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Abstract 8 

Soil available water capacity (SAWC) is a key soil indicator that plays a major role in many 9 

ecosystem services, such as food production, irrigation management, soil drought, flood 10 

control, and climate and gas regulation. Digital soil mapping (DSM) can be used to obtain 11 

needed SAWC maps. However, SAWC differs from the usual soil properties considered in 12 

DSM in that it involves several soil properties determined at several soil layers. Therefore, a 13 

specific approach is required to obtain SAWC maps and the associated uncertainty 14 

predictions. 15 

The objective of this study was to build a SAWC mapping approach that could predict SAWC 16 

values at three maximum rooting depths (60, 100 and 200 cm) and their associated prediction 17 

uncertainties. 18 

The approach was tested in the Languedoc-Roussillon region (southern France). Elementary 19 

available water capacities of each layers (in cm.cm-1) and soil layer thicknesses were first 20 

mapped separately at 0-30, 30-60, 60-100 and 100-200 cm and then aggregated to estimate 21 

the SAWCs at the three mentioned maximum rooting depths. SAWC uncertainty was 22 

estimated with an error propagation model that used a first-order Taylor analysis. This 23 

analysis considered the mapping errors of each involved property, which were estimated by 24 

the quantile regression forest algorithm. We tested different error propagation models that 25 
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differently considered the correlations between these mapping errors: no correlation 26 

considered, correlations between soil layer thicknesses and elementary water capacities per 27 

soil layer only, correlations between soil layers only, or all correlations considered. 28 

The performances of both SAWC predictions and their uncertainties were assessed with a 10-29 

fold cross validation that was iterated 20 times. The SAWC predictions showed poor 30 

accuracies (percentages of explained variance ranged from 0.12 to 0.13). The uncertainties of 31 

SAWC predictions were best estimated when the correlations between the soil layer errors 32 

were considered in the error propagation model whereas the uncertainties of SAWC 33 

predictions were severely underestimated when these correlations were neglected. 34 

In spite of the poor performance in predicting SAWC at the punctual level due to the low 35 

density of soil observations (1/19 km2), the SAWC approach appeared promising since it 36 

produced maps that agreed with the available pedological knowledge and precisely estimated 37 

the uncertainties.  38 

 39 

Keywords: soil available water capacity, digital soil mapping, uncertainty, error propagation 40 

 41 

Abbreviations: SAWC: soil available water capacity; DSM: digital soil mapping, AWC: 42 

available water capacity; AWCE: elementary available water capacity; ST: soil thickness; 43 

MSOD: maximal soil observation depth; PTF: pedotransfer function; FC: soil water content at 44 

field capacity; PWP: soil water content at permanent wilting point. 45 

 46 

 47 

1. Introduction 48 

Soil available water capacity (SAWC) refers to the capacity of soils to store water for plants 49 

(Veihmayer and Hendrickson, 1927). SAWC is a key soil indicator that plays a major role in 50 
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many ecosystem services, such as food production, irrigation management, soil drought, flood 51 

control, and climate and gas regulation. It is therefore a fundamental parameter that has been 52 

used in land evaluations and recently in soil ecosystem service assessments (Dominati et al., 53 

2014). Currently, SAWC is operationally computed in the literature as follows (Cousin et al., 54 

2003): 55 

(1) ���� =  � �ℎ
 ∗ ��
 ∗ 
100 − ��

100 � ∗ ���
 − ��
�

�


��
 

(1) 

where SAWC is the soil available water capacity (cm), �ℎ
 = the thickness of the ith horizon 56 

(cm), ��
 = the bulk density of the ith horizon (g.cm-3), ��
 = the coarse fragment content of 57 

the ith horizon (% volumetric), and ��
 and ��
 are the soil water contents at field capacity 58 

(FC) (i.e., the soil water content that remains in the soil after water has drained due to 59 

gravitational force) and at permanent wilting point (PWP) (i.e., the soil water retained so 60 

strongly that it is no longer available for plant roots, so plants wither and cannot recover their 61 

turgidity) of the ith horizon (cm3.cm-3), respectively. 62 

To meet the need to map the SAWC, digital soil mapping (McBratney, 2003) can be 63 

considered an adequate approach since it provides the best solution for synergizing all data on 64 

the soils and its drivers that can be available in a given region, regardless of its size. Styc and 65 

Lagacherie (2019) proposed a modified equation for calculating SAWC (Eq. 2) to make it 66 

more easily mappable. The modifications consisted in i) replacing the difficult-to-measure FC 67 

and PWP inputs by pedotransfer functions that only involved available primary soil properties 68 

that are more current in the soil databases and ii) harmonizing the mapping inputs across sites 69 

by replacing the horizons defined by variable depth intervals by soil layers defined by fixed 70 

depth intervals. 71 

(2) ������� =  ∑ � !
�
�� ∗ "�##$%&'
�## ( ∗  )*∑ +,--,�,�� +  /012 − *∑ 3,--,�,�� +

  /45426           

(2) 
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where � !
 is the thickness of the soil layers fixed by the soil depth interval, ��
 is the coarse 72 

fragment content of the ith horizon (% volumetric), +� … +� 89� 3� … 3� are the coefficients 73 

of the pedotransfer functions used to calculate the volumetric water contents at the field 74 

capacity and permanent wilting point respectively, --� … --� are the values of the primary 75 

soil properties used as inputs for the pedotransfer functions (most often textural fractions) and 76 

 /01 77 

and  /454 are the errors of the pedotransfer functions used for estimating Field capacity and 78 

Permanent wilting point respectively. Equation 2 shows that the SAWC determination 79 

involved several primary soil properties determined at several soil layers, which created 80 

methodological questions that have not been addressed by the classical DSM framework. 81 

First, there is no consensus about the inference trajectory selected for predicting SAWC. In 82 

the DSM literature, there were i) studies that calculate first AWC at the observed sites prior 83 

using these sites for calibrating a mapping function (Vanderlinden et al., 2005; Poggio et al., 84 

2010; Hong et al., 2013) and ii) studies that mapped the AWC components first and then 85 

combined the mapping outputs to obtain an estimate of AWC (Ugbaje and Reuter, 2013, 86 

Leenaars et al., 2018, Román Dobarco et al., 2019). However, a comparison of 18 inference 87 

trajectories that combined different AWC calculations from the primary soil properties, soil 88 

layer aggregation and mapping (Styc and Lagacherie, 2019) showed significant differences in 89 

SAWC prediction accuracies, and none of the two inference trajectories cited above were 90 

optimal. The best inference trajectory was an intermediate trajectory that, before mapping, 91 

calculated the AWC for four soil layers. 92 

Another methodological question was the ex-ante uncertainty assessment of the SAWC 93 

mapping output. In the classical DSM framework, the different models can provide a local 94 

estimate of the uncertainty of the predicted values of the target soil properties (Heuvelink et 95 

al, 2014, Vaysse & Lagacherie, 2017). