

been extensively characterized in small ruminants. TAK683 was tested under different conditions in 360 

the goat. It consistently increased LH plasma level, with an efficacy depending on the phase of the 361 

ovulatory cycle [125-128], and induced ovulations. However, no data are available on the fertility of 362 

these ovulations [126].  The other analog, C6, induced fertile ovulations in small ruminants (sheep 363 

and goats) when injected as a substitute of PMSG (pregnant mare serum gonadotropin) after a 364 

progestogen priming [129, 130]. The treatment was efficacious both in the breeding as well as in the 365 

non-breeding season. These results are proof of the concept that the Kp system is a suitable target 366 

for ovulation synchronization and induction in small ruminants. 367 

C6 was recently evaluated in steroid-primed pre-pubertal gilts where initial results showed that it 368 

evokes an LH surge and ovulation [131]. While non data are available on the effect of Kp analogs in 369 

the cow, data obtained with Kp10 in pre-pubertal and adult cows demonstrate an increase of plasma 370 

LH levels [112, 121, 132-135]. Furthermore, in Hereford cross-bred heifers under low plasma 371 

progesterone concentrations repeated administration of hKp10 induced ovulation [39]. Interestingly, 372 

a difference in the capacity of cattle Kp10 to trigger LH increase was observed in different cattle 373 

species with Holstein cows (Bos taurus) being more responsive than Gyr cows (Bos indicus) [112]. The 374 

potential impact of this difference on the capacity to trigger ovulation remains to be explored.  375 
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 376 

There is only a handful of studies on the effect of Kp and its analogs on male domestic animals.   377 

In adult and pre-pubertal male goats an intravenous injection of hKp10 stimulated the release of LH 378 

and testosterone [38]. Similar results were also obtained in adult rams by intramuscular injection of 379 

the Kp analog C6 [124]. In pre-pubertal Japanese bull calves a bolus injection of hKp10 increased both 380 

LH and FSH with a temporal profile similar to that observed in other species. Interestingly the effect 381 

was more pronounced in males compared to females of the same age [133]. This result is reminiscent 382 

of data obtained with the C6 in the mouse showing a longer lasting effect on LH plasma 383 

concentration in males compared to females [129].  384 

hKp10 and C6 were recently tested in pre-pubertal Holstein bull calves using a treatment consisting 385 

of a daily intramuscular injection for 4 days. hKp10 had no effect on LH and FSH concentration on 386 

both the first and last day of treatment [136]. This is not completely surprising because of the low 387 

dose used (20 nmol/calf) and the route of administration. Experiments comparing intravenous and 388 

intramuscular injection of hKp10 in pre-pubertal bull calves applying a higher dose (about 550 389 

nmol/calf) showed a significantly reduced effect of intramuscular compared to intravenous injection 390 

[133]. On the other hand, the first injection of C6 in bull calves increased LH plasma concentration for 391 

several hours but the increase after the fourth injection was limited if any. Interestingly, C6 had no 392 

immediate effect on circulating FSH, but at the fourth injection FSH level were lower compared to 393 

control [136].  394 

Further investigations will be required to evaluate if repeated administration of Kp or its analogs may 395 

be a valuable approach to stimulate male sexual behaviors during the non-breeding season in small 396 

ruminants and to advance the onset of puberty in bulls.  397 

 398 

6. Conclusions 399 

 400 
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In mammals an overall similar scenario has emerged showing that the Kp system plays a key role in 401 

stimulating the hypothalamo-pituitary-gonad axis. Yet significant species-specific differences exist 402 

and their potential implications in shaping the peculiar reproductive features of various domestic 403 

species is still unclear. To fully appreciate the many facets of these species-specific differences and 404 

their physiological reverberations in domestic animal reproduction, several aspects need to be 405 

further investigated. In particular differences in receptor and peptide localization, the physiological 406 

relevance of the different Kp isoforms, the creation of new tools for receptor localization, the 407 

implication of the Kp system in mediating sexual behavior, etc. are all exciting under-investigated 408 

areas of research. 409 

Outside reproduction, the involvement of the Kp system in other physiological functions ranging 410 

from control of metabolism to motivation to stress responses has been proposed. These functions 411 

are indirectly involved in reproduction and may complement the more direct effect of the Kp system 412 

on the reproductive axis. However, they have been only partially characterized in primates and 413 

rodents and remain almost unexplored in domestic animals. To conclude we could say that while 414 

much has been learned, more remains to be discovered on the physiological ramifications of the Kp 415 

system in reproduction control. 416 
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Figure Caption 844 

Figure 1. (A) Kp10 sequences of representative species. In red are indicated the amino acid variants 845 

in the sequence. (B) Concentration activity response of human, ovine, and equine Kp10 on a calcium 846 

mobilization assay on HEK293 transfected with the human KISS1R. Human and ovine Kp10 have very 847 

similar potency and efficacy, whereas equine Kp10 is about 10 times less potent. (C & D) Effect of the 848 

injection of ovine or equine Kp10 (15 nmol/animal) in the ewe. Blood samples (2 mL) were collected 849 

from the jugular vein every 15 minutes from 30 minutes before the injection of the drug to 45 850 

minutes after, and then every 30 minutes until experiment end. LH was measured with an RIA 851 

methods as previously described [129]. Both molecules increase the LH plasma concentration. 852 

However, the maximal amplitude (C) and the total amount (D) of LH released are significantly less 853 

after the injection of the equine Kp10. The black arrow in C indicates the time of molecule injection. 854 
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