

# $\beta$ -arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation

Bastian Czogalla, Alexandra Partenheimer, Udo Jeschke, Viktoria von Schönfeldt, Doris Mayr, Sven Mahner, Alexander Burges, Manuela Simoni, Beatrice Melli, Riccardo Benevelli, et al.

## ▶ To cite this version:

Bastian Czogalla, Alexandra Partenheimer, Udo Jeschke, Viktoria von Schönfeldt, Doris Mayr, et al..  $\beta$ -arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation. Frontiers in Endocrinology, 2020, 11, pp.1-12. 10.3389/fendo.2020.554733 . hal-03151063

## HAL Id: hal-03151063 https://hal.inrae.fr/hal-03151063

Submitted on 24 Feb 2021

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License





# β-arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation

Bastian Czogalla<sup>1\*†</sup>, Alexandra Partenheimer<sup>1†</sup>, Udo Jeschke<sup>1,2</sup>, Viktoria von Schönfeldt<sup>1</sup>, Doris Mayr<sup>3</sup>, Sven Mahner<sup>1</sup>, Alexander Burges<sup>1</sup>, Manuela Simoni<sup>4,5,6,7</sup>, Beatrice Melli<sup>4</sup>, Riccardo Benevelli<sup>4</sup>, Sara Bertini<sup>4</sup>, Livio Casarini<sup>4,5‡</sup> and Fabian Trillsch<sup>1‡</sup>

#### **OPEN ACCESS**

#### Edited by:

Jianfeng Liu, Huazhong University of Science and Technology, China

#### Reviewed by:

Prathibha Ranganathan, Centre for Human Genetics (CHG), India Francesca Lovat, The Ohio State University, United States

\*Correspondence:

Bastian Czogalla bastian.czogalla@ med.uni-muenchen.de

<sup>†</sup>These authors share first authorship

<sup>‡</sup>These authors share senior authorship

#### Specialty section:

This article was submitted to Cancer Endocrinology, a section of the journal Frontiers in Endocrinology

Received: 22 April 2020 Accepted: 12 August 2020 Published: 18 September 2020

#### Citation:

Czogalla B, Partenheimer A, Jeschke U, von Schönfeldt V, Mayr D, Mahner S, Burges A, Simoni M, Melli B, Benevelli R, Bertini S, Casarini L and Trillsch F (2020) β-arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation. Front. Endocrinol. 11:554733. doi: 10.3389/fendo.2020.554733 <sup>1</sup> Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany, <sup>2</sup> Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany, <sup>3</sup> Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany, <sup>4</sup> Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy, <sup>5</sup> Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy, <sup>6</sup> Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy, <sup>7</sup> PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France

Establishing reliable prognostic factors as well as specific targets for new therapeutic approaches is an urgent requirement in advanced ovarian cancer. For several tumor entities, the ubiquitously spread scaffold protein β-arrestin 2, a multifunctional scaffold protein regulating signal transduction and internalization of activated G protein-coupled receptors (GPCRs), has been considered with rising interest for carcinogenesis. Therefore, we aimed to elucidate the prognostic impact of  $\beta$ -arrestin 2 and its functional role in ovarian cancer. β-arrestin 2 expression was analyzed in a subset of 156 samples of ovarian cancer patients by immunohistochemistry. Cytoplasmic expression levels were correlated with clinical as well as pathological characteristics and with prognosis. The biologic impact of β-arrestin 2 on cell proliferation and survival was evaluated, in vitro. Following transient transfection by increasing concentrations of plasmid encoding β-arrestin 2, different cell lines were evaluated in cell viability and death. β-arrestin 2 was detected in all histological ovarian cancer subtypes with highest intensity in clear cell histology. High β-arrestin 2 expression levels correlated with high-grade serous histology and the expression of the gonadotropin receptors FSHR and LHCGR, as well as the membrane estrogen receptor GPER and hCG $\beta$ . Higher cytoplasmic  $\beta$ -arrestin 2 expression was associated with a significantly impaired prognosis (median 29.88 vs. 50.64 months; P = 0.025). Clinical data were confirmed in transfected HEK293 cells, human immortalized granulosa cell line (hGL5) and the ovarian cancer cell line A2780 in vitro, where the induction of  $\beta$ -arrestin 2 cDNA expression enhanced cell viability, while the depletion of the molecule by siRNA resulted in cell death. Reflecting the role of  $\beta$ -arrestin 2 in modulating GPCR-induced proliferative and anti-apoptotic signals, we propose  $\beta$ -arrestin 2 as an important prognostic factor and also as a promising target for new therapeutic approaches in advanced ovarian cancer.

Keywords: β-arrestin 2, ovarian cancer, immunohistochemistry, survival analysis, G protein-coupled receptor, *in vitro* analyses

## INTRODUCTION

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy and is considered the fifth leading cause of death among women (1), mainly due to late diagnosis in advanced tumor stage leading to overall poor prognosis. Lack of inadequate screening methods and rising resistances toward chemotherapy over the clinical course further contribute to the relatively low 5-years survival at around 45% (1, 2). Standard treatment for advanced EOC consists of primary cytoreductive surgery, followed by platinum-based combination chemotherapy followed by targeted therapies like the anti-angiogenic antibody bevacizumab or PARP inhibitors. To date, the most reliable prognostic factors include volume of post-operative residual disease, tumor stage diagnosed according to the International Federation of Gynecology and Obstetrics (FIGO) staging system, patient's age and histology (2-7). EOCs are classified into four histological subtypes: serous, mucinous, endometrioid, and clearcell, which vary in terms of phenotype, etiology and molecular background (8). Taking the heterogeneity of ovarian cancer into account appears crucial for developing new prognostic and therapeutic strategies.

β-arrestin 2 is a multifunctional scaffold protein regulating signal transduction and internalization of activated G proteincoupled receptors (GPCRs) like follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/choriogonadotropin receptor (LHCGR) by promoting clathrin-dependent endocytosis (9). The β-arrestin family is a known activator of signaling pathways involved in tumorgenesis (10–12) and proliferation of certain tumor entities (13–17), including ovarian cancer (18). Functional association between FSHR/LHCGR and β-arrestin in granulosa cells could be demonstrated after gonadotropin treatment *in vitro* (19, 20). In immortalized ovarian cell lines, β-arrestin 2 triggers the activation of FSHinduced mitogen-activated protein (MAP) kinase signaling cascades linked to anti-apoptotic and proliferative events (21).

In this study, we aimed to evaluate the possible prognostic impact of  $\beta$ -arrestin 2 on clinical course of ovarian cancer. The role of  $\beta$ -arrestin 2 in modulating cell viability and survival was elucidated by functional analyses *in vitro*, suggesting new therapeutic approaches in ovarian cancer.

## MATERIALS AND METHODS

#### **Patients and Specimens**

156 ovarian cancer samples of patients that underwent surgery between 1990 and 2002 at the Department of Obstetrics and Gynecology, Ludwig Maximilian University in Munich, Germany, were analyzed (**Table 1**). The clinical data were received from the patient's charts, whereas the follow-up data from the Munich Cancer Registry (MCR). Only patients with a clear diagnosis of ovarian cancer and were included in this study, while benign tumors, just as borderline tumors were excluded. These patients had no history of previous or secondary cancers. Also, none of the patients had neoadjuvant chemotherapy. After the samples had been formalin-fixed and paraffin-embedded (FFPE), they were evaluated by a specialized pathologist at the TABLE 1 | Patient characteristics.

