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Abstract

The correct identification of metabolic activity in tissues or cells under different conditions

can be extremely elusive due to mechanisms such as post-transcriptional modification of

enzymes or different rates in protein degradation, making difficult to perform predictions

on the basis of gene expression alone. Context-specific metabolic network reconstruction

can overcome some of these limitations by leveraging the integration of multi-omics data

into genome-scale metabolic networks (GSMN). Using the experimental information, con-

text-specific models are reconstructed by extracting from the generic GSMN the sub-net-

work most consistent with the data, subject to biochemical constraints. One advantage is

that these context-specific models have more predictive power since they are tailored to

the specific tissue, cell or condition, containing only the reactions predicted to be active in

such context. However, an important limitation is that there are usually many different sub-

networks that optimally fit the experimental data. This set of optimal networks represent

alternative explanations of the possible metabolic state. Ignoring the set of possible solu-

tions reduces the ability to obtain relevant information about the metabolism and may bias

the interpretation of the true metabolic states. In this work we formalize the problem of enu-

merating optimal metabolic networks and we introduce DEXOM, an unified approach for

diversity-based enumeration of context-specific metabolic networks. We developed differ-

ent strategies for this purpose and we performed an exhaustive analysis using simulated

and real data. In order to analyze the extent to which these results are biologically mean-

ingful, we used the alternative solutions obtained with the different methods to measure:

1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae

using ensembles of metabolic network; and 2) the detection of alternative enriched path-

ways in different human cancer cell lines. We also provide DEXOM as an open-source

library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/

dexom.
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Author summary

Understanding deregulations of metabolism based on isolated measures of gene expression

or protein or metabolite concentrations is a challenging task due to the interconnection of

multiple processes. One solution is to extract, from generic genome-scale metabolic net-

works, the specific sub-network which is modulated in the studied condition. Many

algorithms have been proposed for such context-specific network extraction based on

experimental measurements. However, this process is subject to some randomness and

variability, since multiple metabolic networks can model the metabolic state in a similarly

adequate manner for the same experimental data. This means that for a given data and

reconstruction method, there are usually multiple solutions that satisfy the same constraints

and with the same quality, but only one solution is returned by the commonly used recon-

struction methods. Here, we formalize this problem and we propose and analyze different

methods to obtain diverse samples of metabolic sub-networks. We evaluate them by per-

forming an extensive comparison and we show how the different sets of optimal networks

discovered by the different methods are biological meaningful by constructing ensembles

of networks to improve the prediction of essential genes in Saccharomyces cerevisiae and to

detect enriched metabolic pathways in four different human cancer cell lines.

This is a PLOS Computational Biology Methods paper.

Introduction

Metabolism and its regulation is an ensemble of intricate and tightly coordinated processes

involving hundreds to thousands of enzymes, reactions, metabolites and genes, whose interac-

tions define complex networks that are unique for each species. This complexity grants organ-

isms the flexibility to adapt their energetic functions and growth requirements to a wide

variety of conditions. Changes in nutrient availability, conditions of cellular stress, or any

other change in the environment can induce a rapid metabolic reprogramming of cells, rewir-

ing their metabolism to adjust to the requirements of the new situation. Dysfunction of these

mechanisms play a central role in the development of many diseases, but most notably in can-

cer, where cancer cells exploit metabolic reprogramming on their own benefit [1] to sustain a

rapid proliferation rate and survive in conditions of hypoxia, nutrient depletion, or even

develop therapy resistance [2]. Being able to accurately detect these changes or deregulations

in metabolism would be beneficial not only for a better understanding of biological systems

but to develop more targeted therapies and treatments for many diseases [3–5].

One of the reasons why this task remains elusive is the complexity of the multiple processes

that participate in the regulation of the metabolism [6]. More specifically, post-transcriptional

control of mRNA, post-translational modifications of enzymes, as well as biochemical con-

straints —including for example the laws for mass and charge conservation, cell growth

requirements, biomass composition and nutrient availability— make the identification of

which pathways are altered between conditions very complicated by the mere observation of

changes in gene expression or changes in metabolite concentrations. Instead, integrating and

analyzing together all those different levels of information is key to improve the predictive

models and to provide a more accurate mechanistic view of the system under study.

Genome-scale metabolic networks (GSMN) are suitable computational models for the

integration of these multiple levels of knowledge. These models are automatically built and
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manually curated networks that encode all reactions with their stoichiometric coefficients,

metabolites, enzymes, gene annotations and biochemical constraints that are known for an

organism. GSMNs are generic models of an organism, independent of the type of tissue, cell or

condition. In order to generate more accurate models for specific tissues or conditions, experi-

mental data such as gene or protein expression can be integrated on top of GSMNs using con-

text-specific network reconstruction methods. Taking into account the different levels of

expression of genes between conditions, a sub-network from the GSMN is extracted by finding

a steady-state flux most consistent with the experimental data. This process allows the genera-

tion of metabolic networks specifically tailored to the condition, to highlight for example dif-

ferences in metabolism between tissues [7–9] or to discover novel drug targets or essential

genes in cancer cells [10–12].

Several methods were proposed in the literature to automatically reconstruct context-spe-

cific metabolic networks from gene or protein expression, mostly based on Linear Program-

ming (LP) or Mixed Integer Linear Programming (MILP) models [7–9, 13–17], as well as

benchmarks comparing their capabilities [18, 19]. This process is done by solving an optimi-

zation problem to find the sub-network from the GSMN that maximizes the agreement with

the experimental data. This agreement is defined in different ways: some methods such as [7,

15] use data to classify reactions into reactions associated to highly expressed enzymes (or

core reactions) or reactions associated to lowly expressed enzymes, whereas others [8, 14]

assign different scores (weights) to reactions based on data and other experimental evidence.

The optimization problem is then defined as that of finding the sub-networks that can carry

a steady-state flux through the reactions that maximize the overall score. However, a major

limitation that is frequently neglected is that the available information is usually not suffi-

cient to fully and unambiguously characterize the corresponding metabolic sub-network for

a given condition. Instead, a range of different optimal metabolic sub-networks may exist,

offering different hypotheses of the possible metabolic state. In other words, for a given

experimental data, reconstruction method, and pre-processing method to score the impor-

tance of the reactions (e.g., threshold-based methods to classify reactions into active or non

active), there exist an unknown amount of possible metabolic sub-networks (solutions) that

are equally valid (optimal) in terms of agreement with experimental data, but only one of

these solutions (without knowing which one a priori) is returned by the commonly used con-

text-specific reconstruction methods. Ignoring this variability can not only lead to incorrect

or incomplete explanations of the biological experiment, but also causes valuable informa-

tion to be lost that could be used to improve predictions. Although this limitation is starting

to be acknowledged [20–22], there is still a lack of studies that analyze the computational

problem and that provide methods to sample or enumerate the optimal space of alternative

networks.

The problem of exploring multiple solutions in the context of metabolic networks was

already carried out for Flux Balance Analysis [23], but barely analyzed for context-specific net-

work reconstruction, where both the type of the problem and purpose are different. One of the

initial works that exploits the idea of multiple context-specific networks to improve predic-

tions is EXAMO [21]. In this work, authors perform an enumeration of optimal metabolic net-

works using iMAT [7]. The enumeration is done using the same strategy proposed in iMAT
for assigning confidence scores to reactions, followed by a post-processing step using the MBA
[13] algorithm to generate a single consensus network including the reactions predicted to be

active. A similar strategy was applied by Poupin et al. [20], but instead of generating a single

consensus network, the whole set of networks derived by forcing fluxes through each reaction

in the model is preserved as alternative hypotheses of the metabolic state. This enables a better

characterization of the metabolic shifts that occur during hepatic differentiation.
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The procedure of generating alternative networks by forcing or blocking flux through

each reaction has however some limitations. First, it can generate many duplicated solu-

tions. For example, if there exist only one optimal metabolic network with a linear pathway

of 10 reactions, forcing the activation of each reaction in the linear pathway will generate

always the same optimal solution, wasting computational resources. Second, it cannot

recover the whole set of possible optimal metabolic networks, as not all possible combina-

tions of reactions are tested. Third, there is no guarantee that the solution set is representa-

tive and diverse of the full space of possible networks. A simple brute force algorithm that

could be used to prevent this would be to test every possible combination between variable

reactions. However, this approach does not scale as the number of problems to solve grows

exponentially with the number of variable reactions. As an alternative to this approach,

authors in [22] present a strategy to generate alternative metabolic networks. Of particular

interest is their CorEx algorithm, which in a similar fashion as Fastcore method [15],

calculates the smallest flux-consistent sub-network that preserve the reactions in the core

set, but solving the problem exactly instead of the LP-based fast approximations used in

Fastcore. CorEx also incorporates a mechanism to enumerate optimal networks by

maximizing the dissimilarity with the previously found solution, a process that can be

repeated iteratively to discover new optimal networks. However, without a mechanism that

prevents the generation of duplicated solutions, the enumeration process can get stuck in a

small region in the space of optimal solutions. Some issues still remain with this enumera-

tion strategy, mainly regarding its effectiveness to get a representative set of the possible

metabolic networks and also how to take advantage of the set of networks to improve pre-

dictions more than just only observing the variability in terms of reactions that can appear

or not in the different optimal sub-networks.

Regarding this last question, it was shown that the use of ensembles of draft networks

reconstructed using Gap Filling methods with multiple media conditions and random pertur-

bations can improve flux-based predictions [24]. Although the application is different, predic-

tions using context-specific network reconstruction methods could be also improved using

ensembles of optimal metabolic networks, and diversity can play an important role in the qual-

ity of the ensemble models.

In this work, we advocate for generating a diverse set of solutions, that is, given some exper-

imental condition for which we cannot characterize the metabolic state with just one optimal

network, we want to obtain a sample of this largely unknown set of possible networks in a way

that covers well the range of possibilities. In other words: if large differences in metabolism

can be explained by the same experimental data, we want to obtain a diverse set of these opti-

mal networks that capture those different metabolic states. This usually means exploring dis-

tant solutions with changes that correspond also to distant pathways.

The concept of diversity of optimal solutions of a MILP problem is not well explored in

metabolic network reconstruction, and only marginally analyzed in combinatorial optimiza-

tion. Of special interest is the sequential MILP approach proposed by Danna et al. [25], in

which they propose an enumeration strategy which incorporates the concept of diversity

by maximizing the distance to previously found solutions at the same time that they discard

visited solutions. The closest concept to this general strategy applied to the enumeration of

optimal context-specific metabolic networks can be found in [22], where Robaina et al. incor-

porate the idea of maximizing the distance to the previous solution, but without a mechanism

that would remove already explored solutions.

Although maximizing the distance may seem like a good idea a priori, in practice it can

lead to oscillations in the search, in which the search process jumps between two distant

clusters of possible networks, with large inter-cluster distance but very small intra-cluster
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distance. That is why the concept of diversity in metabolic networks must be carefully

analyzed with synthetic and real data that allow observing the behavior and quality of the

solutions.

As a response to the current limitations, here we formalize the problem of enumerating

optimal context-specific metabolic networks from a computational perspective and we develop

DEXOM, a collection of MILP-based methods for diversity-based enumeration of optimal met-

abolic networks. We implemented in total four different techniques in DEXOM, namely:

Reaction-enum, Icut-enum, Maxdist-enum and Diversity-enum.

The objective of this paper is threefold. First, to analyze and formalize, from a computa-

tional perspective, the enumeration problem of optimal solutions and propose different practi-

cal techniques that can be used to obtain not one but many, equally good and diverse context-

specific metabolic networks. Second, to analyze how the different methods behave under dif-

ferent simulated and real conditions and identify real examples where the discovery of a more

diverse set of possible metabolic networks have practical implications. Third, to provide an

unified open source library with the different implementations that can be used in a general

way to find diverse solutions.

In order to evaluate how well each method performs, we focused on two main aspects: 1)

how well each technique is able to discover a diverse set of optimal networks, measured using

different distance metrics, and 2) how the set of alternative optimal solutions is biological

meaningful by assessing the predictive capabilities with real data. We performed in total

around 191,000 network reconstructions with simulated data, 329,000 using microarray data

from Saccharomyces cerevisiae [18, 26] and around 67,400 using RNA-seq data from different

human cancer cell lines [19]. To analyze the extent to which these results are biologically

meaningful, we used these reconstructions to measure: 1) the improvement of in silico predic-

tions of essential genes in yeast using ensembles of metabolic network; and 2) the detection of

alternative enriched pathways in human cancer cells, as a way to measure the variability of dif-

ferent hypotheses about the metabolic state that are compatible with the experimental data

(Fig 1).

To summarize, the main novelties of this work are:

• The analysis and identification of the computational problem involving the diversity-based

enumeration of optimal context-specific metabolic network.

• The development of a library (DEXOM) including four different methods (Reaction-
enum, Icut-enum, Maxdist-enum and Diversity-enum) for the enumeration of

optimal context-specific metabolic networks.

• An extensive comparison using the different methods under different experimental condi-

tions, showing how variable the spacing of valid optimal solutions usually is, and comparing

the methods in terms of ability to detect these solutions.

• The development of an open-source library integrated with COBRA Toolbox 3.0.6 [27] with

the different methods for the enumeration of solutions, available at https://github.com/

MetExplore/dexom

Methods

In this section we introduce the problem of context specific metabolic network reconstruction

and the enumeration problem, we describe the four different strategies that we implemented

in DEXOM namely: Reaction-enum, Icut-enum, Maxdist-enum and Diversity-
enum.
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Fig 1. Summary of the methods and validation. Given an experiment (e.g., microarray data for different conditions),

and a base genome-scale model, we use the four different methods included in DEXOM to enumerate the unknown set

of multiple solutions (optimal context-specific metabolic networks, according to some objective function). Each

method solves the same reconstruction problem but using a different strategy for discovering alternative solutions.

Each set of optimal solutions is compared in terms of diversity, and projected into a 2D embedding to visualize which

part of the space of optimal metabolic networks is explored by each method. In order to explore if a more diverse set of

optimal solutions is biologically meaningful, we performed two evaluations with real data: 1) in-silico simulations of

essential genes in yeast using ensembles of optimal networks; and 2) pathway enrichment in human cancer cells, using

the whole set of discovered networks.

https://doi.org/10.1371/journal.pcbi.1008730.g001
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Reaction-enum is based on the idea of generating alternative solutions by single reac-

tion changes. At each step, a different reaction in the model is picked and forced to be active

or inactive to generate an alternative solution, which is kept only if the new solution is still

optimal. The Icut-enum method is based on the idea of using integer-cuts as constraints to

discard previously found solutions: at each step, a new solution is found and a new constraint

is added to the original problem to discard this solution, making this solution not valid any-

more. By progressively adding new constraints, new optimal solutions are found. The idea

behind Maxdist-enum is to find at each step the most distant optimal solution with respect

to the previous optimal solution, and using integer-cuts to avoid re-discovering the same dis-

tant solutions.

These three techniques, albeit simple and useful in many situations, have also limitations

when it comes to discovering diverse sets of solutions. Based on the analysis of their limita-

tions, we developed a fourth technique called Diversity-enum, a method that takes the

best of the other three techniques without their disadvantages. Using experimental data for a

particular condition and organism, Diversity-enum first construct an initial set of sub-

networks by testing single variations of reactions that may or may not be present in the net-

works without affecting the optimality. This set is then incrementally expanded to find new

optimal solutions by progressively maximizing the differences with other solutions previously

found, increasing the distance at each step.

Optimal context-specific metabolic network reconstruction

Here we consider the reconstruction of optimal context-specific metabolic networks as the

selection of a subset of reactions from a global genome-scale metabolic network for a particular

organism, in a way that maximizes the agreement with experimental data, i.e., reactions in the

model with evidence of being active in a given context should be preserved, and reactions with

evidence of being inactive should be removed from the model. The selection of this subset of

reactions is also subject to flux-based constraints, which constrain the space of possible ways

in which those reactions can be selected. More formally, given:

• G = {R, M, S}, an initial genome-scale metabolic network G for a given model organism,

where R = {R1, . . ., Rn} is the set of reactions in the network, M = {M1, . . ., Mm} is the set of

metabolites, and S is the stoichiometry matrix of size m × n

• f ðxÞ : f0; 1g
n
! R, a linear objective function of the form cT x that returns a score for a can-

didate subset of reactions indexed by a binary vector x 2 {0, 1}n, indicating whether reaction

Ri is selected or not, so that the subset of selected reactions from R is defined as Rc = {Ri 2

Rjxi = 1, 8i 2 1. . .n}

The goal is to find the binary vector x (or equivalently the subset Rc) such that f(x) is maxi-

mized. Reactions included in the Rc set have to carry a non-zero flux under steady state condi-

tions. This problem can be stated as a Mixed Integer Linear Programming (MILP) problem

with the following form:

max f ðxÞ ¼ cTx

s:t: S � v ¼ 0

xi � vmin;i � vi � xi � vmax;i

v 2 Rn; x 2 f0; 1gn

ð1Þ

where xi 2 {x1, . . ., xn} are the binary variables representing if reaction Ri is present or not, vi 2

{v1, . . ., vn} the variables representing the flux through each reaction Ri, and vmin and vmax the
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lower and upper bounds for the flux through each reaction. Note that what is subject to opti-

mization is the selection of the reactions but not the fluxes. Fluxes are constrained within some

bounds vmin and vmax, and forced to be in steady state (S � v = 0). Reactions can be included

(xi = 1) only if they can carry some non-zero flux, and reactions not included (xi = 0) are forced

to carry a zero flux. In the following, we shall use this notation to introduce different MILP

problems for context-specific reconstruction of metabolic networks.

The objective function f(x) calculates the agreement between the experimental data

and the selected reactions. One common strategy is to divide reactions in two disjoint sets

based on experimental evidence, namely reactions associated with highly expressed enzymes

(RH � R) and reactions associated with lowly expressed enzymes (RL� R), and then defin-

ing f(x) as:

f ðxÞ ¼
X

ijRi2RH

xi þ
X

ijRi2RL

1 � xi ð2Þ

This is the strategy described in iMAT, in which the selection of one reaction in RH or the

removal of one reaction in RL contribute in the same way to the score. Other strategies such

as Fastcore, enforce the inclusion of all the reactions in RH, and so f(x) evaluates only the

number of selected reactions in RL to minimize it.

In practice, the binary vector x is extended to account also for reversible reactions in the RH

set that can be active carrying a negative flux. Also, a tunable parameter � corresponding to the

minimal amount of flux a reaction has to carry to be considered active is usually included in

the optimization problem. In the original iMAT formulation, a reaction Ri 2 RL which is not

selected (which carries no flux) has a value of xi = 1 representing a match with the experimen-

tal data, and so Eq 2 simplifies to just f(x) = ∑i xi. The full problem specification is described in

Eq 3:

max
X

i

xi

s:t: S � v ¼ 0

vi þ xþi ðvmin;i � �Þ � vmin;i 8i j Ri 2 RH

vi þ x�i ðvmax;i þ �Þ � vmax;i 8i j Ri 2 RH

vi þ xo
i � vmin;i � vmin;i 8i j Ri 2 RL

vi þ xo
i � vmax;i � vmax;i 8i j Ri 2 RL

v 2 Rn;

xþ; x� ; xo 2 f0; 1g
jRj

x ¼ ðxþ; x� ; xoÞ 2 f0; 1g
3jRj

ð3Þ

It is important to remark that the methods presented here are general strategies for enumer-

ating optimal metabolic network reconstructions, and therefore can be used with different

base algorithms for the reconstruction, as long as they are implemented as MILPs. This means

that the methods serve to enumerate iMAT-like solutions [7], Fastcore-like solutions [15],

INIT-like solutions [14], or any other type of MILP-based reconstruction.

In the following sections, for practical reasons and without loss of generality, we use the

original set of iMAT constraints and objective function as the base MILP problem for network

enumeration, since: 1) it relies on a MILP formulation, which can be easily adapted to opti-

mally solve different optimization problems and objectives; and 2) the default objective

PLOS COMPUTATIONAL BIOLOGY DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008730 February 11, 2021 8 / 34

https://doi.org/10.1371/journal.pcbi.1008730


function optimizes a trade-off between the coverage of reactions associated with highly

expressed genes and reactions associated with lowly expressed genes, which has been proven

in practice a good general strategy that only requires gene expression data. This trade-off intro-

duces flexibility in the optimization process, allowing us to predict that some reactions are not

active even though they are associated with highly expressed genes, something important to

account for post-transcriptional events.

