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Abstract: 18 

Fillet yield (i.e. the proportion of edible muscle in a fish) is a key economic trait for species 19 

sold as fillets. Its genetic improvement is complicated by several of its characteristics 1) it is a 20 

ratio trait, 2) its numerator (fillet weight) and denominator (body weight) are strongly 21 

correlated (correlations in the range 0.89-0.99), 3) it offers little phenotypic variation and 4) it 22 

cannot be measured on alive breeding candidates. In a former study, we showed that it could 23 

be improved by selection, especially with three selection indices, fillet yield, residual fillet 24 

weight and a ratio-specific linear index. However, it is well known that the heritability of ratio 25 

traits does not permit a reliable prediction of genetic gains. As predictability of genetic gains 26 

is a key requirement to define breeding programs, we investigated how genetic gains in fillet 27 

yield could be predicted by the genetic parameters of fillet yield, of residual fillet weight and 28 

of the component traits of the linear index. To this end, we compared simulated genetic gains 29 

with those estimated by classical prediction methods. This was done using real sets of genetic 30 

parameters obtained in nine populations of rainbow trout, European sea bass, gilthead sea 31 
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bream and common carp. We show that the genetic parameters of fillet yield cannot be used 32 

to reliably predict genetic gains in fillet yield. Conversely, selection index theory using a 33 

linear index, combining either fillet weight and body weight or fillet weight and waste weight, 34 

provides almost perfect prediction of gains. Still, it is highly sensitive to the precision of the 35 

genetic and phenotypic correlations estimates, which should not be rounded to less than three 36 

decimals for fillet weight and body weight, while two decimals are appropriate for fillet 37 

weight and waste weight. A simple, reasonably precise alternative to the linear index is the 38 

use of residual fillet weight (the residual of the regression of fillet weight on body weight) as 39 

a surrogate for fillet yield.  40 

  41 



1. Introduction 42 

In fish selective breeding programs, the initial focus for selective breeding has always been 43 

growth rate (Chevassus et al., 2004; Gjedrem, 2012). However, the value of the round weight 44 

gain obtained is not the same in fish with high or low fillet yield (fillet weight/body weight 45 

ratio). This value can easily be turned into economic gains for species sold as fillets, where 46 

fillet yield can have a large impact on value added and net profit (Kankainen et al., 2016). 47 

Increasing the edible part of fish is also expected to decrease the environmental impact of the 48 

production of a given amount of edible fish flesh (Acosta Alba et al., 2015). The same 49 

reasoning applies for similar traits in other aquatic species, such as tail percentage in shrimp 50 

(Campos-Montes et al., 2017) or meat yield in shellfish (Nguyen et al., 2011). 51 

Selective breeding on a ratio is seen as a problematic issue, which has been studied in many 52 

farmed animals. The main focus has been given to feed conversion ratio (FCR), the ratio of 53 

average daily feed intake to average daily gain, which has a major economic impact in all 54 

intensive farming systems. Most studies about selection methods for ratio traits have thus 55 

focused on FCR (Famula, 1990; Gunsett, 1984; Lin, 1980; Lin and Aggrey, 2013; Varkoohi et 56 

al., 2010). The general conclusion of these studies is that selection on a linear index 57 

combining the numerator and the denominator trait is generally more efficient than direct 58 

selection on the ratio or on one of its component traits. We recently demonstrated by 59 

simulation that although the numerator and denominator of fillet yield are very highly 60 

correlated (genetic correlations in the range 0.93-0.99), selection for fillet yield should be 61 

efficient, albeit with moderate gains in the range 0.30-0.95% fillet per generation (Fraslin et 62 

al., 2018). This may be achieved with different selection indices, among which fillet yield 63 

itself, residual fillet weight (the residual of the regression of fillet weight on body weight) or a 64 

linear index combining fillet weight and waste weight, the latter being defined as the 65 

difference between body weight and fillet weight. In this previous study, we did not test a 66 

linear index combining fillet weight and body weight, but although these traits are more 67 

strongly correlated than fillet weight and waste weight, it would be plausible that linear index 68 

selection also works with such an index. 69 

The fact that selection gain on fillet yield can be obtained by those methods does not imply 70 

however, that such selection gains can easily be predicted from their genetic parameters. 71 

Indeed, it was previously shown that the heritability of a ratio trait, estimated from the 72 

analysis of covariance between relatives, was substantially different from the estimate 73 

obtained from simulated genetic gains (Gunsett, 1987), thus showing that the heritability of  74 



the ratio cannot be used to predict genetic gain. The same study showed that a method using 75 

selection index theory to approximate the process of selection on a ratio was more efficient, 76 

but still did not provide an exact estimate of genetic gain in all situations. On the contrary, 77 

when selection is done not on the ratio but on a linear index combining the numerator and the 78 

denominator in an optimal way, as proposed by Lin (1980) the genetic gain is expected to be 79 

perfectly predictable using standard selection index theory as long as the heritability, genetic 80 

and phenotypic correlations, and the phenotypic variance of both component traits are known 81 

(Lin and Aggrey, 2013).  82 

In general, prediction of gain on a single trait is very simple, as it can be done (in the case of 83 

mass selection) using the classical breeder’s equation ∆�= �ℎ���, which just requires the 84 

knowledge of the heritability h², the selection intensity i and the phenotypic standard 85 

deviation of the trait σP to estimate the genetic gain ΔG  (Falconer and Mackay, 1996). On the 86 

contrary, predicting gain from a two-trait linear index requires h² and σP for the two 87 

component traits, as well as the phenotypic and genetic correlation between them. In addition, 88 

it requires a bit of matrix algebra, versus a simple multiplication of three terms.  89 

If we want to predict genetic gain when using a linear index aimed at increasing the fillet to 90 

waste ratio, as suggested in Fraslin et al. (2018), the genetic parameters of fillet weight and 91 

waste weight are not available in the fish breeding literature today. If we want to predict 92 

genetic gain using a linear index aimed at increasing fillet yield, the genetic and phenotypic 93 

correlations of fillet weight and body weight are probably not known, or at least published, 94 

with sufficient precision (e.g. 0.99 can be anything from 0.9850 to 0.9949, which makes a big 95 

difference for such values which are very close to unity). In the published literature, most 96 

studies give genetic parameters of fillet yield, and quite a number also genetic parameters of 97 

residual fillet yield or log-residual fillet yield (e.g. Haffray et al., 2012; Prchal et al., 2018; 98 

Vandeputte et al., 2017, 2014). Thus, assessing which parameters to use in order to predict 99 

genetic gain in fillet yield is important 1) to assess which information from the existing 100 

literature is usable to predict genetic gains efficiently and 2) to eventually propose new sets of 101 

parameters to estimate in genetic studies of fillet yield in fish.    102 

To this end, we estimated the genetic parameters of body weight, fillet weight and waste 103 

weight (defined as waste weight= body weight – fillet weight) in nine field datasets from four 104 

important aquaculture species (rainbow trout Oncorhynchus mykiss, European sea bass 105 

Dicentrarchus labrax, gilthead sea bream Sparus aurata and common carp Cyprinus carpio). 106 

In the same datasets, we also estimated the genetic parameters of fillet yield and of residual 107 



fillet weight. Then, we performed stochastic simulation of selection using different selection 108 

indices to determine the expected genetic gain in the first generation, and compared this 109 

simulated gain with estimates derived from the genetic parameters of the traits using standard 110 

quantitative genetics theory for single traits (fillet yield and residual fillet weight) and linear 111 

indices. 112 

 113 

  114 



2. Materials and methods 115 

2.1. Estimation of genetic parameters for fillet traits  116 

In order to perform simulations of fillet weight, body weight and waste weight with realistic 117 

values, we first estimated their genetic and phenotypic parameters. The database used was 118 

composed of carcass traits recorded on nine commercial stocks from four species: European 119 

sea bass (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), common carp (Cyprinus 120 

carpio) and rainbow trout (Oncorhynchus mykiss). All fish used to estimate parameters were 121 

from factorial or partly factorial designs, with the pedigree identified by genotyping of 122 

microsatellite markers. All families were mixed, in order to minimize the environmental 123 

effect common to full siblings or half siblings. Number of offspring, of parents and of families 124 

as well as the age of the fish are given in Table 1. In all cases, the pedigree used comprised 125 

only the parental and the offspring generation. The estimations of genetic parameters were 126 

performed using an animal model with VCE (version 6.0.2, Groeneveld et al., 2010), using 127 

specific fixed effects for each population. For fillet yield, a single trait model was used. For 128 

residual fillet weight the same model was used with the addition of a linear regression term 129 

with body weight. Then we used two bivariate models 1) with fillet weight and waste weight 130 

and 2) with fillet weight and body weight in order to estimate the heritability, genetic and 131 

phenotypic correlations of the component traits. Genetic parameters for sea bass were 132 

estimated separately in two batches from the same population, the first one fed a standard diet 133 

with marine ingredients (Dla1_M), and the second one (Dla1_V) fed a plant-based diet 134 

(Bestin et al., 2014), with  sex (568 males and 289 females in Dla1_M, 550 males and 307 135 

females in Dla1_V) and dam batch (corresponding to 3 different subpopulations in the 136 

breeding nucleus, with N=301, 371 and 185 in Dla1_M and N=281, 376 and 200 in Dla1_V) 137 

as fixed effects. We chose to estimate genetic parameters separately in the two batches 138 

because we anticipated different heritability estimates in the two batches, as already seen 139 

before for growth on marine vs. plant-based diets in the same species (Le Boucher et al., 140 

2013). In a third batch from a different breeding population (Dla2), only sex (893 males, 482 141 

females) was used as fixed effect. For sea bream, three datasets were available: two with fish 142 

reared in tanks and one with fish reared in sea cages. For the first batch of tank-farmed sea 143 

bream (Sau_T1), tank (the group was reared in two different tanks, N=1249 and 751 ) and 144 

presence-absence of vertebral deformities were used as fixed effects (48 present, 1952 145 

absent), while only presence-absence of vertebral deformities (478 present, 1509 absent) was 146 

used for cage-farmed sea bream (Sau_C). For the second batch of tank-farmed sea bream 147 



(Sau_T2), no fixed effects were included as the fish were all reared in a single tank, and the 148 

very few fish with vertebral deformities were discarded from the dataset. For the first batch of 149 

rainbow trout (Omy1), fixed effects were processing day (5 days, N= 379, 452, 457, 489, 240) 150 

and filleting operator (2 operators, N=414 and 1603). For the second batch (from a different 151 

population, Omy2) no fixed effects were included, as there was no effect of processing day 152 

and there was only one filleting operator. For common carp (Cca1), the only fixed effect 153 

included was sex (751 males, 754 females, 48 unknown). Maternal effects were tested in all 154 

populations and found non-significant, so they were not included in the models. Note that 155 

populations Dla1_M, Dla1_V, Sau_T, Sau_C and Omy1 were already used to obtain genetic 156 

parameters in our previous simulation work (Fraslin et al., 2018) with a different objective, 157 

identifying selection indices that can efficiently be used to improve for fillet yield. Population 158 

Cca1 is the same as the one used by (Prchal et al., 2018), and population Omy2 is the SIBS 159 

population in Vandeputte et al. (in press). As it was key for the present study to have the 160 

different genetic and phenotypic parameters shown in Table 1 estimated with the same 161 

models, on exactly the same fish and with the same fixed effects, we chose to re-estimate all 162 

of them starting from the base data, although some of those estimates have already been 163 

published before (but never the whole set of parameters that we use here, for any of those 164 

populations). The use of different software and of different rules to include/exclude animals 165 

may result in small changes compared to the initial publications. 166 

Descriptive statistics (phenotypic means and standard deviation, adjusted for fixed effects) 167 

were computed and heritability (h²) was estimated for fillet weight, body weight, waste 168 

weight, fillet yield and residual fillet weight (Table 1). The additive genetic (rA) and 169 

phenotypic (rP) correlations were estimated for body weight, fillet weight and waste weight.  170 

 171 

2.2. Stochastic simulations 172 

2.2.1. Model used 173 

The traits simulated were non-trimmed fillet weight FW and waste weight WW, which were 174 

correlated with additive genetic correlation rA and phenotypic correlation rP. The waste was 175 

composed of viscera, head and bones of the fish. The reason for this choice, rather than 176 

simulating fillet weight and body weight, was to have less correlated traits than the classically 177 

used fillet weight and body weight. 178 



 The phenotypes in the base population (G0) were generated according to an additive 179 

polygenic model: 180 

	 
��
��� = 	 ������� + 	 ������� + 	 ������� [1] 181 

with 
� the phenotypic value of an individual for the trait i (i=FW for fillet weight, WW for 182 

waste weight) in the base population,  ��the phenotypic mean of the trait i, �� the additive 183 

genetic value of the trait i and ei0 the environmental residual for trait i.  184 

with p, a and e following bivariate normal distributions, � = 	 
��
��� ~ � ��� ;  ��� with 185 

�� = 	 ������� and �� =  � �²�� ��� �  ��� �  �²�  
!, " = 	 ������� ~ � #�" ;  �"$ with �" = 	00� 186 

and �" =  � �²&� �&� &  �&� &  �²&  
!, and ' = 	 ������� ~ � #�' ;  �'$ with �' = 	00� and �' =187 

 � �²(� �(� (  �(� (  �²(  
! 188 

Note that under a strictly additive genetic model as considered, ��� )� �&� *� �(� 
� , 189 

��  )� �&  *� �(  
� , and that ��� �  = �&� &  + �(� (   under the reasonable 190 

hypothesis that �&� (  = �(� &  = 0 (Lynch and Walsh, 1998). Thus, knowing �� and 191 

�" is enough to determine �', and all parameters are determined when the mean, phenotypic 192 

standard deviation, heritability of fillet weight and waste weight are known, together with the 193 

genetic and phenotypic correlations between them. 194 

2.2.2. Selection indices 195 

Three selection indices were tested, in order to compare their relative efficiency in terms of 196 

gain in fillet yield after one generation of selection. In the simulation program, these selection 197 

indices were used to calculate the estimated breeding values (EBVs) of the candidates in the 198 

base population. The indices tested were the following: 199 

1)  Selection on fillet yield: +, = -. =  
�� #
�� + 
��$⁄  [2] 200 

2) Linear selection index : +0��1 =  2��. 
�� +  2��. 
��  as proposed by Lin (1980) with 201 

coefficients 2�� and 2�� derived from selection index theory to maximize the fillet to 202 

waste ratio -45 = 
�� 
��⁄ , after it was linearized using a first order Taylor series 203 

expansion. The resulting coefficients are: 204 



 7 = 8 2��2��9 =  :�;<:"  8 1/���− ���/���� 9  [3] 205 

3) Selection on residual fillet yield: +@AB = C-4 =  
�� − D#
�� +  
��$ − E  [4] 206 

with c and d the slope and intercept of the linear regression of fillet weight FW on body 207 

weight (BW=FW+WW) in the base (candidates) population.  208 

The candidates were ranked using the candidate’s own phenotypic performance for a given 209 

index. This mass selection case is not possible in real life, but is easier to manage in terms of 210 

results as the response depends only on selection intensity, genetic and phenotypic 211 

parameters, and not on technical parameters such as the type (full and half-sibs) and the 212 

number of sibs per family, which influence sib selection response. For each of the nine 213 

populations tested, three selection intensities were tested (5%, 20% and 50% of the candidates 214 

selected, corresponding to standardized selection intensities of 2.06, 1.40 and 0.80, 215 

respectively). The number of selection candidates generated was 4000 for 5%, 1000 for 20% 216 

and 400 for 50%. The best 100 males and the best 100 females were selected and their average 217 

additive genetic values for fillet weight ���FFFFF  and for waste weight ���FFFFFF were used to estimate 218 

the genetic gain for the index used (index= IY, ILFWR, Ires) in the first generation: 219 

∆-.B�G#�HE�I$ = J� K*L� FFFFFFF
J� K*L� FFFFFFF*J  K*L  FFFFFFFF − J� K

J� K*J  K [5] 220 

Fifty simulations were ran for each of the 27 combinations of parameters (9 populations * 3 221 

selection intensities), and the average simulated genetic gain used in further analyses was the 222 

average of those 50 simulations. It has to be noted that the phenotypic and genetic parameters 223 

of fillet weight and waste weight, as well as the selection intensity, were the only parameters 224 

needed to simulate all selection scenarios. 225 

2.2.4. Comparison of indices  226 

We compared the simulated gains for the three indices IY, ILFWR and Ires (see 2.2.3) which were 227 

previously shown to give similar results over 10 generations in five populations of fish with a 228 

selection pressure of 20% by Fraslin et al. (2018). In the present paper, only the first 229 

generation was simulated, with more (nine) populations and three selection intensities, thus 230 

validating their efficiency was necessary. 231 

2.2.5. Prediction of gains with linear indices 232 



The next objective of the study was to evaluate the efficiency of the approach of Lin and 233 

Aggrey (2013) to predict gains obtained with the linear index ILFWR, aimed at improving the 234 

fillet weight/waste weight ratio. The predicted fillet yield was computed as follows: 235 

∆-.M@AN#+0��1$ = J� K*L� O
J� K*L� O *J  K*L  O − J� K

J� K*J  K [6] 236 

With 8 ���P���O9 = �"7#� Q7′��7S $   [7] 237 

where i is the standardized selection intensity. See 2.2.1 and 2.2.2 for the definitions of Va, Vp 238 

and b. 239 

A similar approach was tried with a linear index ILFY aimed at improving fillet yield (the fillet 240 

weight/body weight ratio): 241 

∆-.M@AN#+0�,$ = J� K*L� O
JT K*LT O − J� K

JT K   [8] 242 

Where ���P  and �U�P  are estimated in the same way as with ILFWR, using the genetic and 243 

phenotypic parameters of fillet weight and body weight (instead of fillet weight and waste 244 

weight) to establish Va, Vp and b.. 245 

2.2.6. Prediction of gains with the genetic parameters of fillet yield 246 

To predict genetic gains with the genetic parameters of fillet yield, we used the breeder’s 247 

equation from Falconer and Mackay (1996): 248 

∆-.M@AN#+,$ = �ℎ�,� ���V  [9] 249 

Where i is the standardized selection intensity, ℎ�,�  is the heritability of fillet yield and ���V is 250 

the phenotypic standard deviation of fillet yield. 251 

2.2.7. Prediction of gains with the genetic parameters of residual fillet weight 252 

In this case, we predicted the gain in residual fillet yield with the breeder’s equation:  253 

∆C-4 = �ℎ@��� ��W�  [10] 254 

Where ℎ@���  and ��W�  are the heritability and the phenotypic standard deviation of residual 255 

fillet yield. Then, the gain in fillet yield was estimated by dividing ∆C-4 by the body weight 256 

in G0: 257 

∆-.M@AN#+@AB$ = ∆C-4 #⁄ ��� + ���$  [11] 258 

2.2.8. Effect of the precision of heritability and correlations on predicted gains 259 



In all simulations and for estimating predicted gains, the we used a precision of three decimals 260 

for “true” values of heritability and genetic and phenotypic correlations, except for the genetic 261 

and phenotypic correlations of FW with BW for which we used a precision of four decimals. 262 

The impact of rounding the genetic parameters to two or three decimals for the prediction was 263 

studied for ∆-.M@AN#+@AB$, ∆-.M@AN#+0��1$ and ∆-.M@AN#+0�,$. 264 

In addition, the genetic parameters we considered as “true” are only estimates, with an 265 

associated standard error (see Table 1). We investigated the consequences on predicted 266 

genetic gains of sampling the parameters in a normal distribution centered on the estimate of 267 

each parameter, with a standard deviation equal to the standard error of the estimate. For each 268 

case, we simulated 1000 sets of parameters and looked at the predicted gain for a selection 269 

intensity of i=1.4 (P=20%).  270 

For ∆-.M@AN#+@AB$, the estimated parameter influencing selection response is h²rFW, and thus 271 

1000 values of h²rFW were sampled in �#ℎ@���X , �Z[W� \ ) and ∆-.M@AN#+@AB$ was calculated with 272 

equations [10] and [11], for each of our 9 populations 273 

For ∆-.M@AN#+0�,$, the estimated parameters influencing predicted response are first the 274 

correlations ra(FW, BW) and rp(FW, BW), which for each sample were both modified in the 275 

same direction by adding to their estimate the quantity ]^�Z@_#��,U�$, where X1 is a standard 276 

normal deviate, considering that ra and rp generally covary in the same direction and are rather 277 

similar to each other for morphological traits (Roff, 1995). Second, ∆-.M@AN#+0�,$ is also 278 

influenced by h²FW and h²BW, which also both modified simultaneously by adding to their 279 

respective estimates the quantities ]��Z[W� \  and ]��Z[WT \ , with X2 another standard normal 280 

deviate. Then ∆-.M@AN#+0�,$ was calculated with equation [9].  281 

The same reasoning was applied to ∆-.M@AN#+0��1$, which was then calculated with equation 282 

[6]. 283 

Note that for both ∆-.M@AN#+0�,$ and ∆-.M@AN#+0��1$, these are only approximations with the 284 

following important hypotheses: 1) the genetic parameters are normally distributed 2) genetic 285 

and phenotypic correlations between FW and BW or WW covary by the same amount relative 286 

to their estimate when they are sampled 3) the heritability of FW and of BW or WW covary 287 

by the same proportion when ay are sampled and 4) the estimates of correlations are 288 

independent of the estimates of heritability. 289 

2.2.9. Statistical analyses 290 



The simulated values for the 27 combinations of parameters (9 populations * 3 selection 291 

intensities, each value being the average of 50 simulations) were compared to the predicted 292 

ones using linear regression.   293 

 294 

  295 



3. Results 296 

3.1. Estimation of genetic and phenotypic parameters 297 

The detailed phenotypic and genetic parameters estimated for each population are reported in 298 

Table 1, and example distribution of the traits for population Omy2 are given in Suppl. Fig. 1. 299 

Fillet weight was highly correlated with waste weight in all species (rA = 0.874-0.976 and rP = 300 

0.823-0.962 on average). Fillet weight and body weight were even more correlated, with 301 

additive genetic correlation ranged from 0.9821 to 0.9952 and phenotypic correlation ranged 302 

from 0.9718 to 0.9937. The heritability of fillet yield was between 0.110 and 0.460, and that 303 

of residual fillet weight between 0.101 and 0.542.  The heritability of fillet weight and body 304 

weight were in general very similar, in the range 0.184 to 0.632.  305 

3.2. Comparison of selection indices  306 

The simulated gains in the first generation using IY, ILFWR, Ires as selection indices are shown 307 

in Fig. 1. The higher gains were obtained with the linear index ILFWR, but the gains obtained 308 

with selection on fillet yield and selection on residual fillet yield were only marginally lower 309 

(on average 95.2 % and 95.9% of the linear index gains, respectively). The correlation 310 

between the gains obtained with the three methods were very high (0.993 between ILFWR and 311 

Ires, 0.989 between Ires and IY, and 0.990 between ILFWR and IY). 312 

3.3. Prediction of gains with linear indices 313 

We used standard selection index theory to predict the first generation gains in fillet yield in 314 

two ways: with a linear index aimed at improving the fillet weight to waste weight ratio, 315 

providing the ∆-.M@AN#+0��1$ predictor, and with a linear index aimed at improving fillet 316 

yield (the fillet weight to body weight ratio), which yielded the ∆-.M@AN#+0�,$ predictor. As 317 

expected, both predictors resulted in a close to perfect prediction of the simulated gain  318 

∆-.B�G#+0��1$, as shown in Fig. 2. 319 

3.4. Prediction of gains with the genetic parameters of fillet yield 320 

When the simulated gain ∆-.B�G#+,$ was predicted with ∆-.M@AN#+,$, using the breeder’s 321 

equation with the genetic parameters of fillet yield, the prediction was by far less efficient. 322 

The coefficient of determination of the simulated gain by the predicted gain was 0.70, and the 323 

average simulated gain was only 84% of the predicted gain (Fig. 3a). However, this was very 324 

much dependent on the batch of fish: the average simulated gain was up to 142% of the 325 

predicted gain in the Dla2 stock of sea bass, while it could be as low as 65% of the predicted 326 



gain in the Dla1_V stock of sea bass (Fig. 3b). For each population, while the relation 327 

between the average simulated gain and the predicted gain could be very biased (as expresses 328 

by the slope of the regression), this bias did not depend strongly on the selection intensity, as 329 

the simulated response was highly linear with the predicted response (individual regressions 330 

within each population had a r² between 0.936 and 0.998)    331 

3.5. Prediction of gains with the genetic parameters of residual fillet weight 332 

When the simulated gain ∆-.B�G#+@AB$ was predicted with ∆-.M@AN#+@AB$, the prediction was 333 

not perfect but reasonably accurate. The coefficient of determination of the simulated gain by 334 

the predicted gain was 0.952 on average, and the simulated gain was on average 92.7% of the 335 

predicted gain (Fig. 4a). This was also dependent on the batch of fish: the average simulated 336 

gain was up to 102% of the predicted gain in the Dla1_V stock of sea bass, and down to 80% 337 

of the predicted gain in the CCa1 stock of common carp (Fig. 4b)  338 

3.6. Impact of the precision of genetic parameters in prediction equations 339 

Figure 5 shows the impact of rounding the genetic parameters to three or two decimals before 340 

using them in prediction equations to predict the simulated gain in fillet yield ∆-.B�G#+0��1$. 341 

For the linear index based on fillet weight and body weight, the precision of ∆-.M@AN#+0�,$ 342 

was little affected when rounding to three decimals (Fig. 5a, left panel) compared with four 343 

decimals (Fig. 2b), as the coefficient of determination of the simulated values by the predicted 344 

values changed from 0.9991 to 0.9955. However, it dropped dramatically, down to 0.45, when 345 

the genetic parameters were rounded to two decimals. This effect was smaller when the 346 

simulated gain was predicted with a linear index of fillet weight and waste weight, with 347 

∆-.M@AN#+0��1$, as the coefficient of determination changed from 0.9992 with three decimals 348 

to 0.9824 with two decimals. The prediction metric which was least affected by rounded 349 

genetic parameters was ∆-.M@AN#+@AB$, for which the coefficient of determination was 0.952 350 

with two decimals and 0.953 with three decimals. 351 

We also examined the uncertainty on genetic gain by predicting genetic gains with resampling 352 

of the genetic parameters according to the standard errors of their estimates (Fig. 6). It shows 353 

that with the precision of our estimates, the predicted genetic gains with the three methods are 354 

comparable, although the predicted response with residual fillet yield seems slightly more 355 

variable in several cases.  356 

 357 



 358 

4. Discussion 359 

The simulations we performed, using estimated genetic parameters from real data from nine 360 

population of four fish species, clearly confirm that fillet yield, defined as the ratio of fillet 361 

weight to body weight, can be genetically improved by selection. We simulated selection with 362 

different indices, identified among the most efficient in a previous study (Fraslin et al., 2018), 363 

and their performance was confirmed over a wide range of populations and selection 364 

intensities. The linear index ILFWR (Gunsett, 1984; Lin, 1980; Lin and Aggrey, 2013), 365 

developed to improve selection gains on ratio traits, was the most efficient, approximately 4% 366 

better than selection on residual fillet weight Ires and 5% better than direct selection on fillet 367 

yield IY. This is in line with theory, as Lin and Aggrey (2013) showed that the linear index 368 

should always give better results than direct selection on the ratio. These results hold for the 369 

first generation, but may not be repeatable on the longer term as Fraslin et al. (2018) showed 370 

that after simulating 10 generations, ILFWR was in general a little outperformed by Ires and IY. 371 

For longer term (genetic trend) studies, Bayesian methods may be more efficient, have they 372 

have shown to be for studying another ratio (FCR) in pigs (Shirali et al., 2018).    373 

This possibility for genetic gain is real, despite the very high correlations between FW and 374 

BW, which in our nine study cases range from 0.982 to 0.996 for the additive genetic 375 

correlation, and from 0.983 to 0.993 for phenotypic correlation, somehow higher than 376 

published values from previous studies in various fish species, which typically range from 377 

0.93 to 0.99 for the additive genetic correlation and from 0.89 to 0.99 for the phenotypic 378 

correlation (Gjerde et al., 2012; Haffray et al., 2012; Kause et al., 2007, 2002; Navarro et al., 379 

2009; Nguyen et al., 2010; Powell et al., 2008; Rutten et al., 2005a). We hypothesize that the 380 

higher values we obtain are linked to the very careful dissection of fillet that was done in all 381 

our experiments, with the aim to minimize environmental noise. 382 

In order to plan selection for fillet yield, it is essential to be able to project potential gains 383 

from genetic parameters. Many studies have been conducted to estimate the genetic 384 

parameters of fillet traits in fish (Gjerde et al., 2012; Haffray et al., 2012; Kause et al., 2007, 385 

2002; Kocour et al., 2007; Navarro et al., 2009; Nguyen et al., 2010; Powell et al., 2008; 386 

Prchal et al., 2018; Rutten et al., 2005b; Saillant et al., 2009; Sang et al., 2012; Schlicht et al., 387 

2019; Thodesen et al., 2012; Tsai et al., 2015; Turra et al., 2018; Vandeputte et al., 2017, 388 

2014). All of them estimated genetic parameters of fillet yield, and only a few estimated 389 



genetic parameters for (log-transformed) residual fillet yield (Haffray et al., 2012; Prchal et 390 

al., 2018; Vandeputte et al., 2017, 2014). Here we showed that the heritability of fillet yield 391 

only enables a very approximate estimation of potential gains in fillet yield (Fig. 3), thus 392 

questioning their usefulness to decide on future breeding programs. The populations where 393 

the estimate was the worst were among those with very high genetic correlations of fillet 394 

weight and body weight (0.990 or higher), but the bias could be in either direction (over 395 

estimation for Dla1_V and Omy2, under estimation for Dla2 and Sau_T2). However, one of 396 

the best estimates of genetic gain using the genetic parameters of fillet yield was for Omy1, 397 

for which the genetic correlation of fillet weight and body weight was also very high (0.9915). 398 

Thus, there seems to be no simple way to identify meaningful estimates of heritability for 399 

fillet yield. The fact that the heritability of a ratio, estimated from correlation between 400 

relatives, differs from the “realized “ heritability estimated from simulated selection had 401 

already been demonstrated by Gunsett (1987) in the context of selection for feed conversion 402 

ratio. The range of parameter values that Gunsett tested for the numerator and the 403 

denominator of the ratio was similar to our values for heritability (0.1 to 0.7, vs. 0.2 to 0.7 in 404 

our data), but very different for the genetic correlation which was 0 or 0.5 (0.982 to 0.996 for 405 

FW and BW in our data). Still, we see the same type of discrepancies between predicted and 406 

simulated values, but with higher biases in the present study: when both numerator and 407 

denominator heritability values were equal and the genetic correlation is 0.5, the genetic gain 408 

predicted by the ratio heritability was 95 to 121% of the simulated gain in Gunsett (1987), and 409 

this difference ranged from 65 to 142% in our case. 410 

The solution proposed by several authors (Gunsett, 1987; Lin and Aggrey, 2013) to overcome 411 

this difficulty is to use selection index theory to predict genetic gain on a linear index 412 

combining the numerator (fillet yield) and the denominator trait (body weight or waste 413 

weight). We showed that this was very efficient, as linear predictions based on the covariation 414 

of fillet weight or waste weight or of fillet weight and body weight led to an almost perfect 415 

prediction of the simulated gain in fillet yield (Fig. 2). This confirms the observations by 416 

Gunsett (1987), who showed that the linear index enabled excellent prediction of the genetic 417 

change for the numerator and the denominator, and thus that of the ratio itself (here, fillet 418 

yield). This works well even though in our case, the heritability of numerator and 419 

denominator are very similar to each other, and the correlations between them extremely high, 420 

a case not tested by Gunsett.  421 



While modelling the joint genetic change in numerator and denominator values is less 422 

practically convenient than a simple prediction of one trait (the ratio of interest, fillet yield) 423 

with the breeder’s equation, it is remarkably efficient and more satisfying as it also shows by 424 

which combination of increase or decrease of the numerator and denominator traits the ratio 425 

changes. Thus, as the published literature on selection for fillet yield in fish almost always 426 

includes genetic parameters of fillet weight and body weight, this could be used to evaluate 427 

potential gains. However, in all of the twenty previously cited studies on the subject, 428 

heritability estimates, phenotypic and genetic correlations were reported with (and thus 429 

rounded to) two decimals. We showed that given the very high correlations implied, rounding 430 

genetic and phenotypic correlations of FW and BW to two decimals may create large biases in 431 

the estimations of genetic gains, using the otherwise optimal selection index theory (Fig. 5a). 432 

One typical case in our data is population Dla2, where the genetic correlation of 0.9959 would 433 

be rounded to 1.00, leading to 0.00-0.01% predicted gain depending on selection intensity, 434 

while the expected gain with 0.9959 would range between 0.26 and 0.73%. A possible 435 

alternative is to use the genetic parameters of fillet weight and waste weight, as previously 436 

suggested (Fraslin et al., 2018), as they are less sensitive to this rounding issue (Fig. 5b). If 437 

genetic parameters of fillet weight and body weight are to be used, but they should be 438 

reported with 3 decimals, at least for what concerns genetic and phenotypic correlations.  439 

A few previous studies used regression residuals of fillet weight on body weight as surrogates 440 

for fillet yield (Haffray et al., 2013, 2012; Prchal et al., 2018; Vandeputte et al., 2017, 2014). 441 

Our results show that such an approach should be more satisfying than using the genetic 442 

parameters of fillet yield, most of the time providing a reasonable estimate of potential gains 443 

in fillet yield (Fig. 4). It has to be noted that the above-cited studies did not use simple 444 

regression residuals, but regression residuals on log-log transformed data. The main 445 

advantage of log-log transformed data is that they reduce scaling effects and take into account 446 

possible non-linear allometric development of body parts. In the data sets we used here, 447 

although fillet weight and waste weight were in general not normally distributed, their 448 

bivariate distribution was closer to the bivariate normal distribution than the log-log 449 

distribution was. As we used bivariate normal distributions to run the simulations, we chose to 450 

use simple regression residuals and not log-residuals. Still, if the bivariate log-log distribution 451 

of the data fits more with a bivariate normal, there should be no reason for the use of log-452 

residuals not to be equally good to predict gains in fillet yield as the simple residuals used in 453 

the present study. The fact that residual fillet weight is a single trait, easily managed with the 454 



breeder’s equation, is a clear advantage, as knowing the heritability and the phenotypic 455 

variance, it is very easy to project genetic gains, more than with the two-traits linear index. A 456 

second advantage of this method is that it is little affected by the rounding of genetic 457 

parameters, as the usual two decimals are appropriate (Fig. 5c).  458 

When the estimated genetic parameters were resampled from the distribution of their 459 

estimates, we saw that the uncertainty in predicted gains was rather similar among methods 460 

(IFY, IFWR and Ires), with a slight disadvantage for Ires in terms of both bias and precision. This 461 

shows that although Ires is less sensitive to rounding of the genetic parameters to two 462 

decimals, it is not more precise in a given design, with a given level of precision of the 463 

estimates. 464 

To conclude, the genetic parameters of fillet yield were shown not to adequately reflect the 465 

potential of selective breeding for this trait, and should therefore not be used anymore. The 466 

most precise method to predict genetic gain is the linear index theory, using the joint genetic 467 

and phenotypic variation of fillet weight and body weight, but the precision of this method is 468 

highly dependent on the precision of the estimates of genetic and phenotypic correlations. 469 

These correlations should not be rounded to less than three decimals. Alternatively, a simple 470 

and reasonably precise method to project genetic gains in fillet yield is the use of residual 471 

fillet weight as a surrogate of fillet yield.  472 

  473 
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Table 1: Phenotypic means (± standard deviation) and genetic parameters (± standard error of the estimate, SEE) of fillet traits in nine population 

batches of five fish species. Fillet weight is the untrimmed, skin-on, ribs-on fillet weight. Waste weight is the difference between body weight 

and fillet weight. Residual fillet weight is the residual of the regression of fillet weight on body weight. Standard deviations of the traits are 

estimated after adjustment for the appropriate fixed effects (see § 2.1). 

 

          

Species Dicentrarchus labrax Sparus aurata Oncorhynchus mykiss 
Cyprinus 

carpio 

Batch Dla1_V Dla1_M Dla_2 Sau_T1 Sau_C Sau_T2 Omy1 Omy2 Cca1 
Age (days) 

Nsires, Ndams 
N full-sib families 
N half-sib families 

715 
45♂ 15♀ 

190 
60 

715 
45♂ 15♀ 

191 
60 

690 
48♂ 17♀ 

135 
65 

417 
82♂ 26♀ 

238 
108 

620 
82♂ 19♀ 

158 
101 

528 
77♀ 26♂ 

188 
103 

509 
100♂ 60♀ 

558 
160 

551 
98♂ 70♀ 

539 
168 

907 
40♂ 20♀ 

197 
60 

N offspring 857 857 1375 2000 1987 1495 2017 1715 1553 

Body weight - BW(g) 734.0 ± 194.1 869.2 ± 169.2 285.0 ± 65.0 321.0 ± 44.6 381.8 ± 63.3 250.4 ± 59.3 1622.4 ± 358.4 1923.3 ± 376.0 1910.5 ± 284.6 

Fillet weight -FW (g) 411.6 ± 116.4 496.0 ± 101.0 166.7 ± 39.1 187.8 ± 28.1 230.2 ± 41.4 143.6 ± 36.2 1047.1 ± 240.8 1317.4 ± 268.6 952.3 ±155.6 

Waste weight - WW (g) 322.4 ± 81.8 373.2 ± 74.2 118.3 ± 26.4 133.2 ± 18.5 151.6 ± 23.9 106.8 ± 24.1 575.3 ± 122.5 605.9 ± 113.5 958.2 ±136.6 

Residual FW - rFW (g) 0 ± 19.74 0 ± 22.53 0 ± 4.40 0 ± 6.63 0 ± 7.67 0 ± 5.48 0 ± 29.46 0 ± 30.78 0 ± 33.24 

Fillet yield - FY 0.557 ± 0.035 0.571 ± 0.027 0.584 ± 0.016 0.584 ± 0.021 0.601 ± 0.023 0.571 ± 0.026 0.644 ± 0.019 0.683 ±0.020 0.497 ± 0.019 

h² BW 0.395 ± 0.083 0.213 ± 0.061 0.357 ± 0.046 0.403 ± 0.056 0.334 ± 0.062 0.212 ± 0.056 0.350 ± 0.052 0.382 ± 0.068 0.632 ± 0.094 

h² FW 0.413 ± 0.086 0.226 ± 0.064 0.342 ± 0.046 0.419 ± 0.057 0.322 ± 0.060 0.184 ± 0.053 0.339 ± 0.050 0.375 ± 0.067 0.539 ± 0.086 

h² WW 0.359 ± 0.079 0.179 ± 0.057 0.374 ± 0.046 0.351 ± 0.057 0.343 ± 0.063 0.253 ± 0.061 0.353 ± 0.050 0.399 ± 0.066 0.723 ± 0.091 

h² rFW 0.270 ± 0.075 0.101 ± 0.053 0.256 ± 0.064 0.280 ± 0.050 0.271 ± 0.052 0.209 ± 0.053 0.395 ± 0.050 0.399 ± 0.052 0.542 ± 0.089 

h² FY 0.316 ± 0.073 0.111 ± 0.054 0.148 ± 0.037 0.310 ± 0.052 0.224 ± 0.048 0.110 ± 0.040 0.384 ± 0.053 0.460 ± 0.077 0.356 ± 0.071 

ra (FW,WW) 0.942 ± 0.022 0.935 ± 0.040 0.976 ± 0.007 0.874 ± 0.031 0.895 ± 0.031 0.948 ± 0.023 0.925 ± 0.016 0.925 ± 0.019 0.932 ±0.020 

rp (FW, WW) 0.915 0.861 0.962 0.823 0.871 0.929 0.934 0.925 0.897 

ra (FW, BW) 
0.9909 ± 

0.0036 
0.9898 ± 

0.0064 
0.9959 ± 

0.0012 
0.9821 ± 

0.0046 
0.9854 ± 

0.0044 
0.9899 ± 

0.0043 
0.9915 ± 

0.0020 
0.9931 ± 

0.0019 
0.9824 ±  

0.0055 

rp (FW, BW) 0.9856 0.9749 0.9937 0.9718 0.9827 0.9885 0.9925 0.9934 0.9773 



Figure captions 

Figure 1: Simulated gains in fillet yield in the first generation using a linear index ILFWR , 

compared with the simulated gains obtained by selection on fillet yield IY (a) and on residual 

fillet weight Ires (b). The 27 data points are the combination of nine populations of sea bass, 

sea bream, rainbow trout and common carp with three selection intensities of 50%, 20% and 

5%. 

Figure 2: Comparison of simulated gains in fillet yield in the first generation using a linear 

index ILFWR with their predicted values using selection index theory, either (a) with the genetic 

parameters of fillet weight and waste weight ∆-.M@AN#+0��1$, or (b) using the genetic 

parameters of fillet weight and body weight∆-.M@AN#+0�,$. The 27 data points are the 

combination of nine populations of sea bass, sea bream, rainbow trout and common carp with 

three selection intensities of 50%, 20% and 5%. 

Figure 3: Comparison of simulated gains in fillet yield in the first generation by selection on 

fillet yield IY with their predicted values using the genetic parameters of fillet yield. (a) Global 

view, with all populations and selection intensities mixed. (b) With populations identified. 

Figure 4: Comparison of simulated gains in fillet yield in the first generation by selection on 

residual fillet yield Ires with their predicted values using the genetic parameters of residual 

fillet weight. (a) Global view, with all populations and selection intensities mixed. (b) With 

populations identified. 

Figure 5: Impact of the rounding of the genetic parameters used in the prediction equations 

(left panel: 3 decimals and right panel: 2 decimals for heritability and genetic correlations) to 

predict simulated gain with (a) selection index theory with genetic parameters of fillet weight 

and body weight (b) selection index theory with genetic parameters of fillet weight and waste 

weight and (c) breeder’s equation using residual fillet yield. 

Figure 6: Analysis of the sensitivity of the predicted genetic gain in fillet yield to the errors of 

the estimates of genetic parameters. Each boxplot represents a sample of 1000 values where 

the relevant genetic parameters were sampled in normal distributions representative of the 

precision of the estimates from Table 1 (see §2.2.8). Each of the 9 populations is represented 

with a specific colour, the full boxplot represents ∆-.M@AN#+0�,$, the one with diagonal lines  

∆-.M@AN#+0��1$ and the one with vertical lines ∆-.M@AN#+@AB$. 
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