| HISTOLOGY     Serous   110   70.5     Clear cell   12   7.7     Endometrioid   21   13.5     Mucinous   13   8.3     LYMPH NODE    90.1     pNX   61   39.1     pNV   61   39.1     pN0   43   27.6     pN1   52   33.3     DISTANT METASTASIS   90.2     pM0/X   150   96.2     pM1   6   3.8     GRADING SEROUS    24     Low   24   23.0     High   80   77.0     ENDOMETRIOID    6     G1   6   31.6     G2   5   26.3     G3   8   42.1     MUCINOUS    0     G1   6   50.0     G3   9   100     FIGO    10     I   35   23.1     II   103   68.2     IV   3   2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameters         | Ν   | Percentage (%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------|
| Serous     110     70.5       Clear cell     12     7.7       Endometrioid     21     13.5       Mucinous     13     8.3       LYMPH NODE     13     8.3       LYMPH NODE     90     91     91       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS     96.2       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     24     23.0       Low     24     23.0       High     80     77.0       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     0     0       G1     6     50.0       G2     6     50.0       G3     9     100       FIGO     10     6.6       III     103     68.2       IV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HISTOLOGY          |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| Clear cell 12 7.7   Endometrioid 21 13.5   Mucinous 13 8.3   LYMPH NODE 9 9.1   pNX 61 39.1   pNQ 43 27.6   pN1 52 33.3   DISTANT METASTASIS 3.8   pM0/X 150 96.2   pM1 6 3.8   GRADING SEROUS 24 23.0   Low 24 23.0   High 80 77.0   ENDOMETRIOID 700 700   G1 6 31.6   G2 5 26.3   G3 8 42.1   MUCINOUS 0 0   G1 6 50.0   G2 6 50.0   G3 9 100   FIGO 100 6.6   II 103 6.8.2   IV 3 2.0   AGE 2.0   AGE 2.0   AGE 2.0   AGE 2.0   AGE 53.2   <60 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Serous             | 110 | 70.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| Endometrioid     21     13.5       Mucinous     13     8.3       LYMPH NODE     9     9       pNX     61     39.1       pN0     43     27.6       pN1     52     33.8       DISTANT METASTASIS     96.2       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     24     23.0       Low     24     23.0       High     80     77.0       ENDOMETRIOID     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     0     0       G1     6     50.0       G2     6     50.0       G3     0     0       G3     9     100       FIGO     10     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3 <tr td="">     50.2       <t< td=""><td>Clear cell</td><td>12</td><td>7.7</td></t<></tr> <tr><td>Mucinous     13     8.3       LYMPH NODE     39.1     39.1       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS         pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS         Low     24     23.0       High     80     77.0       ENDOMETRIOID         G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS         G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO         I     35     23.1       I     103     68.2       IV     3     2.0 &lt;</td><td>Endometrioid</td><td>21</td><td>13.5</td></tr> <tr><td>LYMPH NODE       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS     96.2       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     150     96.2       Low     24     23.0       High     80     77.0       ENDOMETRIOID     10     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     100     6       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO     100     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3.2       S60 years     73     46.8</td><td>Mucinous</td><td>13</td><td>8.3</td></tr> <tr><td>pNX6139.1pN04327.6pN1523.3DISTANT METASTASISpM0/X15096.2pM163.8GRADING SEROUSLow2423.0High8077.0ENDOMETRIOIDG1631.6G2526.3G3842.1MUCINOUSG1650.0G2650.0G300CLEAR CELLG39100FIGO106.6II10368.2IV32.0ACE260 years8353.2&gt;60 years7346.8</td><td>LYMPH NODE</td><td></td><td></td></tr> <tr><td>pN0 43 27.6<br/>pN1 52 33.3<br/>DISTANT METASTASIS<br/>pM0/X 150 96.2<br/>pM1 6 3.8<br/>GRADING SEROUS<br/>Low 24 23.0<br/>High 80 77.0<br/>ENDOMETRIOID<br/>G1 6 31.6<br/>G2 5 26.3<br/>G3 8 42.1<br/>MUCINOUS<br/>G1 6 50.0<br/>G2 6 50.0<br/>G2 6 50.0<br/>G3 0 0 0<br/>CLEAR CELL<br/>G3 9 100<br/>FIGO<br/>I 35 23.1<br/>I 10 6.6<br/>II 103 68.2<br/>IV 3 2.0<br/>AGE<br/>≤60 years 83 53.2<br/>&gt;60 years 83 53.2</td><td>pNX</td><td>61</td><td>39.1</td></tr> <tr><td>pN1 52 33.3<br/>DISTANT METASTASIS<br/>pM0/X 150 96.2<br/>pM1 6 3.8<br/>GRADING SEROUS<br/>Low 24 23.0<br/>High 80 77.0<br/>ENDOMETRIOID<br/>G1 6 31.6<br/>G2 5 26.3<br/>G3 8 42.1<br/>MUCINOUS<br/>G1 6 50.0<br/>G3 6 50.0<br/>G2 6 50.0<br/>G2 6 50.0<br/>G3 0 0 0<br/>CLEAR CELL<br/>G3 9 100<br/>FIGO<br/>I 35 23.1<br/>I 10 6.6<br/>II 103 68.2<br/>I 104 6.6<br/>II 103 68.2<br/>I 105 65.2<br/>I 105</td><td>pN0</td><td>43</td><td>27.6</td></tr> <tr><td>DISTANT METASTASIS       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     24     23.0       Low     24     23.0       High     80     77.0       ENDOMETRIOID     0     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     0     0       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       CLEAR CELL     0     0       G3     9     100       FIGO     10     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3       &lt;60 years</td>     83     53.2       &lt;60 years</tr> | Clear cell         | 12  | 7.7            | Mucinous     13     8.3       LYMPH NODE     39.1     39.1       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS         pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS         Low     24     23.0       High     80     77.0       ENDOMETRIOID         G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS         G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO         I     35     23.1       I     103     68.2       IV     3     2.0 < | Endometrioid | 21 | 13.5 | LYMPH NODE       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS     96.2       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     150     96.2       Low     24     23.0       High     80     77.0       ENDOMETRIOID     10     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     100     6       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO     100     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3.2       S60 years     73     46.8 | Mucinous | 13 | 8.3 | pNX6139.1pN04327.6pN1523.3DISTANT METASTASISpM0/X15096.2pM163.8GRADING SEROUSLow2423.0High8077.0ENDOMETRIOIDG1631.6G2526.3G3842.1MUCINOUSG1650.0G2650.0G300CLEAR CELLG39100FIGO106.6II10368.2IV32.0ACE260 years8353.2>60 years7346.8 | LYMPH NODE |  |  | pN0 43 27.6<br>pN1 52 33.3<br>DISTANT METASTASIS<br>pM0/X 150 96.2<br>pM1 6 3.8<br>GRADING SEROUS<br>Low 24 23.0<br>High 80 77.0<br>ENDOMETRIOID<br>G1 6 31.6<br>G2 5 26.3<br>G3 8 42.1<br>MUCINOUS<br>G1 6 50.0<br>G2 6 50.0<br>G2 6 50.0<br>G3 0 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 35 23.1<br>I 10 6.6<br>II 103 68.2<br>IV 3 2.0<br>AGE<br>≤60 years 83 53.2<br>>60 years 83 53.2 | pNX | 61 | 39.1 | pN1 52 33.3<br>DISTANT METASTASIS<br>pM0/X 150 96.2<br>pM1 6 3.8<br>GRADING SEROUS<br>Low 24 23.0<br>High 80 77.0<br>ENDOMETRIOID<br>G1 6 31.6<br>G2 5 26.3<br>G3 8 42.1<br>MUCINOUS<br>G1 6 50.0<br>G3 6 50.0<br>G2 6 50.0<br>G2 6 50.0<br>G3 0 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 35 23.1<br>I 10 6.6<br>II 103 68.2<br>I 104 6.6<br>II 103 68.2<br>I 105 65.2<br>I 105 | pN0 | 43 | 27.6 | DISTANT METASTASIS       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     24     23.0       Low     24     23.0       High     80     77.0       ENDOMETRIOID     0     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     0     0       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       CLEAR CELL     0     0       G3     9     100       FIGO     10     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3       <60 years | pN1 | 52 | 33.3 |
| Clear cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                 | 7.7 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| Mucinous     13     8.3       LYMPH NODE     39.1     39.1       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS         pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS         Low     24     23.0       High     80     77.0       ENDOMETRIOID         G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS         G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO         I     35     23.1       I     103     68.2       IV     3     2.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endometrioid       | 21  | 13.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| LYMPH NODE       pNX     61     39.1       pN0     43     27.6       pN1     52     33.3       DISTANT METASTASIS     96.2       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     150     96.2       Low     24     23.0       High     80     77.0       ENDOMETRIOID     10     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     100     6       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       FIGO     100     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3.2       S60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mucinous           | 13  | 8.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| pNX6139.1pN04327.6pN1523.3DISTANT METASTASISpM0/X15096.2pM163.8GRADING SEROUSLow2423.0High8077.0ENDOMETRIOIDG1631.6G2526.3G3842.1MUCINOUSG1650.0G2650.0G300CLEAR CELLG39100FIGO106.6II10368.2IV32.0ACE260 years8353.2>60 years7346.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LYMPH NODE         |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| pN0 43 27.6<br>pN1 52 33.3<br>DISTANT METASTASIS<br>pM0/X 150 96.2<br>pM1 6 3.8<br>GRADING SEROUS<br>Low 24 23.0<br>High 80 77.0<br>ENDOMETRIOID<br>G1 6 31.6<br>G2 5 26.3<br>G3 8 42.1<br>MUCINOUS<br>G1 6 50.0<br>G2 6 50.0<br>G2 6 50.0<br>G3 0 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 35 23.1<br>I 10 6.6<br>II 103 68.2<br>IV 3 2.0<br>AGE<br>≤60 years 83 53.2<br>>60 years 83 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pNX                | 61  | 39.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| pN1 52 33.3<br>DISTANT METASTASIS<br>pM0/X 150 96.2<br>pM1 6 3.8<br>GRADING SEROUS<br>Low 24 23.0<br>High 80 77.0<br>ENDOMETRIOID<br>G1 6 31.6<br>G2 5 26.3<br>G3 8 42.1<br>MUCINOUS<br>G1 6 50.0<br>G3 6 50.0<br>G2 6 50.0<br>G2 6 50.0<br>G3 0 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 35 23.1<br>I 10 6.6<br>II 103 68.2<br>I 104 6.6<br>II 103 68.2<br>I 105 65.2<br>I 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pN0                | 43  | 27.6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| DISTANT METASTASIS       pM0/X     150     96.2       pM1     6     3.8       GRADING SEROUS     24     23.0       Low     24     23.0       High     80     77.0       ENDOMETRIOID     0     6       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS     0     0       G1     6     50.0       G2     6     50.0       G3     0     0       G2     6     50.0       G3     0     0       CLEAR CELL     0     0       G3     9     100       FIGO     10     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     3       <60 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| pM0/X 150 96.2<br>pM1 6 3.8<br>GRADING SEROUS<br>Low 24 23.0<br>High 80 77.0<br>ENDOMETRIOID<br>G1 6 31.6<br>G2 5 26.3<br>G3 8 42.1<br>MUCINOUS<br>G1 6 50.0<br>G2 6 50.0<br>G2 6 50.0<br>G3 0 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 35 23.1<br>I 10 6.6<br>II 103 68.2<br>V 3 2.0<br>AGE<br>≤60 years 83 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISTANT METASTASIS | ;   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| pM1 6 3.8   GRADING SEROUS 23.0   Low 24 23.0   High 80 77.0   ENDOMETRIOID 0   G1 6 31.6   G2 5 26.3   G3 8 42.1   MUCINOUS 10   G1 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL 0 0   I 35 23.1   I 103 68.2   IV 3 2.0   AGE 103 68.2   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pM0/X              | 150 | 96.2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| GRADING SEROUS     Low   24   23.0     High   80   77.0     ENDOMETRIOID   6   31.6     G2   5   26.3     G3   8   42.1     MUCINOUS   1   6     G1   6   50.0     G2   6   50.0     G3   0   0     CLEAR CELL   0   0     I   35   23.1     II   103   66.2     IV   3   2.0     AGE   2.0   46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pM1                | 6   | 3.8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| Low 24 23.0   High 80 77.0   ENDOMETRIOID 6 31.6   G2 5 26.3   G3 8 42.1   MUCINOUS 42.1   G1 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL 0 0   FIGO 100 6.6   II 35 23.1   I 10 6.6   III 103 68.2   IV 3 2.0   AGE 53.2 53.2   <60 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRADING SEROUS     |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| High   80   77.0     ENDOMETRIOID   6   31.6     G1   6   31.6     G2   5   26.3     G3   8   42.1     MUCINOUS   10     G1   6   50.0     G2   6   50.0     G2   6   50.0     G3   0   0     CLEAR CELL   0   0     FIGO   100   6.6     II   103   68.2     IV   3   2.0     AGE   2.0   46.8     >60 years   83   53.2     >60 years   73   46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low                | 24  | 23.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| ENDOMETRIOID       G1     6     31.6       G2     5     26.3       G3     8     42.1       MUCINOUS      42.1       G1     6     50.0       G2     6     50.0       G2     6     50.0       G2     6     50.0       G3     0     0       CLEAR CELL     0     0       FIGO      100       I     35     23.1       I     10     6.6       III     103     68.2       IV     3     2.0       AGE         ≤60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | High               | 80  | 77.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G1 6 31.6   G2 5 26.3   G3 8 42.1   MUCINOUS 7   G1 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL 7 100   FIGO 100 6.6   II 103 68.2   IV 3 2.0   AGE 53.2   ≤60 years 83 53.2   >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENDOMETRIOID       |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G2 5 26.3   G3 8 42.1   MUCINOUS 5 50.0   G1 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL 0 0   G3 9 100   FIGO 10 6.6   II 103 68.2   IV 3 2.0   AGE 2.0   ≤60 years 83 53.2   >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G1                 | 6   | 31.6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G3 8 42.1   MUCINOUS 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL 0 0   G3 9 100   FIGO 10 6.6   II 103 68.2   IV 3 2.0   AGE 53.2 53.2   >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G2                 | 5   | 26.3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| MUCINOUS       G1     6     50.0       G2     6     50.0       G3     0     0       CLEAR CELL     0     0       G3     9     100       FIGO     100     6.6       II     103     68.2       IV     3     2.0       AGE     2.0     2.0       >60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G3                 | 8   | 42.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G1 6 50.0   G2 6 50.0   G3 0 0   CLEAR CELL   G3 9 100   FIGO 73 23.1   I 10 6.6   II 103 68.2   IV 3 2.0   AGE 2.0   ≤60 years 83 53.2   >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MUCINOUS           |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G2 6 50.0   G3 0 0   CLEAR CELL   G3 9 100   FIGO   I 35 23.1   I 10 6.6   II 103 68.2   IV 3 2.0   AGE   ≤60 years 83 53.2   >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G1                 | 6   | 50.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G3 0 0<br>CLEAR CELL<br>G3 9 100<br>FIGO<br>I 10 35 23.1<br>II 10 6.6<br>III 103 68.2<br>IV 3 2.0<br>AGE<br>≤60 years 83 53.2<br>>60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G2                 | 6   | 50.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| CLEAR CELL       G3     9     100       FIGO     35     23.1       I     10     6.6       II     103     68.2       IV     3     2.0       AGE     53.2     560 years       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G3                 | 0   | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| G3 9 100<br>FIGO<br>I 35 23.1<br>II 10 6.6<br>III 103 68.2<br>IV 3 2.0<br>AGE<br>≤60 years 83 53.2<br>>60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLEAR CELL         |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| FIGO       I     35     23.1       II     10     6.6       III     103     68.2       IV     3     2.0       AGE     2     2       >60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G3                 | 9   | 100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| 35     23.1       II     10     6.6       III     103     68.2       IV     3     2.0       AGE     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIGO               |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| II     10     6.6       III     103     68.2       IV     3     2.0       AGE     560 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                  | 35  | 23.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| III     103     68.2       IV     3     2.0       AGE     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | II                 | 10  | 6.6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| Ⅳ     3     2.0       AGE     2     60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ш                  | 103 | 68.2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| AGE       ≤60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV                 | 3   | 2.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| ≤60 years     83     53.2       >60 years     73     46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGE                |     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
| >60 years 73 46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤60 years          | 83  | 53.2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >60 years          | 73  | 46.8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |                                                                                                                                                                                                                                      |            |  |  |                                                                                                                                                                                                                                                                                                                                                                                               |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |      |