The problem of enumerating optimal metabolic networks

The enumeration problem arises naturally in context-specific reconstruction of metabolic net-

works due to the discrete nature of the selection of reactions and the imbalance between the

available constraints and the complex topology of the networks, leading to an undertermined

problem.

In order to better analyze the enumeration problem from a computational point of view,

we use a Directed Acyclic Graph (DAG) network model. Directed Acyclic Graphs are com-

monly used for the analysis of biology networks in general [28]. By representing metabolic net-

works as DAGs, we can calculate in advance how many optimal solutions we can expect, and

thus compare the techniques with a ground truth (i.e., the full set of optimal solutions that

exist in a specific DAG) in an objective manner focusing specifically on the computational

problem of enumeration. This is important because although the scope of application is bio-

logical, the technique is basically computational and requires a proper computational analysis

of the problem under study. Fig 2 shows the generic DAG metabolic network with L layers of

N metabolites. Each metabolite mi,k in layer Lk is connected to each metabolite mj,k+1 in Lk+1

by single reactions Rijk = (mi,k, mj,k+1) with only one substrate and product. The model includes

two extra metabolites ms as a source and mt as a sink node to centralizethe import and export

reactions and simplify the model. The number of total metabolites, including ms and mt is 2 +

N � L, and the number of total reactions is 2N + N2 � (L − 1).

In this example, we want to extract the context-specific metabolic network, given the fol-

lowing conditions:

• ∑i |vi|> 0, i.e., there is a non-zero steady state flux from ms to mt. This is commonly assumed

in order to avoid having an empty network.

Fig 2. Directed Acyclic Graph (DAG) metabolic network model. This figure illustrates the DAG metabolic model

that we use to analyze the computational issues related to the enumeration of optimal context-specific network

reconstructions using MILP-based reconstruction methods. The metabolic network is divided into L layers, each layer

containing n metabolites.

https://doi.org/10.1371/journal.pcbi.1008730.g002
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• RH = ;, RL = R, i.e., there are no reactions associated to highly expressed enzymes, and all the

reactions are associated with lowly expressed enzymes.

It can be seen that a metabolic network with optimal f(x) in this case is the one that carries

flux from ms to mt using the minimum number of reactions (since they are all in the RL set),

which corresponds to a shortest path from ms to mt. Since there are no loops in the network,

the shortest length for the path is L + 2 (including the path from ms to L1 and from LN to mt).

This also implies that there is no single solution, but instead any path from ms to mt is an opti-

mal solution, i.e., a context-specific reconstruction network with optimal f(x) given the previ-

ously defined conditions. Since there are N different paths to go from any metabolite in layer

Lj to any metabolite in layer Lj+1, that makes NL possible optimal networks in this particular

example, that is, the number of possible optimal solutions in this example grows exponentially

with the number of layers. Note also that since the number of reactions for a fixed number of

metabolites grows linearly with the number of layers, the number of possible solutions grows

also exponentially with the number of reactions.

This example illustrates that there are instances of the enumeration problem for which the

number of optimal solutions grows exponentially with the size of the network. Thus, in gen-

eral, enumerating the full set of optimal metabolic networks can be impractical, especially

considering the size of networks such as Recon 3D [29] with 13,543 reactions, or the recent

Human1 network [30] with around 13,000 reactions.

More formally, it can be shown that the enumeration of all optimal metabolic networks is a

type of vertex enumeration problem. Let MP be the general MILP problem for context specific

reconstruction using a GSMN with n reactions and with objective function cT x that we want

to maximize, as defined in Eq 1. Let O be the set of all 0/1-vectors representing the feasible

solutions for the MILP MP that satisfy all the constraints defined in Eq 1. From a geometric

point of view, the space of possible networks can be viewed as vertices of the hypercube Cn =

{0, 1}n, and the set of feasible solutions O as a subset of vertices of Cn, where its convex hull is a

0/1-polytope P, that is, P = conv(O). Let z� be the optimal value of MP, i.e., 8x 2 O, cT x� z�.
We are interested in the set of all optimal feasible solutions O�≔ {x� j x� 2 O^cT x� = z�},
where P� = conv(O�)� P is the 0/1-subpolytope of interest in H-representation (as the inter-

section of half spaces defined by all the constraints) from which we want to obtain the V-repre-

sentation, that is, the set of vertices as vectors of 0/1 coordinates (the optimal context-specific

networks), which is the definition of the vertex enumeration problem.

Vertex enumeration [31] is a classical problem in the field of combinatorial optimization

for which some specific techniques were proposed [32]. For the special case of 0/1-polytopes

[33], some notable approaches are Binary Decision Diagrams [34–38], tree search-based

methods [39, 40] and techniques based on branch-and-bound and cutting planes, extensively

exploited in academic/commercial solvers such as IBM CPLEX and Gurobi. In fact, as a gen-

eral enumeration mechanism, these solvers incorporate the concept of a pool of optimal solu-

tions, in which the tree of feasible solutions continues to be explored until a specific number of

optimal feasible solutions have been found.

However, as discussed before, the number of optimal metabolic networks for a given prob-

lem can be extremely large, and so classical vertex enumeration techniques are not suitable for

this task. One reason is that, given the potential vast number of possible solutions and a fixed

amount of time to generate a variety of optimal solutions, there is no guarantee that these

methods will generate a diverse set of solutions. In fact, the opposite is more likely: similar

solutions (e.g., small variations in reactions on the same pathway) will probably be closer in

the search space. Also, due to symmetries introduced by loops and other patterns in metabolic

networks, chances are that the enumeration gets trapped performing enumeration in small
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dense regions of the search space that can be more related to artifacts than to solutions with

true biological meaning.

In the following sections we present four enumeration strategies and analyze their advan-

tages and drawbacks. It should be noted that we limited to a set of generic techniques that can

be implemented on top of general MILP solvers and can be easily integrated in the existent

pipelines for network reconstruction. One disadvantage of this is that each solution is obtained

by constructing and solving a new MILP problem. Ad-hoc search strategies for the enumera-

tion of MILP solutions based on custom branch-and-cut methods or more advanced tree

search exploration, although they might be more efficient in some situations, are out of the

scope of this work.

Enumeration of optimal networks by inclusion or exclusion of reactions

(DEXOM Reaction-enum)

A simple way to generate alternative optimal metabolic networks can be achieved by directly

manipulating the flux bounds of each reaction to force it to carry some positive flux, some neg-

ative flux (if reversible), or no flux, as in [20, 21]. The original method traverses all the reac-

tions in the model testing forward (or backward flux if the reaction is reversible) or blocking

flux in order to generate a new solution with a different activation for each reaction. Solutions

that are still optimal after the modification are added to the set of optimal solutions. This

method has however two major limitations: 1) it only explores variations in single reactions (if

they can be active or inactive in an optimal solution), leaving the vast space of combinations

between reactions completely unexplored; and 2) it generates many duplicated solutions, wast-

ing computation time.

We included this basic idea in DEXOM as a simple mechanism to generate alternative solu-

tions, under the name of Reaction-enum, with some modifications and further options

that can be used to reduce some of the limitations in its basic form. One option that can be

enabled to alleviate the problem of generating duplicated solutions consists in tracking the

activation or inactivation of each reaction in the set of alternative optimal networks during the

search process. If forcing the flux through a reaction Rijk results in an optimal sub-network

with another reaction Ri,j+1,k+1 active, then there is no need to force flux through Ri,j+1,k+1 as it

is not guaranteed that this operation is going to generate a new sub-network (unless the solver

is adjusted to increase randomness in the solutions returned).

One advantage of the Reaction-enum method is that it tests every reaction in the model

to see if its presence or absence affects the quality of the solution. This generates alternative

networks with modifications in every possible pathway of the metabolic network, which

makes this technique a good starting point for more advanced enumeration methods (for

example, to generate a set of initial candidate optimal solutions).

Exhaustive enumeration of optimal networks (DEXOM Icut-enum)

One simple way to perform a full enumeration of the set of optimal networks is by adding inte-

ger-cuts, linear constraints that can be added to the original problem to remove already visited

solutions from the set of feasible solutions. This method, which has been already used to enu-

merate solutions in general for MILP problems [41], can be used as well as a mechanism to

enumerate alternative metabolic networks. We adapted this technique for enumeration of con-

text-specific reconstructions under the name of DEXOM Icut-enum. Starting with a default

optimal solution x� to the MILP problem defined in Eq 3, a new solution is generated by add-

ing a new constraint to the original problem to cut x� from the set of feasible optimal solutions.

This process is repeated for each new solution, adding a new constraint per solution. A new
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solution is accepted if there is at least one different reaction in the candidate sub-network, that

is:

X

i

jxi � x�i j � 1 ð4Þ

Although this constraint is not linear due to the absolute value, it can be linearized by con-

sidering separately the ones from the zeros. Two solutions are equal if they have the same set

of active reactions and the same set of inactive reactions. Thus, for each x�i ¼ 1, we expect to

have xi = 1, and for each x�i ¼ 0, we expect xi = 0 if both the previous solution and the candi-

date are equal. Under this situation, summing up all the ones from xi for which x�i ¼ 1 should

be equal to
P
ðx�i Þ (except if there is one or more differences), and in the same way, summing

up all the zeros from xi for which x�i ¼ 0 should be equal to zero. If this does not happen, then

there is some difference between the candidate solution xi and a previous optimal solution x�.
More formally, the linearization of Eq 4 can be written as:

X

i2A

xi �
X

i2B

xi �
X

i

x�i

 !

� 1

A ¼ fi j x�i ¼ 1g;B ¼ fi j x�i ¼ 0g

ð5Þ

By adding this constraint for each new x� returned by the solver, we exclude all the previous

solutions that have been found so far. The generation of new solutions stops when the problem

becomes infeasible, that is, there are no more feasible optimal solutions. Note that this cut can

be modified to cut feasible optimal solutions that differ in more than one reaction, i.e., to cut

solutions that are at some specific Hamming distance.

The advantage of this method is that it enumerates all possible solutions since it removes

one by one every optimal feasible solution. It is straightforward to see that this method enu-

merates all the feasible optimal solutions by observing that: 1) each cut removes one optimal

solution; 2) the number of constraints that are added grows monotonically with every new

optimal solution; and 3) the number of solutions is finite. Let us assume that for a given prob-

lem, the set of optimal feasible solutions O� contains N different solutions, i.e., for every pair

{x�, y�}� O�,
P

ijx
�
i � y�i j � 1 (there is at least one different reaction between any two optimal

solutions). For the sake of the proof, let us assume that after N steps of the algorithm, and after

adding N integer cuts, one per optimal solution, the last MILP problem is still feasible, i.e., solv-

ing it returns a solution z�, thus: 1) z� is different to any other solutions in at least one reaction,

which means that there are at least N + 1 solutions, contradicting the initial assumption; or 2)

z� is a duplicated solution, that is, there exist a solution x� 2 O� such that
P

ijz
�
i � x�i j ¼ 0,

which contradicts the definition of the integer cut.

However, in practice, it is not possible to enumerate the entire space of solutions due to the

potential number of possible optimal solutions. Although this technique can be also used to

generate a sample of optimal solutions (stopping the search after a desired number of solutions

was found), the method is not well suited for this task since: 1) the number of constraints

grows linearly with the number of solutions, which increases the computational difficulty with

each new solution; 2) the algorithm can get trapped enumerating solutions in a small region of

the whole space of possible optimal solutions, and so diversity in the set of solutions is not

guaranteed; 3) even if a new optimal solution exists, due to numerical instabilities or precision

errors, the search process can prematurely stop at the first incorrectly detected infeasible

problem.
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Enumeration of optimal networks with maximum dissimilarity (DEXOM
Maxdist-enum)

Another strategy for the enumeration of optimal solutions is to search the most dissimilar met-

abolic network to a previous optimal one. This idea, already explored in the context of Integer

Programming problems [25, 42], has been also proposed for metabolic networks [22]. The

strategy requires to solve a bilevel optimization problem in which the inner optimization prob-

lem solves the original problem and the outer optimization maximizes dissimilarity. This par-

ticular bilevel optimization can be implemented as a standard MILP problem, by introducing

a constraint that corresponds to the original objective function. First, an optimal solution x�

with optimal score f(x�) = z� is calculated using the problem defined in Eq 3, and then the orig-

inal objective function is replaced by the minimization of a function g(x, x�) which measures

the similarity between the candidate solution x and a reference optimal solution x�. In order to

guarantee that the new solution to this new problem is still optimal in the original problem, a

new constraint f(x) = ∑i(xi) = z� has to be added to preserve optimality.

Although the idea of returning the most dissimilar optimal network is interesting, one of

the limitations is that it can easily oscillate between a small set of optimal networks that are

the most distant to each other, since only the previous optimal solution is discarded. Conse-

quently, the technique also does not guarantee to obtain all the possible solutions. We have

introduced a modification to the original idea to break this pattern and allow the complete

enumeration of solutions by adding integer cuts. This modification prevents trivial oscillations

between already visited solutions and enumerates the space of solutions starting from the most

extreme differences. We refer to this technique as Maxdist-enum.

The objective function g of the Maxdist-enum method can be defined as the minimiza-

tion of the overlapping of ones between x and x�. Note that the optimality constraint guaran-

tees that the solutions must have the same number of ones (same score), and so removing one

overlap (for example by not including a reaction in RH which is present in the reference solu-

tion) has to be compensated by including another reaction in the set of RH not present in the

reference solution, or by removing one reaction in the RL set which is present in the reference

solution, in order to preserve the original optimal score. Minimization of the overlapping of

ones between x and x� with this constraint is essentially the same as finding the most extreme

vertices of the 0/1-polytope of feasible optimal solutions using the Hamming distance.

min
x

gðx; x�Þ ¼
X

ijx�i ¼1

xi

s:t: S � v ¼ 0

X

i2A

xi �
X

i2B

xi �
X

i

x�i

 !

� 1

X

i

xi ¼ z�

vi þ xþi ðvmin;i � �Þ � vmin;i 8i j Ri 2 RH

vi þ x�i ðvmax;i þ �Þ � vmax;i 8i j Ri 2 RH

vi þ xo
i � vmin;i � vmin;i 8i j Ri 2 RL

vi þ xo
i � vmax;i � vmax;i 8i j Ri 2 RL

ð6Þ

The expected behavior of this algorithm is the following: starting from the default solution

x�, the search process generates the most distant network with the same optimal score. This

process is repeated, changing the x� in each iteration to the one previously found, pushing
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away the search to the boundaries of the space until the most distant networks in the space

of optimal solutions are discovered. The integer-cut constraint prevents search loops,

and so once the extremes are found, the distance of new solutions decreases progressively.

This method has also limitations that may prevent its use for generating a diverse sample

of optimal solutions. Concretely, even though the integer-cut constraint prevents generating

repeated solutions, the density of similar metabolic networks at the boundaries can be large

enough to never explore other areas. This increases the risk of ending up oscillating between a

small group of clusters of networks with a large inter-cluster distance but a very small intra-

cluster distance. In addition to this, the method is computationally more expensive than the

previous ones.

Diversity based extraction of optimal metabolic networks (DEXOM
Diversity-enum)

Based on the previously identified problems and improvements for each method, we also pro-

pose a novel algorithm to generate a set of diverse optimal metabolic networks, combining the

advantages of the techniques described before. The basic steps of Diversity-enum are:

1. Generate an initial set of optimal solutions using the Reaction-enum method with inte-

ger cuts to avoid duplicated solutions.

2. Pick an initial solution x(0) from this set.

3. Find a new alternative solution maximizing the differences with respect to some n random

reactions that are present in the initial solution (this is, find the maximum dissimilarity

optimal network with respect to only those n reactions). The number of reactions that are

selected (n) increases over time, starting with only 1 reaction (alternative solutions should

be different in at least one reaction), until n = number of present reactions in x(0) (i.e., maxi-

mize differences with respect to all the selected reactions in the initial solution, which is

essentially the same as in the maxdist-enum method). In this way, Diversity-enum
behaves at the beginning more like Reaction-enum, increasing progressively the dis-

tance, until it behaves like Maxdist-enum method. The speed of this transition is con-

trolled by the parameter ds (see Alg. 1).

4. Set the new solution x(1) as the new initial solution and repeat from 3 until the desired num-

ber of solutions has been reached or until there are no more solutions.

Algorithm 1 Diversity-enum algorithm
1: procedure DIVERSITY_ENUM(iters, ds, f)
2: xð0Þr ; . . . ; xðkÞr  initial solutions with the reaction � enum method
3: i  0
4: xðiÞ  xðkÞr
5: z� = f(x(i))
6: while i < iters and f(x(i)) = z� do
7: y(i)  vector of 0s of same size as x(i)

8: pick_prob  1 − exp(ds, i) # where exp(a, b) = ab

9: for j j xðiÞj ¼ 1 do
10: sample u � Uð0; 1Þ
11: if u � pick_prob then
12: yðiÞj  1

13: s  solve maxdist MILP mins gðs; yðiÞÞ (Eq 6)
14: i  i + 1
15: x(i)  s
16: return xð0Þr ; . . . ; xðnÞr ; x

ð1Þ; . . . ; xðiÞ.
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A detailed version of the algorithm is described in Alg. 1. Diversity-enum combines

the advantages of the previous techniques. It starts computing an initial set of solutions using

the Reaction-enum method avoiding duplicated solutions. This guarantees that single vari-

ations of reactions across all pathways are explored, as long as this initial set of solutions is

large enough (i.e., all reactions of the network are traversed to generate alternative solutions).

Then, starting for any solution from this initial set, the algorithm explores solutions in the

vicinity of the selected solution, using it as a template, for which only a subset of the reactions

present in the selected solution are used to maximize the distance to the new solution. The

more reactions that are selected to maximize the distance, the more different the new solution

found will be from the selected one. The number of selected reactions from the template at

each iteration (i.e., the distance of the next solution with respect the previous one) is controlled

by the parameter ds 2 [0, 1]. For example, using a ds value close to one (e.g. ds = 0.99), the dis-

tance of the solution obtained at iteration 70 with respect the previous one (obtained in the

iteration 69), is going to be 1 − 0.9970� 0.5, that is, the expected distance of the next optimal

solution with respect the previous one is half of the possible maximal distance. At iteration

1,000, this value is 1 − 0.991000� 1, and so the algorithm is now searching for the most distant

solution, as Maxdist does. Using a higher value of ds (e.g. ds = 0.999) makes this transition

from near to far solutions slower, since this time the value at iteration 70 is only 1 − 0.99970�

0.07. It should be noted that if ds = 0, after computing the initial set of solutions, Diver-
sity-enum behaves exactly as Maxdist-enum. By default, the value of this parameter has

been set to ds = 0.995, and all experiments performed, unless otherwise indicated, have been

done with this value.

Some preliminary experiments that we carried out suggest that it is preferable to start with

the initial set of solutions using the Reaction-enum method and expand it by progressively

looking for more distant solutions, rather than the other way around. The reason is that if we

start with the most extreme solutions, as we progressively decrease the distance, the effect we

get is to explore solutions that are closer to each other but still located in the extremes of the

space, and still far from the initial solutions.

Measuring diversity

Given the unknown volume of the 0/1-polytope comprising the optimal solutions, it is not

possible to directly estimate its size without sampling solutions from it. In order to measure

how diverse are the set of solutions obtained with different methods, we need to rely instead

on indirect measures. Since solutions are indexed by 0/1 coordinates, one reasonable metric to

use is the Hamming distance:

dhðx; yÞ ¼
1

jxj
Xn

i¼1

jxi � yij ð7Þ

For each pair of solution vectors x, y 2 {0, 1}n obtained from the set of optimal solutions

O�, we compute the Hamming distance (i.e., how many reactions are different between any

two solutions) and we average across all the distances between any two solutions to obtain the

average pairwise distance �dh . One way to promote diversity is to maximize this measurement:

between two different sets of optimal solutions (of a similar size), the set with a larger average

pairwise distance contains solutions that are, on average, more diverse. However, relying only

on the average pairwise distance might not be informative enough in some situations, since

two groups of solutions that are very different between groups but very similar within groups,

can have a large average pairwise distance driven by the distance between groups, even thought
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the diversity is low within groups. Under these circumstances, it is easy to have the false

impression that the set of solutions is diverse, but instead it will contain only the two initial dif-

ferent solutions with very small variations.

To discriminate better between these situations, we use also the average nearest neighbor
distance �dnn

h defined as:

�dnn
h ðOÞ ¼

1

jSj
X

x2O

min
y2Onfxg

dhðx; yÞ ð8Þ

That is, for each optimal solution in the solution set O� O� obtained with some enumera-

tion method, we measure the distance to all other solutions and we take the distance to its

closest solution (nearest neighbor). Then, we average all those distances to have the average

nearest neighbor distance.

The average nearest neighbor distance measures how spread the solutions are. We want

solutions that are spread to cover a wider range of different solutions and avoid the enumera-

tion of clusters of very similar solutions.

Considering these two metrics, we can devise four situations when comparing the solution

sets obtained by different methods:

• Lower �dh and lower �dnn
h : this situation corresponds to a low diversity. Solutions are close

together and sampled from a small region of the search space.

• Larger �dh and lower �dnn
h : low dispersion of the solutions, even though solutions are distant

from each other.

• Lower �dh and larger �dnn
h : solutions are dispersed but only in a smaller region of the search

space.

• Larger �dh and larger �dnn
h : better diverse set of solutions in which solutions are scattered

across the space of optimal networks.

Although simple, these metrics provide an idea of how different the solutions enumerated

by the methods are.

Essential gene prediction and metabolic network ensembles

Context-specific metabolic networks can be used to make predictions about the metabolism of

a cell or tissue in a specific experimental condition. Of a particular interest is the prediction of

essential genes. An essential gene is a gene whose totally or partially inactivation prevents the

organism to growth or survive. Some genes are absolutely required for survival, whereas other

genes are conditionally essential, meaning that they are essential depending on the environ-

mental conditions. For example, the gene ARG2, which encodes glutamate N-acetyltransferase

—a mitochondrial enzyme that catalyzes the first step in the biosynthesis of the arginine— is

annotated as a essential gene in Saccharomyces cerevisiae (https://www.yeastgenome.org/locus/

S000003607) only in the absence of arginine in the medium.

Many essential genes that are related to metabolism (those related to enzymes) can be pre-

dicted using metabolic networks. However, conditionally essential genes are particularly hard

to predict since they cannot be predicted without integrating experimental data or knowledge

related to the condition. Context-specific metabolic networks are able to predict them indi-

rectly, by extracting first the sub-network which is most consistent with the experimental

data. After removing all the reactions that are predicted to be inactive in a given context,
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conditionally essential genes that were not essential in the generic network might be now

essential in the reconstructed network.

Predictions of essential genes using metabolic networks can be done by comparing the

maximum flux through the biomass reaction —an artificial reaction that encodes the mini-

mum requirements of the organism to sustain a basic metabolic activity— using Flux Balance

Analysis (FBA) [43] before and after knocking out a gene in the metabolic network. If the

flux through the biomass reactions is below a certain threshold after KO (e.g., below 1% with

respect to the wild-type) then the gene is considered essential.

However, as explained before in this section, it is common to find more than one optimal

context-specific metabolic network for a given condition, each one representing a different

hypothesis of the metabolic state. Each network may predict different essential genes. Since all

networks fit the experimental data equally well, there is no clear way to decide a priori which

of these predictions may be true. In this situation, a reasonable strategy is to consider that if a

network predicts a gene to be essential, then the ensemble decides that the gene is essential, in

order to maximize the number of true essential genes (at expenses of increasing the false posi-

tives), similar to what has been done in [24] with Gap-Filling methods.

Fig 3 shows an example of how the procedure works. For each gene, a KO is simulated by

maximizing the flux through the biomass reaction after knocking out the reaction or reactions

associated to the gene (based on the Gene-Protein-Reaction rules), using the singleGen-
eDeletion method from the COBRA Toolbox [27]. If the ratio between the KO and the

wild type is below 0.01 (flux after KO below 1%), the gene is classified as essential. This process

is repeated for all genes and for all optimal networks, and then results are combined by per-

forming a logical OR of the predictions across networks.

After obtaining the predictions for each gene, the True Positive Rate (TPR, sensitivity) and

the False Positive Rate (FPR, 1-specificity) are calculated by comparing the predictions against

Fig 3. Example of a metabolic network ensemble. Predictions of the essential genes produced by Net1, Net2 and

Net3 are combined by performing a logical OR.

https://doi.org/10.1371/journal.pcbi.1008730.g003
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the true essential genes for Saccharomyces cerevisiae (included in the repository of the code),

and applying the following formula:

TPR ¼
TP

TPþ FN
ðTP ¼ True Positives;FN ¼ False NegativesÞ ð9Þ

FPR ¼
FP

FPþ TN
ðFP ¼ False Positives;TN ¼ True NegativesÞ ð10Þ

Data pre-processing

One common step prior to any metabolic reconstruction is pre-processing the experimental

data to map it onto the metabolic networks. The way in which this data is pre-processed also

depends on the objective of the reconstruction and the type of data used (generally gene

expression data). A common approach is to use gene expression data to classify reactions into

two groups: reactions for which there is experimental evidence of being active for a given con-

dition, and reactions for which there is not enough evidence.

A simple method that is frequently used for this purpose is based on a prior classification of

genes using quantile thresholds on the normalized gene expression [19]. In this way, genes

whose expression levels are above or below certain quantiles are classified as highly or lowly

expressed genes. For example, a thresholds specified as [0.25, 0.75] means that genes whose

value are below the 25th percentile are classified as lowly expressed, and genes above the 75th

percentile are classified as highly expressed. Afterwards, genes are mapped onto the metabolic

network using the Gene-Protein-Reaction rules defined in the GSMN in order to get the reac-

tions associated with highly expressed or lowly expressed genes.

Fig 4 shows an example for a threshold of [0.10, 0.90] on the normalized microarray gene

expression of the Saccharomyces cerevisiae under aerobic conditions [18, 26]. In this example,

genes whose expression levels fall above the upper threshold (around a normalized gene

Fig 4. Example of gene expression thresholds. The example shows the quantile thresholds [0.10, 0.90] (indicated with

dashed lines) on the normalized gene expression levels (RNA-seq) from Saccharomyces cerevisiae under aerobic

conditions (20.9% oxygen levels) from [18, 26]. Genes above the upper threshold are classified as highly expressed

genes, whereas genes below the lower threshold are classified as lowly expressed genes.

https://doi.org/10.1371/journal.pcbi.1008730.g004
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expression of 11) are considered highly expressed, whereas genes below a normalized gene

expression around 6 are classified as lowly expressed genes.

As mentioned before in the section Methods, for practical reasons in this work we use the

iMAT reconstruction objective as the base reconstruction problem for enumeration. This

means that the results we enumerate are those that achieve the optimal trade-off between selec-

tion of reactions associated with highly expressed genes and removal of reactions associated

with lowly expressed genes.

We use this threshold-based method for the classification of reactions based on gene

expression levels because of its simplicity and widespreadness, but other methods could be

used instead, for example StanDep [44] or Barcode [45] (for Affymetrix microarray data).

Changing the method changes the set of optimal solutions to the problem, but does not elimi-

nate the problem associated with the enumeration. Analyzing the correctness of the pre-pro-

cessing technique is beyond the scope of this work, since the problem of enumeration is

independent of the pre-processing method (multiple optimal solutions can still exist regardless

of the method used).

Results

In Section Methods we show how the problem of context-specific metabolic network recon-

struction is subject to significant variability due to the vast number of possible optimal

metabolic networks that explain the same experimental data. This variability makes the inter-

pretation of the metabolism using a single metabolic network not very reliable, since many

equally valid alternative hypotheses are disregarded.

In this section, we analyze the performance of each of the methods implemented in DEXOM
to generate a diverse sample of optimal metabolic networks, assuming that in practice it is not

possible to fully enumerate the total unknown space of optimal solutions, as is generally the

case. The evaluation is divided into three parts.

First, we evaluate the diversity of the set of solutions discovered with each method in two

scenarios: 1) when the true number of possible solutions is known (known ground truth),

using the simple Direct Acyclic Graph model introduced in Section Methods; and 2) when the

number of possible solutions is not known, using the Yeast 6 GSMN [46] as a biological realis-

tic metabolic network. For the second case, we select random sets of highly expressed and

lowly expressed genes from the Yeast 6 model to generate problems in which the total number

of optimal solutions is not known a priori, and we compare the samples generated with each

method in terms of diversity.

Second, we evaluate the predictive capabilities of each method for in-silico prediction of

essential genes. Using real gene expression data for Saccharomyces cerevisiae under aerobic

conditions [18, 26] and the Yeast 6 model [46], we enumerate thousands of optimal networks

with each method and we asses the performance by predicting which genes are essential using

both the individual networks and ensembles of networks constructed by combining the pre-

dictions of the individual networks.

Finally, we use gene expression data from four different human cancer cell lines and we

reconstruct many optimal networks per cell line using different combinations of gene thresholds

and methods. We compare the ability of each technique to discover alternative hypothesis of the

metabolic state of the cells by performing pathway enrichment on the set of optimal solutions.

Diversity-enum explores a wider region of the optimal network space

We measure how well each method performs to generate diverse samples of optimal solutions.

To do so, we generate samples of fixed size with each method and we measure the diversity of
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the sample using the average Hamming distance and the average nearest neighbor that were

introduced in Section Methods. We consider two different scenarios: 1) obtaining a sample of

optimal metabolic networks in a simulated scenario where the number of total optimal solu-

tions is known; and 2) obtaining a sample of optimal solutions in realistic scenarios where the

total number of optimal solutions is unknown.

Evaluation in a simulated scenario with a known number of possible optimal solu-

tions. One of the difficulties of measuring the diversity of the solutions obtained by different

methods is the absence of a ground truth to compare with, as the full set of optimal solutions is

in general not known. However, the DAG network model introduced before can be used as a

simple ground truth generator, since the full set of optimal solutions is easy to determine.

In order to assess the coverage and diversity of a sample of optimal networks, we used the

DAG network model with 5 layers and 4 metabolites per layer (74 reactions and 22 metabolites

in total), which contains a total of 1,024 optimal metabolic networks. The different methods

were used to sample from 1 to 250 optimal solutions (around 1/4 of the total set of possible

optimal solutions).

Fig 5 shows a low-dimensional projection of the 250 optimal solutions obtained by each

method, where each point is an optimal metabolic network encoded as a binary vector. The

grey points correspond to the total of 1,024 optimal solutions that exist for this example.

The Reaction-enum method shows a low coverage of the space of optimal solutions,

enumerating only a 7% of the full space of optimal networks. This is due to the fact that the

Reaction-enum method changes the bounds of each reaction in the network indepen-

dently from each other. Since each reaction participates in many optimal solutions, the Reac-
tion-enum can obtain only a subset of all possible optimal networks, missing a large

fraction of optimal metabolic networks that cannot be recovered with this method.

Qualitatively speaking, the 250 solutions obtained with the icut-enum method are not as

spread as the ones obtained with Diversity-enum and the Maxdist-enum method. Dif-

ferences between Diversity-enum and Maxdist-enum are less obvious and hard to

appreciate in a low dimensional embedding in this example.

In order to have a better picture of the diversity of the solutions, we calculated the evolution

of the distances �dh and �dnn
h for each method. We repeated the process 30 times to obtain differ-

ent samples of 250 solutions. The results for the 30 independent runs are shown in Fig 5E and

5F. The average over the 30 runs is represented with a dashed line.

These figures show in a more clear way how Diversity-enum obtains the most diverse

set with respect the other methods after 150 optimal solutions were enumerated, surpassing

the Maxdist-enum method. It can be seen how the behavior of the algorithm in terms of

diversity changes dramatically after the initial solution set is calculated, around solution 50

(this effect is controlled by the ds parameter described in the Methods section). At this point,

Diversity-enum starts to increase the distance progressively, looking for more and more

distant solutions, which is reflected in the increase of both �dh and �dnn
h . In contrast, Reac-

tion-enum obtains sets of solutions with a very poor diversity. After calculating 74 solutions,

the method cannot generate new optimal networks (since there are only 74 non reversible

reactions in the network), and the solution set stops growing. Since the Reaction-enum
generates solutions by modifying the constraints of each reaction, one at a time and indepen-

dently of each other, solutions are mostly concentrated in a concrete region of the space of pos-

sible solutions, which corresponds to solutions that are similar to each other. The Maxdist-
enum method shows at the beginning of the search the largest distance, since the solutions are

generated by finding extreme differences. After an initial set of 25 optimal solutions, the aver-

age distance stops increasing, but the average nearest neighbor distance continues to decrease.
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This means that the most distant solutions are discovered at the beginning of the search and

then there is less and less distance between new found solutions, something to expect given the

reduced number of possible solutions in this example. Whether this small number of solutions

(around 2% of the total number of equally valid solutions) is sufficient or not will depend on

each particular case (for example, it can be enough to show an example of how extreme results

can be in terms of different sets of reactions, but not enough to construct a good ensemble for

the prediction of essential genes).

Evaluation in realistic scenarios with an unknown number of optimal solutions. In

order to evaluate the diversity in a more biological setting, we randomly select different sets of

highly expressed and lowly expressed enzymes of varying size in the Yeast 6 metabolic model

Fig 5. Space of optimal solutions of the DAG network problem explored by each method. Low dimensional

representation of the optimal networks enumerated with different methods. Each method was used to explore a

maximum of 250 optimal solutions, out of the 1,024 existent solutions (grey points). Each point represents an optimal

metabolic network as a binary vector projected in 2D using UMAP with Hamming distance and 30 neighbors. Both

Diversity-enum and Maxdist-enum obtain a good diversity of solutions. (E) and (F) show the evolution of the

distances in 30 independent runs.

https://doi.org/10.1371/journal.pcbi.1008730.g005
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[46] and then we enumerate a maximum of 1,000 optimal metabolic networks with the differ-

ent methods.

Fig 6 shows the results of the enumeration of up to 1,000 optimal sub-networks from a ran-

domly selected set of 120 genes highly expressed and 120 genes lowly expressed on Yeast 6.

Enumeration of optimal solutions was repeated 10 times for each method. Since in this case

the true set of possible optimal solutions is not known, grey dots represent the union of all dis-

covered optimal networks for all the methods.

Again, a similar pattern of dispersion of the optimal solutions can be observed as with the

DAG model. Diversity-enum (Fig 6A) obtains a set of solutions that look well spread

across the space of enumerated solutions. The Maxdist-enum method misses most of the

large set of similar solutions that are recovered by the other methods. Both the Reaction-
enum and the Icut-enum method explore a similar and restricted region of the space,

although Icut-enum can sample more densely from the same region.

Fig 6. Diversity of solutions in simulated problems using Yeast 6. Enumeration of a maximum of 1,000 optimal

metabolic networks on Yeast 6 [46] model, selecting a random set of reactions (120 RH and 120 RL). Enumeration was

repeated 10 times for each method, the average is represented with dashed lines in (E) and (F). The grey dots represent

the union of all the solutions found by all the methods. Diversity-enum (A) shows a more homogeneous

exploration of the space, exploring not only the distant solutions but also intermediate and close solutions.

https://doi.org/10.1371/journal.pcbi.1008730.g006
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Differences between the methods in this more realistic context are more obvious, and

Diversity-enum performs comparatively better than the other methods. After Diver-
sity-enum generates an initial set of around 600 solutions, both the average distance and

the average nearest neighbor distance start to grow surpassing the other methods. A similar

pattern can be observed for different random sets of selected genes (S1, S2 and S3 Figs). The

rate at which this distance grows depends on several factors, including: the distance between

the initial solutions, the space of possible solutions, and the parameters ds, which controls the

rate at which the distance of new solutions increases (S4 Fig).

Prediction of essential genes using ensembles is highly dependent on the

strategy used for enumeration

Next, we evaluate the predictive capabilities of the different methods for in-silico prediction of

essential genes in the model organism Saccharomyces cerevisiae. We used gene expression

measured from yeast in aerobic conditions [18, 26]. Genes were classified into expressed and

not expressed using different combinations of thresholds on the quantiles of the distribution

as it is commonly done in context-specific network reconstruction. For instance, a threshold

of [0.25, 0.75] indicates that genes whose normalized expression value are below the quantile

0.25 are classified as lowly expressed, whereas those above the quantile 0.75 are highly

expressed. Reactions were splitted into RH and RL sets using the mapExpressionToReac-
tions method from the COBRA Toolbox [27].

Essential genes in Yeast 6 [46] were curated using most updated information from YDPM

(http://www-deletion.stanford.edu/YDPM) database and the SGD (https://www.yeastgenome.

org) project [47] (S1 File). Genes that are essential due to mechanisms not directly related to

metabolism were excluded from the set, as they cannot be predicted using FBA. In total, 188

genes out of the 900 in Yeast 6 are considered to be essential under aerobic conditions.

A maximum of 2,000 optimal networks were enumerated for each combination of thresh-

old and method, using a time limit of 8h per threshold/method, and 5 min. timeout for each

MILP problem. The lower bound of the biomass reaction was constrained to carry a small pos-

itive flux, to ensure that all initial sub-networks will allow biomass production and therefore

could be used to simulate the effects of gene knockout on the biomass production using FBA.

In-silico predictions of essential genes were carried out using COBRA Toolbox v3.0.6 [27],

classifying each gene as essential if the flux through the biomass reaction was below 1% after

KO.

Essential genes were predicted for each optimal network within the set of the optimal net-

works obtained by each method and threshold, but also for the ensemble of networks, by tak-

ing the union of the predictions as shown in Fig 3. That is, if a gene is predicted as essential by

a single optimal network from a set of optimal networks enumerated using a given method

and threshold, then the gene is classified as essential by the ensemble. Thus, in total, we gener-

ated 16 ensembles per method, one for each threshold.

Table 1 shows the True Positives Rate (TPR, sensitivity) and False Positive Rate (FPR,

1-specificity) of these ensembles. Diversity-enum achieves the best TPR for all thresholds,

with the best overall TPR of 0.7713 for the threshold [0.25, 0.90], which corresponds to the cor-

rect classification of 145 genes out of the 188 essential genes in the dataset. These results are

followed by the Reaction-enum method, which achieves the same TPR as Diversity-
enum in 8 out of 16 tests, with a slightly lower FPR in 6 out of those 8 tests. In contrast, Max-
dist-enum and Icut-enum ensembles are not very well positioned in terms of TPR,

although both methods achieve the lowest rates of false positives for some ensembles. Con-

cretely, the Icut-enum method obtained the lowest FPR in 9 out of the 16 tests.

PLOS COMPUTATIONAL BIOLOGY DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008730 February 11, 2021 23 / 34

http://www-deletion.stanford.edu/YDPM
https://www.yeastgenome.org
https://www.yeastgenome.org
https://doi.org/10.1371/journal.pcbi.1008730


Differences between ensembles can be better assessed by placing each ensemble in a ROC

space (Fig 7), in which each point is an ensemble represented by its TPR and FPR. The upper

part of the figure is dominated by Diversity-enum and the Reaction-enum method,

whereas the Maxdist-enum and Icut-enum ensembles are characterized by a lower ratio

of true and false positives.

One reason that explains these differences between the methods is the systematic genera-

tion of alternative solutions by testing every reaction in the model. If one reaction associated

to a gene that is essential is not present in any of the set of optimal networks, the gene is not

predicted to be essential. However, if there exist at least one optimal solution in which this

reaction is present and essential, both Reaction-enum and Diversity-enum have

more chances to detect it as they are going to test if there exist an optimal network with that

reaction being active. Maxdist-enum and Icut-enum methods leave many of these solu-

tions unexplored. Diversity-enum, in contrast, uses the Reaction-enum strategy to

Table 1. True Positive Rate (TPR) and False Positive Rate (FPR) of the ensembles for the prediction of essential genes in Yeast 6, for the different methods and

thresholds. Ensembles were generated by taking the union of the predictions of all enumerated networks per method and threshold.

Threshold Method TPR FPR Threshold Method TPR FPR

0.10 0.90 Diversity-enum 0.7234 0.1264 0.20 0.90 Diversity-enum 0.7181 0.1194

Reaction-enum 0.7181 0.1053 Reaction-enum 0.7128 0.1025

Maxdist-enum 0.4255 0.0730 Maxdist-enum 0.4734 0.0969

Icut-enum 0.4681 0.0815 Icut-enum 0.4628 0.0576

0.10 0.85 Diversity-enum 0.6755 0.0871 0.20 0.85 Diversity-enum 0.6649 0.0927

Reaction-enum 0.6649 0.0829 Reaction-enum 0.6649 0.0843

Maxdist-enum 0.4521 0.0674 Maxdist-enum 0.5053 0.0702

Icut-enum 0.3617 0.0604 Icut-enum 0.4096 0.0365

0.10 0.80 Diversity-enum 0.7128 0.0688 0.20 0.80 Diversity-enum 0.6755 0.0520

Reaction-enum 0.7128 0.0716 Reaction-enum 0.6596 0.0716

Maxdist-enum 0.4149 0.0379 Maxdist-enum 0.4521 0.0337

Icut-enum 0.4096 0.0534 Icut-enum 0.3670 0.0562

0.10 0.75 Diversity-enum 0.6649 0.0843 0.20 0.75 Diversity-enum 0.6702 0.0590

Reaction-enum 0.6649 0.0744 Reaction-enum 0.6702 0.0520

Maxdist-enum 0.4096 0.0548 Maxdist-enum 0.4096 0.0632

Icut-enum 0.3723 0.0548 Icut-enum 0.3670 0.0534

0.15 0.90 Diversity-enum 0.7287 0.1053 0.25 0.90 Diversity-enum 0.7713 0.1334

Reaction-enum 0.7234 0.1096 Reaction-enum 0.7340 0.1194

Maxdist-enum 0.4681 0.0758 Maxdist-enum 0.5213 0.1067

Icut-enum 0.4628 0.0983 Icut-enum 0.4787 0.0913

0.15 0.85 Diversity-enum 0.7128 0.0829 0.25 0.85 Diversity-enum 0.6862 0.0885

Reaction-enum 0.7128 0.0576 Reaction-enum 0.6649 0.0843

Maxdist-enum 0.5000 0.0927 Maxdist-enum 0.4574 0.0730

Icut-enum 0.3617 0.0576 Icut-enum 0.4202 0.0590

0.15 0.80 Diversity-enum 0.7021 0.0885 0.25 0.80 Diversity-enum 0.6702 0.0871

Reaction-enum 0.7021 0.0815 Reaction-enum 0.6702 0.0576

Maxdist-enum 0.3989 0.0323 Maxdist-enum 0.4096 0.0590

Icut-enum 0.3670 0.0548 Icut-enum 0.4521 0.0534

0.15 0.75 Diversity-enum 0.6649 0.0506 0.25 0.75 Diversity-enum 0.6755 0.0843

Reaction-enum 0.6649 0.0801 Reaction-enum 0.6702 0.0801

Maxdist-enum 0.4309 0.0534 Maxdist-enum 0.4096 0.0604

Icut-enum 0.4043 0.0562 Icut-enum 0.4096 0.0548

https://doi.org/10.1371/journal.pcbi.1008730.t001
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have an initial set of solutions with variations in single reactions, from which it expands the

search incrementally, increasing the chances of detecting even more essential genes.

Differences in TPR (S6 Fig) and FPR (S7 Fig) for the ensembles show that the individual

networks generated by the different methods achieve a similar rate of true positives and false

positives, and so the higher rates scored by the ensembles using Diversity-enum and

Reaction-enum are driven by a more diverse set of predicted essential genes. That is, indi-

vidual networks enumerated by these methods are able to correctly predict different sets of

true essential genes, and so the union of those predictions include a more diverse set of

detected essential genes. Concretely, the median TPR for the ensembles generated with

Diversity-enum and Reaction-enum increase 142% with respect the median TPR of

their individual networks, whereas the TPR of the ensembles built with Maxdist-enum and

Icut-enum increase only 54% and 51% respectively.

In order to test whether the distance parameter ds has some strong impact on the results

obtained with Diversity-enum method, we repeated the same experiment with parameter

values ds = 0.990 and ds = 0.999 (S5 Fig). In both cases, the results obtained are very similar to

these results obtained with the default parameter ds = 0.995. This result suggest that most rele-

vant solutions to the problem of prediction of essential genes are concentrated in the same

region of the space of optimal solutions that is explored by both Reaction-enum and

Diversity-enum. This space corresponds to the alternative solutions generated by modify-

ing the constraints of single reactions in the networks (forcing the inclusion or knocking-out

the reaction). Since the simulation of essential genes is based on simulating knockouts in the

reactions associated with the genes, it is likely that most of the essential genes can be predicted

in some of the optimal networks resulting from those variations in single reactions. However,

there is still an advantage in using Diversity-enum, since it expands the initial set of solu-

tions and is able to search for many more than the other technique is not capable of, increasing

the probability of detecting more relevant reconstructions.

The computational time of each of the techniques is also different, although it depends on

the size of the network and the number of variables (reactions associated with highly and lowly

expressed genes). In general, Reaction-enum is the fastest method, while Maxdist-enum

Fig 7. Performance of each ensemble (TPR/FPR) for each method and threshold. Each point represents the score

(FPR, TPR) achieved by each ensemble built using a concrete threshold and enumeration method (data from Table 1).

https://doi.org/10.1371/journal.pcbi.1008730.g007
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is the slowest technique, since the optimization problem of looking for the farthest solution at

every step has a higher computational cost (S1 Appendix).

Diversity-enum detects more alternative hypothesis of the possible

metabolic state of different human cancer cells

Next, we evaluate the ability to characterize the variability of predictions about which meta-

bolic pathways are most active in different cancer cell lines. To do so, we reconstruct many

optimal networks for each cancer cell line and we perform pathway enrichment on each net-

work to see which pathways are more represented in the reconstructed networks than would

be expected by chance. Given that there are multiple possible optimal reconstructions per can-

cer cell line, performing pathway enrichment on each optimal network will give different p-

values for each pathway. This variability due to the method can have important implications.

For example, by performing pathway enrichment on a single metabolic network, for a given

significance level (e.g. α = 0.05) we can detect that pathway A is enriched whereas pathway B is

not. However, if we enumerate the space of optimal solutions, we can find an alternative solu-

tion in which pathway B is enriched but pathway A is not. Reporting pathway enrichment p-

values of a single context-specific metabolic network without characterizing the variability

should be in general avoided, as these values are misleading.

In order to test the variability in pathway enrichment scores due to the alternative set of

optimal solutions, we used data from [19] for melanoma cells (cell line A375) and leukemia

cells (HL60, K562, and KBM7 cell lines) and the human Recon 1 model [48]. Table 2 shows

the enrichment results for the reconstructions using two different gene expression thresholds.

Column #Nets shows the number of optimal networks that each method was able to enumerate

(in a time limit of 8 hours). Column #Enr. shows the number of different enriched pathways

(adjusted p-value < 0.05) that were detected by each method. It is important to remark that

here, detecting more enriched pathways is better, since all the methods explore the same opti-

mal solutions (all methods for enumeration maximize the same objective function and use the

same experimental data). Detecting less enriched pathways means that there exist some other

alternative metabolic networks that are enriched for other pathways but the enumeration

method missed it, reporting that no enrichment was detected in any of the enumerated meta-

bolic networks.

Overall, the method Diversity-enum is able to discover more alternative hypotheses about

the pathways that are most active in each cell line, especially for the threshold [0.10, 0.90]. One

of the reasons why there are more pathways that can be enriched is that, with this threshold,

Table 2. Number of optimal networks (#Nets) in a time limit of 8 hours, and number of different enriched metabolic pathways (#Enr. i.e., pathways with p-

value< 0.05 using the one-sided Fisher’s exact test for over-representation, corrected for multiple hypothesis comparisons using the Benjamini-Hochberg proce-

dure) for each cell line and gene threshold.

Cell line Threshold Diversity-enum Reaction-enum Icut-enum Maxdist-enum

#Nets #Enr. #Nets #Enr. #Nets #Enr. #Nets #Enr.

A375 [0.10, 0.90] 2933 31 2230 28 2804 23 3002 27

A375 [0.25, 0.75] 1439 12 2278 11 892 11 1364 11

HL60 [0.10, 0.90] 2855 28 2200 28 3004 23 3001 27

HL60 [0.25, 0.75] 1450 13 2290 13 752 9 1223 12

K562 [0.10, 0.90] 2934 29 2208 25 3006 25 1835 28

K562 [0.25, 0.75] 1406 12 2283 16 532 11 1274 13

KBM7 [0.10, 0.90] 2876 27 2150 25 2914 22 3000 26

KBM7 [0.25, 0.75] 1793 13 2206 13 1384 12 1892 13

https://doi.org/10.1371/journal.pcbi.1008730.t002
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far fewer genes are classified as expressed and not expressed, and therefore many reactions of

the metabolic network remain unscored (they may or may not be active without affecting the

optimality of the solution). This makes it much more likely to find alternative sub-networks

whose flux is consistent for the selected genes. In other words, the fewer genes that are identi-

fied as expressed or not expressed (less constraints), the more possible hypotheses about the

metabolic state are consistent with the data. This is especially relevant in studies using proteo-

mic or exometabolomic data, where the number of identified proteins or metabolites is lower

than in gene expression assays.

Among some of the differences, Diversity-enum detected the metabolic pathways

Fatty acid activation, Fatty acid elongation, Fatty acid oxidation and Carnitine shuttle enriched

in the reconstructions for the A375 cell line both for thethresholds [0.10, 0.90] (Fig 8) and

Fig 8. Pathway enrichment results for the cell line A375 (human melanoma), threshold [0.10, 0.90]. Dark purple

indicates that the method detected at least one optimal metabolic network for which the corresponding pathway was

overrepresented (p-value< 0.05, B-H adjusted one-sided Fisher’s exact test). Only pathways from Recon 1 that were

enriched in some optimal solution (by any of the methods) are shown.

https://doi.org/10.1371/journal.pcbi.1008730.g008
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[0.25, 0.75] (Fig 9), whereas Reaction-enum detected them enriched only for the threshold

[0.10, 0.90]. The single case where Reaction-enum discovered more existing alternative

solutions with enrichment in other pathways not detected by Diversity-enum was for the

cell K562 for the threshold [0.25, 0.75], where was able to discover the alternative optimal solu-

tions where pathways Ubiquinone Biosynthesis, Cysteine Metabolism, Aminosugar Metabolism,
and Urea cycle/amino group metabolism were enriched in at least one of the optimal solutions

enumerated with this method. Icut-enum was the strategy that obtained the worst results,

not being able to find many of the optimal solutions with enrichment in other pathways that

were discovered by the other methods. The Maxdist-enum method, although it detects in

general less variation, finds in some cases enrichment in pathways that are not detected by any

of the other techniques (e.g. Pentose and Glucoronate Interconversions in A375 for the thresh-

old [0.10, 0.90], Fig 8). This could indicate that, although all solutions are equally valid, due to

the topology of the network, the pattern of the distribution of highly expressed and low

expressed genes across the network, and other factors such as the type of algorithms used by

the solvers, there are certain types of solutions that are more frequently discovered than others,

and therefore are more biased towards the discovery of this type of solutions. In these cases,

the Diversity-enum ds parameter could be decreased to make the search spend more time

exploring distant solutions.