department of Pathology, Ludwig Maximilian University, who classified them into histological subtypes [serous (n = 110), endometrioid (n = 21), mucinous (n = 13), clear-cell (n = 12)] and rated the tumor grading. The serous ovarian cancer samples were divided into low and high grading. Endometrioid ovarian cancer was graded according to G1–G3. For the mucinous carcinoma, there is no WHO classification; however, the subtype is often classified into G1–G3. The clear cell cancer was always categorized as G3. Staging was performed using the FIGO (WHO) and TNM classification. I (n = 35), II (n = 10,) III (n = 103), and IV (n = 3). Data on primary tumor extension was available in 155 cases: T1 (n = 40), T2 (n = 18), T3 (n = 93), T4 (n = 4), and on lymph node involvement in 95 cases: N0 (n = 43), N1 (n = 52). In nine cases available was the data on distant metastasis: M0 (n = 3), M1 (n = 6).

#### **Ethical Approval**

This study was approved by the Ethics Committee of the Ludwig-Maximilians-University, Munich, Germany (approval number 227-09 and 18-392). All tissue samples used for this study were obtained from leftover material from the archives of LMU Munich, Department Gynecology and Obstetrics, Ludwig-Maximilians-University, Munich, Germany, initially used for pathological diagnostics. The diagnostic procedures were completed before the current study was performed. During all experimental and statistical analysis, the observers were fully blinded to patient's data. All experiments were performed according to the standards of the Declaration of Helsinki (1975). As per declaration of our ethics committee no written informed consent of the participants or permission to publish is needed given the circumstances described above.

#### Immunohistochemistry

The formalin-fixed and paraffin-embedded ovarian cancer tissue samples were dewaxed in xylene for 20 min, before adding 100% ethanol to completely remove the Xylol. Unspecific color responses were avoided by blocking the endogenous peroxidase with 3% H<sub>2</sub>O<sub>2</sub> in methanol (3 ml 30% H<sub>2</sub>O<sub>2</sub> + 97 ml methanol), followed by rehydrating it in 70%, then 50% ethanol. Afterwards the slides were placed in a pressure cooker for 10 min, using sodium citrate buffer (pH = 6), made from 0.1 M citric acid and 0.1 M sodium citrate). After cooling down, this was followed by washing the samples first in distilled water, then in phosphate buffered saline (PBS) twice. After preprocessing, the slides were incubated in a blocking solution (ZytoChem Plus HRP Polymer System, Berlin, Germany, POLHRP-100) for 5 min to prevent an unspecific staining reaction. This was followed by a 16h incubation overnight at 4°C with the primary antibodies: anti-β-arrestin 2, rabbit IgG, polyclonal, Abcam, ab151774 at a 1:1,500 dilution; anti-FSHR, rabbit IgG, polyclonal, Novus Biologicals, NLS2231 at a 1:100 dilution, anti-LHCGR, rabbit IgG, polyclonal, Acris, SP4594P at a 1:800 dilution; anti-GPER, rabbit IgG, polyclonal, Lifespan Biosciences, LS92467 at a 1:600 dilution and anti-hCGB, rabbit IgG, polyclonal, Dako, A-0231 at a 1:300 dilution-then washed in PBS twice. Next step was the application of reagent 2 (ZytoChem Plus HRP Polymer System, Berlin, Germany, POLHRP-100), consisting of a corresponding biotinylated secondary anti-rabbit IgG antibody and the associated avidin-biotin-peroxidase complex, for 20 min. For the visualization reaction 3,3 Diaminobenzidine (DAB) and a substrate buffer (Liquid DAB and Substrate Chromogen System, Dako, Munich, Germany, K3468) was used for 30 min, followed by distilled water, to stop the reaction. After counterstaining the slides with Mayer's acidic hematoxylin (Waldeck-Chroma, Münster, Germany, catalog-number 2E-038) for 2 min, they were dehydrated in an ascending series of alcohol (70, 96, 100%), brightened by adding xylol and then covered. Negative and positive controls were used to assess the specificity of the immunoreactions. Negative controls (colored in blue) were performed in kidney, placental and uterine tissue by replacement of the primary antibodies by species-specific (rabbit) isotype control antibodies (Dako, Glostrup, Denmark). For positive controls, placental and kidney tissues were used.

## Staining Evaluation

All EOC specimens were examined with a Leitz photomicroscope (Wetzlar, Germany) and specific β-arrestin 2 immunohistochemically staining reaction was observed in the cytoplasm of the cells. The intensity and distribution pattern of  $\beta$ -arrestin 2 staining was rated using the semi-quantitative immunoreactive score (IR score, Remmele's score). To obtain the IR score result, the optional staining intensity  $(0 = n_0, 1 = weak)$ 2 =moderate, and 3 =strong staining) and the percentage of positive stained cells (0 = no staining, 1 = <10% of the cells, 2 = 11-50% of the cells, 3 = 51-80% of the cells and 4 = >81%) were multiplied. Cut-off points for the IR scores were selected for the  $\beta$ -arrestin 2 staining considering the distribution pattern of IR scores in the collective. β-arrestin 2 staining was regarded as low with IRS 0–3 and as high with IRS  $\geq$  4. Renal biopsies from patients with different ARRB2 expression levels served as positive and negative control staining (22) (Figures 1E,F).

## **Cell Lines and Transfection Protocol**

The immortalized human granulosa (hGL5) cell line of ovarian origin (23), the human embryonic kidney (HEK293) and the ovarian carcinoma (A2780) cell lines were used for in vitro experiments. Cells were cultured and handled as previously described (21, 24-26). hGL5 cells culture medium was DMEM/F12 supplemented with 10% fetal bovine serum (FBS) and 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO, USA), 100 IU/mL penicillin and 50 µg/mL streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) and 2% ITS + Premix Universal Culture Supplement (#354352; Corning Incorporated, Corning, NY, USA). The HEK293 cell line was cultured in DMEM additioned of 10% FBS, 2 mM L-glutamine, 100 IU/mL penicillin and 50 µg/mL streptomycin. The A2780 cell line served as a model of ovarian cancer and was cultured in RPMI1640 medium (Sigma-Aldrich) additioned of 10% FBS, 1% Hepes (Sigma-Aldrich), 2 mM L-glutamine, 100 IU/mL penicillin and 50 µg/mL streptomycin. Cell lines were maintained in an incubator at 37°C and 5% CO<sub>2</sub>.

The transfection protocol was described previously (25–28). Briefly,  $3.5 \times 10^4$  cells were transiently transfected in a 96well plate using increasing amount (range: 0–200 ng/well) of  $\beta$ -arrestin 2-encoding pcDNA3.1 plasmid (29) or commercial siRNA probes against  $\beta$ -arrestin 2 (#14387; Life-Technologies, Carlsbad, CA, USA) (21), using an electroporator (Gene Pulser MXcell; Bio-Rad Laboratories Inc., Hercules, CA, USA) in accordance with established protocol and settings (21, 30). Control probes without specific target mRNAs were loaded for achieving equal amount of siRNA among wells.

#### Western Blot Analysis and Antibodies

Overexpression and knock-down of  $\beta$ -arrestin 2 and procaspase 3 were evaluated by Western blotting, as previously described (21, 24). Briefly, transfected cells were seeded in 24well plates (1 × 10<sup>5</sup> cells/well) and cultured 48 h before to be lysed using 4°C RIPA buffer.  $\beta$ -arrestin 2 and pro-caspase 3 were evaluated by 12% SDS-page and Western blotting, using specific antibodies (#3857, Cell Signaling Technology Inc., Danvers, MA, USA; #MA1-91637, Thermo-Fisher Scientific, respectively).  $\beta$ -actin signals served as loading controls and were detected using a horseradish peroxidase (HRP)-conjugated specific antibody (#A3854; Sigma-Aldrich). Signals were revealed by ECL chemiluminescent compound (GE HealthCare), after incubation of the membranes with a secondary anti-rabbit HRP-conjugated antibody (#NA9340V; GE HealthCare), except for  $\beta$ -actin. Western blotting signals were acquired by the Quantity One analysis software (Bio-Rad Laboratories Inc., Hercules, CA, USA).

#### Analysis of Cell Viability and Death

hGLC, HEK293, and A2780 cells were seeded in 96-well plates  $(1 \times 10^4 \text{ cells/well})$  before viability assessment the by MTT colorimetric assay (31), using a previously validated protocol (21, 30). The absorbance was detected by a Victor3 plate reader (Perkin Elmer Inc., Waltham, MA, USA). A measure of death cells was obtained by incubating samples 30 min with propidium iodide (32). Cells were washed twice by PBS before excitation and light emission detection by a CLARIOstar microplate reader (BMG LabTech, Ortenberg, Germany), following the manufacturer's protocol. Data were represented as box and whiskers plots in a graph, as a measure of cell viability, and control of protein amount per well was performed by Bradford assay.

#### **Statistical Analysis**

IBM SPSS Statistics, version 25.0 (IBM Corporation, Armonk, NY, USA) was used for collecting and analyzing all the data for statistical significance. Overall-survival was compared with Kaplan-Meier curves and log-rank testing was used to detect differences in patients' overall survival times. The Spearman correlation coefficient (cc) was used for detecting correlations between immunohistochemical staining outcomes. For multivariate analyses, the cox regression was performed. Results obtained from cell lines were analyzed by D'Agostino and Pearson normality test before applying the Kruskal-Wallis test together with Dunn's correction for multiple comparisons, using the GraphPad Prism 6.0 software (GraphPad Software Inc., La Jolla, CA, USA). For all analysis a *P*-value of <0.05 was considered to be statistically significant.

## RESULTS

# β-arrestin 2 Expression and the Correlation to Clinical and Pathological Characteristics

The clinicopathologic characteristics of the analyzed ovarian cancer patients are listed in **Table 1**. 104 (67%) out of 156 ovarian cancer specimens showed positive cytoplasmic  $\beta$ -arrestin 2 expression. The median immunoreactive score (IRS) of cytoplasm staining was 2 (with a range of 0–12). Clear cell histology exhibited the strongest  $\beta$ -arrestin 2 staining (Kruskal-Wallis test; p = 0.01) when compared with different histological subtypes (**Figures 1A–D**).

Representative staining of benign ovarian and fallopian tube tissue show positive results in epithelial cells, granulosa cells and theca cells. The ovarian and fallopian tube stroma did not show a  $\beta$ -arrestin 2 staining (**Figures 2A,B**).

We analyzed the correlation between  $\beta$ -arrestin 2 and clinicopathological data, such as histology, grading, and FIGO classification (**Table 2**). A positive correlation was observed between high  $\beta$ -arrestin 2 expression and high-grade serous histology (Spearman's correlation analysis; p = 0.041; cc = 0.169). Moreover, no other correlations were observed.

#### β-arrestin 2 Correlates With Gonadotropin Receptors Expression

We then analyzed the correlation between  $\beta$ -arrestin 2 expression and other parameters previously examined (33–37) in the same ovarian cancer cohort (**Table 3**). A positive correlation was detected to the expression of the gonadotropin receptors FSHR (p = 0.029; cc = 0.183) and LHCGR (p = 0.001; cc = 0.284), the G protein-coupled membrane estrogen receptor GPER (p = 0.0009; cc = 0.215) as well as with the choriogonadotropin beta subunit (hCG $\beta$ ) (p < 0.001; cc = 0.36). Representative stainings of the correlated parameters are shown in **Supplementary Figure 1**.

#### High β-arrestin 2 Expression Is Associated With Impaired Overall Survival

Age of the patient cohort was 58.7  $\pm$  31.4 years (median  $\pm$  standard deviation, SD; n = 156) with a range of 31–88 years. The overall survival of the EOC patients was 34.4  $\pm$  57.8 months (median  $\pm$  SD; n = 156). High  $\beta$ -arrestin 2 expression (IRS 4–12) is associated with shorter overall survival. As depicted on the Kaplan-Meier curve, higher cytoplasmic  $\beta$ -arrestin 2 expression correlates with a significantly impaired prognosis (**Figure 3**; 50.64 vs. 29.88 months, median; p = 0.025).

## Clinicopathological Parameters as Independent Prognostic Factors

A multivariate cox-regression analysis was performed to detect which parameters were independent prognostic factors for overall survival in the present cohort. In this analysis, patients' age (p = 0.014) and FIGO stage (p < 0.001) were independent factors for overall survival. High  $\beta$ -arrestin 2 (p = 0.152), however, was not confirmed as an independent factor of prognostic independence (**Table 4**).

# Effects of $\beta$ -arrestin 2 Overexpression and Depletion on Cell Viability

Since  $\beta$ -arrestin 2 expression levels were found to correlate with overall survival of ovarian cancer patients, the impact of the molecule on cell proliferation and survival was evaluated, *in vitro*. Cell viability and death are represented by box and whiskers plots (**Figure 4**).

Western blot analysis demonstrated that  $\beta$ -arrestin 2 expression levels increase together with the amount of cDNA encoding the molecule, in the HEK293, hGL5 and A2780 cell lines (**Figure 4A**). We found increased viability of all cell models overexpressing  $\beta$ -arrestin 2, compared to mock-transfected cells used as controls (**Figures 4B-D**; Kruskal-Wallis test; p < 0.01; n = 8). Moreover, highest levels of cell viability corresponded to the highest amount of plasmid transfected. These results are corroborated by data from propidium iodide-stained HEK293



and A2780 cells overexpressing  $\beta$ -arrestin 2, indicating that the least cell death occurs with the highest amounts of  $\beta$ -arrestin 2-encoding plasmid transfected (**Figures 4E–G**; Kruskal-Wallis test; p < 0.01; n = 8). However, data from transfected hGL5 cells did not reveal any association between  $\beta$ -arrestin 2 expression and cell death (**Figure 4F**; Kruskal-Wallis test;  $p \ge 0.05$ ; n = 8).

Since a positive correlation between  $\beta$ -arrestin 2 expression and cell viability was found (**Figure 4**), control experiments were performed by evaluating the cell viability and death of cells maintained under  $\beta$ -arrestin 2 depletion, *in vitro*. Therefore, HEK293, hGL5, and A2780 cells were treated by increasing concentrations of siRNA probes silencing the endogenous molecule, then MTT assay and propidium iodide staining were performed (**Figure 5**).

The viability of all the cell lines is significantly reduced upon  $\beta$ -arrestin 2 depletion (**Figures 5A–C**; Kruskal-Wallis test; p < 0.05; n = 8). These data are reflected by increased propidium iodide signals occurring together with increasing amounts of siRNAs, in HEK293 cells (**Figure 5D**; Kruskal-Wallis test; p < 0.05; n = 8), while similar signals were found between siRNA-



**FIGURE 2** | Detection of  $\beta$ -arrestin 2 with immunohistochemistry in benign ovary and fallopian tube. Detection of  $\beta$ -arrestin 2 with immunohistochemistry in benign ovary (A) and fallopian tube (B). Positive  $\beta$ -arrestin 2 staining was observed in epithelial cells, granulosa cells and theca cells. The ovarian and fallopian tube stroma did not show a  $\beta$ -arrestin 2 staining. Arrows demonstrate representatively  $\beta$ -arrestin 2 stained cells. Images representative of three independent experiments.

## TABLE 2 | Correlation analysis between $\beta\text{-arrestin}\ 2$ expression and clinicopathological data.

| Variable                                       | Р      | Correlation coefficient |
|------------------------------------------------|--------|-------------------------|
| Histology                                      | 0.075  | -0.083                  |
| FIGO stage                                     | 0.673  | 0.086                   |
| Age                                            | 0.206  | 0.105                   |
| GRADING                                        |        |                         |
| Clear cell, endometrioid, and mucinous (G1-G3) | 0.520  | -0.088                  |
| Serous-low grading                             | 0.052  | -0.160                  |
| Serous-high grading                            | 0.041* | 0.169                   |
|                                                |        |                         |

Clinicopathologic data and  $\beta$ -arrestin 2 expression were correlated to each other using Spearman's correlation analysis. Significant correlations are indicated by asterisks (\*p < 0.05). p, two-tailed significance.

and mock-treated hGL5 and A2780 cells (**Figures 5E,F**; Kruskal-Wallis test;  $p \ge 0.05$ ; n = 8). Western blotting analysis confirmed the siRNA-dependence of  $\beta$ -arrestin 2 silencing, which is linked to pro-caspase 3 cleavage in all the cell lines (**Figure 5G**).

## DISCUSSION

Our study revealed for the first time that  $\beta$ -arrestin 2 expression significantly correlates with impaired overall survival of ovarian cancer patients and these results are consistent with the proliferative role of  $\beta$ -arrestin 2 demonstrated *in vitro*.  $\beta$ arrestins are known to act as scaffold proteins controlling multiple cellular functions, such as MAP kinase signaling, GPCR trafficking and transcriptional modulations (38, 39). Several studies demonstrated that  $\beta$ -arrestins are involved in carcinogenesis of the ovary (11, 18) and other types of cancer (10, 12–17). The relevance of the GPCR/ $\beta$ -arrestin pathway in ovarian cancer cells is demonstrated by the finding that endothelin-1 receptor/ $\beta$ -arrestin complex activates beta-catenin signaling pathways with impact on carcinogenesis and metastatic progression (11). Nevertheless, conflicting results have been

#### **TABLE 3** | Correlation analysis of $\beta$ -arrestin 2.

| Staining     | β-arrestin 2 | FSHR  | LHCGR | GPER  | hCGβ  |  |  |
|--------------|--------------|-------|-------|-------|-------|--|--|
| β-ARRESTIN 2 |              |       |       |       |       |  |  |
| CC           | 1.000        | 0.183 | 0.284 | 0.215 | 0.360 |  |  |
| p            | -            | 0.029 | 0.001 | 0.009 | 0.000 |  |  |
| n            | 148          | 143   | 146   | 148   | 137   |  |  |
| FSHR         |              |       |       |       |       |  |  |
| CC           | 0.183        | 1.000 | 0.164 | 0.214 | 0.082 |  |  |
| р            | 0.029        | -     | 0.046 | 0.009 | 0.340 |  |  |
| n            | 143          | 151   | 149   | 148   | 137   |  |  |
| LHCGR        |              |       |       |       |       |  |  |
| CC           | 0.284        | 0.164 | 1.000 | 0.170 | 0.200 |  |  |
| p            | 0.001        | 0.046 | -     | 0.037 | 0.018 |  |  |
| n            | 146          | 149   | 154   | 151   | 140   |  |  |
| GPER         |              |       |       |       |       |  |  |
| CC           | 0.215        | 0.214 | 0.170 | 1.000 | 0.114 |  |  |
| р            | 0.009        | 0.009 | 0.037 | -     | 0.179 |  |  |
| n            | 148          | 148   | 151   | 153   | 141   |  |  |
| hCGβ         |              |       |       |       |       |  |  |
| CC           | 0.360        | 0.082 | 0.200 | 0.114 | 1.000 |  |  |
| р            | 0.000        | 0.340 | 0.018 | 0.179 | -     |  |  |
| n            | 137          | 137   | 140   | 141   | 142   |  |  |

cc, correlation coefficient; p, two-tailed significance; n, number of patients.

reported with a positive impact of angiotensin-mediated  $\beta$ arrestin expression in a clinical-genomic dataset from 820 ovarian cancer patients (40). Indicative results may be provided by the analysis of gene expression data stored in public cancer repositories. For instance, The Human Protein Atlas database (https://www.proteinatlas.org; last accession: 03 March 2020) revealed that  $\beta$ -arrestin 2-encoding gene (*ARRB2*) expression is an unfavorable prognostic marker of prostate cancer, although the association is not replicated for ovarian cancer. These data corroborate, at least in part, our finding although they should be considered cautiously, since gene expression levels



p = 0.025). Censoring events have been marked in the graphs.

| TABLE 4 | Multivariate anal | vsis of the ana         | lvzed ovarian | cancer  | oatients ( | n =  | 156). |
|---------|-------------------|-------------------------|---------------|---------|------------|------|-------|
|         | ivianaio anai     | y 313 01 this this this | uyzoa ovanan  | Guilogi | pationito  | // — | 100). |

| Covariate                                      | Coefficient (b <sub>i</sub> ) | [HR Exp (b <sub>i</sub> )] | 95% CI |       | P-value |
|------------------------------------------------|-------------------------------|----------------------------|--------|-------|---------|
|                                                |                               |                            | Lower  | Upper |         |
| Patient's Age (≤60 vs. >60)                    | 0.625                         | 1.869                      | 1.133  | 3.084 | 0.014   |
| FIGO (I, II vs. III, IV)                       | 0.813                         | 2.255                      | 1.499  | 3.393 | <0.001  |
| GRADING                                        |                               |                            |        |       |         |
| Clear cell, endometrioid, and mucinous (G1–G3) | 0.142                         | 1.153                      | 0.749  | 1.774 | 0.517   |
| Serous-low grading                             | -0.695                        | 0.499                      | 0.160  | 1.562 | 0.232   |
| Serous-high grading                            | 0.654                         | 1.924                      | 0.765  | 4.838 | 0.164   |
| High β-arrestin 2                              | -0.097                        | 0.907                      | 0.795  | 1.036 | 0.152   |

are not necessarily corresponding to protein levels and the database does not allow to analyze all the specific histological tumor subtypes.

The link between GPCR/ $\beta$ -arrestins complexes and cancer is an established concept (41) and seems to be result of sustained intracellular signaling occurring upon dysregulation of intracellular  $\beta$ -arrestin protein levels (42). These molecules were associated with drug resistance of breast (43) and lung cancer cells (44), cancer cell migration and invasion (45), tumor progression (46) and metastasis (47), as well as a number of other tumors (48). Thus,  $\beta$ -arrestins were proposed as a target for therapeutic strategies (49). Our data *in vitro* confirm the proliferative role of  $\beta$ -arrestin 2 also in an ovarian cancer cell line, as well as in hGL5 and HEK293 cells. There are converging evidences that  $\beta$ -arrestin 2 depletion leads to decreasing cell viability and/or activating a caspase 3-mediated cell death, at least in HEK293 cells and confirmed in the ovarian cancer cell line A2780. Interestingly, in hGL5 cells, increased  $\beta$ -arrestin 2 expression is linked with upregulation of cell viability, while the depletion of this molecule by siRNA did not result in cell death. This is likely due to the integration of exogenous E6 and E7 oncogenes in the hGL5 cell line genome (23), which served for immortalizing them and, likely, results in increased resistance to caspase 3 activation. On the other hand, these oncogenes encode proteins inhibiting tumor protein 53 (p53) and retinoblastoma (Rb) molecules and interfering with apoptosis and cell cycle blockade. hGL5 have characteristics reflecting epithelial tumor cells, such as fibroblast-like spindle shape and relatively high proliferation rate, a feature depending on  $\beta$ -arrestins functioning (21), as well as in other ovarian cancer cell lines (40). However, these results underline that β-arrestins are modulators of proliferative signals exerted through a molecular signaling module with GPCRs and the extracellular-regulated MAP kinases 1 and



2 (ERK1/2), in a number of cells (50), including ovarian cells (21). Gonadotropin receptors are expressed in ovarian cells and targeted by  $\beta$ -arrestin 2 (51). It is well-known that gonadotropin receptor expression is dysregulated in ovarian cancer (34, 36, 52) as well adrenal tumor (53), although the specific influence of these receptor on carcinogenesis is still not determined (54). One reason for this, may be the bi-directional regulation of pro- and anti-apoptotic signals which depend on FSHR and LHCGR expression levels (55). Interestingly, the depletion of  $\beta$ -arrestin 2 may be linked to increased tumor cell growth and angiogenesis, at least in certain cases, such as lung cancer (56). In this case, the absence of  $\beta$ -arrestin 2 would lead to uncontrolled activation of proliferative signals induced by other GPCRs, e.g., the interleukin 8 receptor beta (CXCR2). Taken together, we could speculate that  $\beta$ arrestins may positively or negatively impact proliferative events, modulating the activity of various GPCRs specifically expressed in the tumor cells.

In correlation analyses, a link between  $\beta$ -arrestin 2 and the G-protein coupled estrogen receptor (GPER) was identified. This receptor is known for rapidly mediating non-genomic

signals induced by estrogens and was found in both healthy and neoplastic human tissue (57, 58). Indeed, previous studies revealed that GPER is related to better overall survival in ovarian cancer patients (34, 59, 60). Since GPER belongs to the GPCRs family, we may suppose that  $\beta$ -arrestin 2 might interact with this membrane estrogen receptor and influence its physiological function. However, this issue must be further investigated because GPER recycling and intracellular trafficking seems to be regulated by mechanisms not involving  $\beta$ -arrestins (61).

Interestingly, we also found an association between  $\beta$ -arrestin 2 and one of the two LHCGR ligands, hCG $\beta$ . This hormone was shown to be associated with an increased 5-years survival in LHCGR positive/FSHR negative ovarian cancer cases (33). Although this study had limitations related to low specificity of the anti-gonadotropin receptor antibodies employed (62), it suggests that hCG $\beta$  and its receptor might be linked to survival in these patients. These data would be in line with the relatively high potency of hCG $\beta$  in inducing LHCGR-mediated intracellular cAMP increase (27), as an effect linked to the steroidogenic potential of the hormone and to proapoptotic effects (24). On the other hand, these data would



be in contrast with the fact that hCG $\beta$  has been used as a marker of certain tumors, such as the choriocarcinoma (63), which reflects the involvement of  $\beta$ -arrestin 2 in the hCG $\beta$ -mediated intracellular signaling (29) and suggests that the connection between the two molecules in cancer merits further investigations.

 $\beta$ -arrestin 2 is associated with a significantly impaired overall survival of ovarian cancer patients. This finding is supported by *in vitro* data demonstrating that  $\beta$ -arrestin 2 upregulates the viability of an ovarian cancer cell line, and transfected HEK293 and hGL5 cells. Reflecting the role of  $\beta$ -arrestins as scaffold proteins linked to the GPCRs activity, correlations between the  $\beta$ -arrestin 2 and FSHR and LHCGR expression was identified ovarian cancer tissue. Taken together, we indicate that  $\beta$ -arrestin 2 may be a promising new target in ovarian cancer so that clinical implications should be further addressed in future research.

## DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

## ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Ethics Committee of the Ludwig-Maximilians-University, Munich, Germany. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

## **AUTHOR CONTRIBUTIONS**

BC, UJ, MS, LC, and FT: conceptualization. DM, SM, and AB: validation. BC, AP, UJ, and LC: formal analysis. AP, BM, RB,

and SB: investigation. BC, AP, LC, and FT: writing-original draft preparation. UJ, VS, DM, SM, AB, MS, BM, RB, and SB: writing—review and editing. AP, BC, and LC: visualization. UJ, SM, and MS: supervision. All authors have read and agreed to the published version of the manuscript.

#### FUNDING

MS was a Le Studium Research Fellow, Loire Valley Institute for Advanced Studies, Orléans & Tours, France, INRA—Centre Val de Loire, 37380 Nouzilly, France, receiving funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665790. This research did not receive any specific grant from any funding agency in the public, commercial, or not-forprofit sector.

#### REFERENCES

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics 2019. *CA Cancer J Clin.* (2019). 69:7–34. doi: 10.3322/caac.21551
- Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, et al. Ten-year relative survival for epithelial ovarian cancer. *Obstet Gynecol.* (2012) 120:612–8. doi: 10.1097/AOG.0b013e318264f794
- 3. du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the arbeitsgemeinschaft gynaekologische onkologie studiengruppe ovarialkarzinom (AGO-OVAR) and the groupe d'investigateurs nationaux pour les etudes des cancers de l'Ovaire (GINECO). *Cancer.* (2009) 115:1234–44. doi: 10.1002/cncr. 24149
- Aletti GD, Gostout BS, Podratz KC, Cliby WA. Ovarian cancer surgical resectability: relative impact of disease, patient status, and surgeon. *Gynecol Oncol.* (2006) 100:33–7. doi: 10.1016/j.ygyno.2005. 07.123
- Vergote I, De Brabanter J, Fyles A, Bertelsen K, Einhorn N, Sevelda P, et al. Prognostic importance of degree of differentiation and cyst rupture in stage I invasive epithelial ovarian carcinoma. *Lancet.* (2001) 357:176– 82. doi: 10.1016/S0140-6736(00)03590-X
- Dembo AJ, Davy M, Stenwig AE, Berle EJ, Bush RS, Kjorstad KK. Prognostic factors in patients with stage I epithelial ovarian cancer. *Obstet Gynecol.* (1990) 75:263–73.
- Tomao F, Marchetti C, Romito A, Di Pinto A, Di Donato V, Capri O, et al. Overcoming platinum resistance in ovarian cancer treatment: from clinical practice to emerging chemical therapies. *Expert Opin Pharmacother*. (2017) 18:1443–55. doi: 10.1080/14656566.2017.1328055
- Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: a heterogeneous disease. *Pathobiology*. (2018) 85:41–9. doi: 10.1159/000479006
- Shenoy SK, Lefkowitz RJ. β-arrestin-mediated receptor trafficking and signal transduction. *Trends Pharmacol Sci.* (2011) 32:521– 33. doi: 10.1016/j.tips.2011.05.002
- Mythreye K, Blobe GC. The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA. (2009) 106:8221–6. doi: 10.1073/pnas.08128 79106
- Rosano L, Cianfrocca R, Masi S, Spinella F, Di Castro V, Biroccio A, et al. Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. *Proc Natl Acad Sci USA*. (2009) 106:2806–11. doi: 10.1073/pnas.08071 58106

#### ACKNOWLEDGMENTS

The authors were grateful to Mrs. Christina Kuhn for excellent technical assistance and Professor Gaetano Marverti (University of Modena and Reggio Emilia, Modena, Italy) for providing the A2780 cell line. Authors were grateful to the Italian Ministry of University and Research for supporting the Department of Biomedical, Metabolic, and Neural Sciences (University of Modena and Reggio Emilia, Italy) in the context of the Departments of Excellence Programme.

#### SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo. 2020.554733/full#supplementary-material

- Alvarez CJP, Lodeiro M, Theodoropoulou M, Camina JP, Casanueva FF, Pazos Y. Obestatin stimulates Akt signalling in gastric cancer cells through betaarrestin-mediated epidermal growth factor receptor transactivation. *Endocr Relat Cancer*. (2009) 16:599–611. doi: 10.1677/ERC-08-0192
- Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, et al. ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst. (2011) 103:317–33. doi: 10.1093/jnci/ djq541
- Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN. Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. *Proc Natl Acad Sci USA*. (2006) 103:1492–7. doi: 10.1073/pnas.0510562103
- Moussa O, Ashton AW, Fraig M, Garrett-Mayer E, Ghoneim MA, Halushka PV, et al. Novel role of thromboxane receptors beta isoform in bladder cancer pathogenesis. *Cancer Res.* (2008) 68:4097–104. doi: 10.1158/0008-5472.CAN-07-6560
- Li TT, Alemayehu M, Aziziyeh AI, Pape C, Pampillo M, Postovit LM, et al. Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. *Mol Cancer Res.* (2009) 7:1064–77. doi: 10.1158/1541-7786.MCR-08-0578
- Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. *EMBO J.* (2002) 21:4037–48. doi: 10.1093/emboj/cdf406
- Rosano L, Spinella F, Di Castro V, Nicotra MR, Dedhar S, de Herreros AG, et al. Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. *Cancer Res.* (2005) 65:11649–57. doi: 10.1158/0008-5472.CAN-05-2123
- Riccetti L, Klett D, Ayoub MA, Boulo T, Pignatti E, Tagliavini S, et al. Heterogeneous hCG and hMG commercial preparations result in different intracellular signalling but induce a similar long-term progesterone response *in vitro*. *Mol Hum Reprod*. (2017) 23:685–97. doi: 10.1093/molehr/ gax047
- Riccetti L, Sperduti S, Lazzaretti C, Klett D, De Pascali F, Paradiso E, et al. Glycosylation pattern and *in vitro* bioactivity of reference follitropin alfa and biosimilars. *Front Endocrinol.* (2019) 10:503. doi: 10.3389/fendo.2019. 00503
- Casarini L, Reiter E, Simoni, M. β-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. *Mol Cell Endocrinol.* (2016) 437:11–21. doi: 10.1016/j.mce.2016. 08.005
- 22. Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY, et al.  $\beta$ -Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. *Cell Death Dis.* (2016) 7:e2183. doi: 10.1038/cddis. 2016.89

- Rainey WH, Sawetawan C, Shay JW, Michael MD, Mathis JM, Kutteh W, et al. Transformation of human granulosa cells with the E6 and E7 regions of human papillomavirus. *J Clin Endocrinol Metab.* (1994) 78:705– 10. doi: 10.1210/jcem.78.3.8126145
- 24. Casarini L, Riccetti L, De Pascali F, Gilioli L, Marino M, Vecchi E, et al. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells *in vitro*. *Int J Mol Sci.* (2017) 18:926. doi: 10.3390/ijms18050926
- Sperduti S, Limoncella S, Lazzaretti C, Paradiso E, Riccetti L, Turchi S, et al. GnRH antagonists produce differential modulation of the signaling pathways mediated by GnRH receptors. *Int J Mol Sci.* (2019) 20:5548. doi: 10.3390/ijms20225548
- 26. Lazzaretti C, Riccetti L, Sperduti S, Anzivino C, Brigante G, De Pascali F, et al. Inferring biallelism of two FSH receptor mutations associated with spontaneous ovarian hyperstimulation syndrome by evaluating FSH, LH and HCG cross-activity. *Reprod Biomed Online.* (2019) 38:816–24. doi: 10.1016/j.rbmo.2018.12.021
- Casarini L, Riccetti L, Limoncella S, Lazzaretti C, Barbagallo F, Pacifico S, et al. Probing the effect of sildenafil on progesterone and testosterone production by an intracellular FRET/BRET combined approach. *Biochemistry*. (2019) 58:799–808. doi: 10.1021/acs.biochem.8b01073
- Brigante G, Riccetti L, Lazzaretti C, Rofrano L, Sperduti S, Poti F, et al. Abacavir, nevirapine, and ritonavir modulate intracellular calcium levels without affecting GHRH-mediated growth hormone secretion in somatotropic cells *in vitro*. *Mol Cell Endocrinol*. (2019) 482:37–44. doi: 10.1016/j.mce.2018.12.005
- Riccetti L, Yvinec R, Klett D, Gallay N, Combarnous Y, Reiter E, et al. Human luteinizing hormone and chorionic gonadotropin display biased agonism at the LH and LH/CG receptors. *Sci Rep.* (2017) 7:940. doi: 10.1038/s41598-017-01078-8
- Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, et al. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. *PLoS ONE.* (2012) 7:e46682. doi: 10.1371/journal.pone.0046682
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. (1983) 65:55–63. doi: 10.1016/0022-1759(83)9 0303-4
- Kabakov AE, Gabai VL. Cell death survival assays. Methods Mol Biol. (2018) 1709:107–27. doi: 10.1007/978-1-4939-7477-1\_9
- 33. Lenhard M, Tsvilina A, Schumacher L, Kupka M, Ditsch N, Mayr D, et al. Human chorionic gonadotropin and its relation to grade, stage and patient survival in ovarian cancer. *BMC Cancer.* (2012) 12:2. doi: 10.1186/1471-2407-12-2
- 34. Heublein S, Mayr D, Vrekoussis T, Friese K, Hofmann SS, Jeschke U, et al. The G-protein coupled estrogen receptor (GPER/GPR30) is a gonadotropin receptor dependent positive prognosticator in ovarian carcinoma patients. *PLoS ONE.* (2013) 8:e71791. doi: 10.1371/journal.pone.0 071791
- Heublein S, Vrekoussis T, Mayr D, Friese K, Lenhard M, Jeschke U, et al. Her-2/neu expression is a negative prognosticator in ovarian cancer cases that do not express the follicle stimulating hormone receptor (FSHR). *J Ovarian Res.* (2013) 6:6. doi: 10.1186/1757-2215-6-6
- Scholz C, Heublein S, Lenhard M, Friese K, Mayr D, Jeschke U. Glycodelin A is a prognostic marker to predict poor outcome in advanced stage ovarian cancer patients. *BMC Res Notes.* (2012) 5:551. doi: 10.1186/1756-0500-5-551
- Deuster E, Mayr D, Hester A, Kolben T, Zeder-Goss C, Burges A, et al. Correlation of the aryl hydrocarbon receptor with FSHR in ovarian cancer patients. *Int J Mol Sci.* (2019) 20:2862. doi: 10.3390/ijms20122862
- DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Betaarrestins cell signaling. Annu Rev Physiol. (2007) 69:483– 510. doi: 10.1146/annurev.physiol.69.022405.154749
- Kang DS, Tian X, Benovic JL. Role of beta-arrestins and arrestin domaincontaining proteins in G protein-coupled receptor trafficking. *Curr Opin Cell Biol.* (2014) 27:63–71. doi: 10.1016/j.ceb.2013.11.005
- 40. Bush SH, Tollin S, Marchion DC, Xiong Y, Abbasi F, Ramirez IJ, et al. Sensitivity of ovarian cancer cells to acetaminophen reveals biological

pathways that affect patient survival. *Mol Clin Oncol.* (2016) 4:399–404. doi: 10.3892/mco.2016.725

- Suleymanova N, Crudden C, Shibano T, Worrall C, Oprea I, Tica A, et al. Functional antagonism of beta-arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. *Oncogene*. (2017) 36:5734–44. doi: 10.1038/onc.2017.179
- Thomsen ARB, Plouffe B, Cahill TJ III, Shukla AK, Tarrasch JT, Dosey AM, et al. GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. *Cell.* (2016) 166:907–19. doi: 10.1016/j.cell.2016.07.004
- 43. Jing X, Zhang H, Hu J, Su P, Zhang W, Jia M, et al. β-arrestin 2 is associated with multidrug resistance in breast cancer cells through regulating MDR1 gene expression. *Int J Clin Exp Pathol.* (2015) 8:1354–63.
- 44. Becker JH, Gao Y, Soucheray M, Pulido I, Kikuchi E, Rodriguez ML, et al. CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC. *Cancer Res.* (2019) 79:4439–52. doi: 10.1158/0008-5472.CAN-19-0024
- Rosano L, Bagnato A. New insights into the regulation of the actin cytoskeleton dynamics by GPCR/beta-arrestin in cancer invasion and metastasis. *Int Rev Cell Mol Biol.* (2019) 346:129–55. doi: 10.1016/bs.ircmb.2019.03.002
- Son D, Kim Y, Lim S, Kang HG, Kim DH, Park JW, et al. miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. *Cancer Lett.* (2019) 454:224–33. doi: 10.1016/j.canlet.2019.04.006
- Ji H, Liu N, Li J, Chen D, Luo D, Sun Q, et al. Oxytocin involves in chronic stress-evoked melanoma metastasis via betaarrestin 2-mediated ERK signaling pathway. *Carcinogenesis*. (2019) 40:1395–404. doi: 10.1093/carcin/bgz064
- 48. Song Q, Ji Q, Li Q. The role and mechanism of betaarrestins in cancer invasion and metastasis. *Int J Mol Med*. (2018) 41:631–9. doi: 10.3892/ijmm.2017.3288
- Peterson YK, Luttrell LM. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. *Pharmacol Rev.* (2017) 69:256– 97. doi: 10.1124/pr.116.013367
- Carmona-Rosas G, Alcantara-Hernandez R, Hernandez-Espinosa DA. Dissecting the signaling features of the multi-protein complex GPCR/beta-arrestin/ERK1/2. Eur J Cell Biol. (2018) 97:349–58. doi: 10.1016/j.ejcb.2018.04.001
- Ayoub MA, Landomiel F, Gallay N, Jegot G, Poupon A, Crepieux P, et al. Assessing gonadotropin receptor function by resonance energy transferbased assays. *Front Endocrinol.* (2015) 6:130. doi: 10.3389/fendo.2015. 00130
- 52. Feng Z, Wen H, Bi R, Ju X, Chen X, Yang W, et al. A clinically applicable molecular classification for high-grade serous ovarian cancer based on hormone receptor expression. *Sci Rep.* (2016) 6:25408. doi: 10.1038/srep 25408
- Bernichtein S, Peltoketo H, Huhtaniemi I. Adrenal hyperplasia and tumours in mice in connection with aberrant pituitary-gonadal function. *Mol Cell Endocrinol.* (2009) 300:164–8. doi: 10.1016/j.mce.2008. 10.005
- Nordhoff V, Gromoll J, Simoni M. Constitutively active mutations of G protein-coupled receptors: the case of the human luteinizing hormone and follicle-stimulating hormone receptors. *Arch Med Res.* (1999) 30:501– 9. doi: 10.1016/S0188-4409(99)00076-4
- Casarini L, Santi D, Simoni M, Poti F. 'Spare' luteinizing hormone receptors: facts and fiction. *Trends Endocrinol Metab.* (2018) 29:208– 17. doi: 10.1016/j.tem.2018.01.007
- Raghuwanshi SK, Nasser MW, Chen X, Strieter RM, Richardson RM. Depletion of beta-arrestin-2 promotes tumor growth and angiogenesis in a murine model of lung cancer. J Immunol. (2008) 180:5699– 706. doi: 10.4049/jimmunol.180.8.5699
- Jala VR, Radde BN, Haribabu B, Klinge CM. Enhanced expression of Gprotein coupled estrogen receptor (GPER/GPR30) in lung cancer. BMC Cancer. (2012) 12:624. doi: 10.1186/1471-2407-12-624
- Ignatov A, Ignatov T, Weissenborn C, Eggemann H, Bischoff J, Semczuk A, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. *Breast Cancer Res Treat.* (2011) 128:457– 66. doi: 10.1007/s10549-011-1584-1
- 59. Heublein S, Lenhard M, Vrekoussis T, Schoepfer J, Kuhn C, Friese K, et al. The G-protein-coupled estrogen receptor (GPER) is expressed in

normal human ovaries and is upregulated in ovarian endometriosis and pelvic inflammatory disease involving the ovary. *Reprod Sci.* (2012) 19:1197–204. doi: 10.1177/1933719112446085

- Ignatov T, Modl S, Thulig M, Weissenborn C, Treeck O, Ortmann O, et al. GPER-1 acts as a tumor suppressor in ovarian cancer. J Ovarian Res. (2013) 6:51. doi: 10.1186/1757-2215-6-51
- Cheng SB, Quinn JA, Graeber CT, Filardo EJ. Down-modulation of the G-protein-coupled estrogen receptor, GPER, from the cell surface occurs via a trans-Golgi-proteasome pathway. *J Biol Chem.* (2011) 286:22441–55. doi: 10.1074/jbc.M111. 224071
- Chrusciel M, Ponikwicka-Tyszko D, Wolczynski S, Huhtaniemi I, Rahman NA. Extragonadal FSHR expression and function-is it real? *Front Endocrinol.* (2019) 10:32. doi: 10.3389/fendo.2019. 00032
- 63. Cole LA, Hartle RJ, Laferla JJ, Ruddon RW. Detection of the free beta subunit of human chorionic gonadotropin (HCG) in cultures of normal and malignant trophoblast cells, pregnancy sera, and sera of patients with choriocarcinoma. *Endocrinology.* (1983) 113:1176–8. doi: 10.1210/endo-113-3-1176

**Conflict of Interest:** Research support, advisory board, honoraria, and travel expenses from AstraZeneca, Clovis, Medac, MSD, Novartis, PharmaMar, Roche, Sensor Kinesis, Tesaro, Teva have been received by SM and from AstraZeneca, Medac, PharmaMar, Roche, Tesaro/GSK by FT. All above mentioned companies did not influence the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Czogalla, Partenheimer, Jeschke, von Schönfeldt, Mayr, Mahner, Burges, Simoni, Melli, Benevelli, Bertini, Casarini and Trillsch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.