Fig 9. Pathway enrichment results for the cell line A375 (human melanoma), threshold [0.25, 0.75]. Dark purple

indicates that the method detected at least one optimal metabolic network for which the corresponding pathway was

overrepresented (p-value< 0.05, B-H adjusted one-sided Fisher’s exact test). Only pathways from Recon 1 that were

enriched in some optimal solution (by any of the methods) are shown.

https://doi.org/10.1371/journal.pcbi.1008730.g009
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We also analyzed how often each pathway was detected as enriched by any optimal meta-

bolic network for each enumeration method (S1 Appendix). Among some of the possible

causes that may affect this variability, the number of selected highly and lowly expressed has a

clear impact in the results, for the reasons discussed before. Using a threshold of [0.10, 0.90], it

can be seen that this variability is greater than for the threshold [0.25, 0.75], simply due to the

fact that in the first case only 20% of the genes are used, and more hypothesis are consistent

with the data. The enumeration of alternative reconstructions helps to characterize this vari-

ability and reduces the risk of incorrectly discarding hypotheses that are equally valid for the

same reconstruction method and the same data.

Discussion

Context-specific metabolic network reconstruction is a widely used approach to integrate dif-

ferent layers of experimental data into metabolic networks. This process allows to capture the

metabolic sub-network that corresponds to the active part of the metabolism of an organism

in a given condition. Using this reconstructed model, more advanced techniques such as Flux

Balance Analysis (FBA), pathway enrichment, network visualization or gene essentiality pre-

diction can be used to get an integrated view of the metabolic behavior.

One important limitation with this methodology is that context-specific metabolic network

reconstruction is subject to significant variability due to the large number of optimal metabolic

networks that can be reconstructed for the same experimental data, among other factors. This

variability, which is commonly neglected, can contain relevant information and can offer alter-

native hypothesis of the metabolic state in terms of different combinations of reactions that are

predicted to be active or inactive. Thus, the report of results using only a single optimal con-

text-specific metabolic network can be highly biased and can overlook information relevant to

the experiment. While this is an important issue, the analysis of the alternative set metabolic

networks is a topic not well explored.

In this study we analyze the problem of enumeration of multiple optimal context-specific

metabolic networks both from a theoretical and practical perspective. We show how it is com-

mon to have multiple different context-specific metabolic networks that optimally explain the

same observed experimental data. The set of optimal solutions constitute different hypotheses

of the metabolic state and therefore must be taken into account to reduce bias in the interpre-

tation of results.

We propose four different methods for enumeration of context-specific reconstructions

(Reaction-enum, Icut-enum, Maxdist-enum and Diversity-enum) that we

developed and integrated in an unified open-source library called DEXOM. The first three

methods are improvements of previous ideas that we have adapted and improved for the par-

ticular case of the enumeration of context-specific metabolic networks, whereas Diver-
sity-enum is a novel method for enumeration of optimal solutions that maximizes

incrementally the diversity.

We evaluate the methods focusing on two main aspects: 1) diversity of the optimal solutions

obtained with each method, using two different distance metrics and UMAP plots to evaluate

the spreading of the solutions; and 2) the biological relevance of alternative optimal solutions

by assessing the predictive capabilities with real data. For this second aspect, we evaluate, on

the one hand, the improvement in in-silico predictions of essential genes in Saccharomyces cer-
evisiae using ensembles of diverse metabolic network, and on the other hand, the detection of

alternative enriched pathways in human cancer cells, as a way to measure the variability of dif-

ferent hypotheses about the metabolic state that are compatible with the experimental data.
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In terms of distance metrics and the spread of solutions, both Diversity-enum and

Maxdist-enum achieve good results, although Diversity-enum explores the solution

space in a more homogeneous way than Maxdist-enum, which looks for more solutions in

the extremes. Reaction-enum has a limited exploration capacity, focusing on similar solu-

tions that represent a small part of the total solution space. Icut-enum, although capable of

enumerating more solutions than Reaction-enum, does so in a much less diverse manner

than Diversity-enum and Maxdist-enum, and sometimes even with less diversity than

Reaction-enum, as reflected in the simulations using the Yeast 6 model [46].

With respect to predictive capabilities of essential genes using the Yeast 6 model, on an

individual basis there are not large differences in terms of True Positive Rate (TPR) and False

Positive Rate (FPR) between the individual optimal metabolic networks enumerated by each

method. However, when the results are combined using ensembles of optimal metabolic net-

works, the TPR of the ensemble obtained with Diversity-enum increases by 140% com-

pared to the median TPR of the individual networks, whereas ensembles generated with the

methods that generate less diverse sets of solutions achieved only an increment of 50%.

Diversity-enum was also the method with the best overall TPR of 0.7713, which corre-

sponds to 145 out of 188 correctly classified essential genes, for a FPR of 0.1334 (95 false posi-

tives out of 712 non essential genes). These differences are explained by a more diverse set of

essential genes captured by the individual optimal networks enumerated with Diversity-
enum. This suggests that Diversity-enum allows to retrieve sub-networks that are more

diverse in terms of metabolic pathways that can be used to reach the metabolic state that con-

forms to the gene expression data, and allows to explore a more diverse metabolic activity that

is consistent with the same experimental data.

The technique Reaction-enum is also able to generate good ensembles, achieving a sim-

ilar FPR and TPR as Diversity-enum, while techniques Icut-enum and Maxdist-
enum obtain much worse results, regardless of the diversity or total number of solutions dis-

covered. This might be explained in part by the fact that the relevant set of solutions for this

problem is mostly confined to a small region in the space of optimal solutions, which corre-

sponds to the space that both Diversity-enum and Reaction-enum are able to

explore.

In terms of alternative hypothesis of the metabolic state of different human cancer cells,

results obtained using pathway enrichment on the set of the optimal networks discovered by

each method show that Diversity-enum is able to discover, in almost all cases, more

diverse solutions in terms of networks that are enriched for other pathways alternative solu-

tions. These results are again followed by Reaction-enum, Maxdist-enum and finally

Icut-enum.

One important limitation of enumerating optimal solutions is the heavy computational cost

involved in the search process. If the number of highly expressed genes and lowly expressed

genes is very large, obtaining a single optimal metabolic network can be computational

demanding or even not feasible in reasonable time, since obtaining an optimal solution

involves solving a MILP problem, which is in general NP-Hard. In this context, enumerating

multiple optimal solutions can be prohibitively expensive in some cases, especially with tech-

niques like Maxdist-enum or Diversity-enum. One thing that can be done in these sit-

uations to alleviate the computational burden is to reduce the integer optimality tolerance of

the solver to stop looking for better solutions once the solver has found a feasible integer solu-

tion proved to be, for example, within 1% of optimal.

Overall, this work provides different methods to explore the space of alternative context-

specific metabolic network reconstructions, and an extensive comparison under different set-

tings. We generated in total around 191,000 network reconstructions with simulated data,
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around 329,000 reconstructions using microarray data from Saccharomyces cerevisiae and

around 67,400 using RNA-seq data from different human cancer cell lines. Results of this eval-

uation show the importance of using an enumeration technique that finds a diverse set of solu-

tions for different biological contexts. These results also provide important information for

deciding which technique to use in each case. In general, Diversity-enum is the one that

detects the most varied and relevant solutions for different biological contexts, followed by

Reaction-enum, Maxdist-enum and Icut-enum. Our study also highlights that,

given the variability of space of possible solutions that exists for a context-specific reconstruc-

tion problem, the analysis of a single solution, as is usually done, is not recommended, and

downstream analysis made on a single metabolic network should be taken always with

caution.

Supporting information

S1 Fig. Enumeration in Yeast 6 with 100 random RH and 100 random RL reactions.

(TIF)

S2 Fig. Enumeration in Yeast 6 with 80 random RH and 80 random RL reactions.

(TIF)

S3 Fig. Enumeration in Yeast 6 with 60 random RH and 60 random RL reactions.

(TIF)

S4 Fig. Example of the effect of the parameter ds used in the Diversity-enum method. Val-

ues closer to 1 make the enumeration progress more slowly from closer to distant optimal

solutions, discovering more proximate and intermediate solutions. When the value is lower

(e.g. 0.990), the enumeration reaches the distant solutions more quickly, enumerating more

solutions at the extremes.

(TIF)

S5 Fig. Analysis of the effect of the parameter ds used in the Diversity-enum method for

the prediction of essential genes. Analysis was repeated with parameter values ds = 0.990 and

ds = 0.999 instead of the default value (ds = 0.995). The results show almost no variation in

terms of the TPR and FPR of the ensembles.

(TIF)

S6 Fig. Distribution of the True Positive Rates (TPR). Results show 1) the variability in the

predictions of true essential genes by individual networks, and 2) the result of the ensemble for

each method. Although variation of results of the individual solutions enumerated with each

method are similar, results of the ensemble greatly differ between methods. This indicates that

although the individual networks predict a similar number of true positive essential genes,

these sets present less overlapping in networks enumerated with Diversity-enum and

Reaction-enum, and therefore the overall TPR of the ensembles generated by these meth-

ods is better.

(TIF)

S7 Fig. Distribution of the False Positive Rates (FPR). Results show, as for the TPR, an

increase of the FPR of the ensembles, more pronounced for Diversity-enum and Reac-
tion-enum, since there is always a trade-off between both measurements: increasing the pre-

dictions of true positives comes with a higher rate of false positives.

(TIF)
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S1 File. Essential genes in Yeast. Dataset used for the evaluation of in silico prediction of essen-

tial genes in Yeast. We used annotations from SGD [47], YDP (https://www.yeastgenome.org/)

and Yeast 6 [46] to classify each gene as essential or not under aerobic conditions.

(XLSX)

S1 Appendix. Supplementary information. PDF including: 1) computational time of the dif-

ferent enumeration techniques; 2) distribution of predicted essential genes among methods;

and 3) variability in the detection of enriched pathways between the different methods.

(PDF)
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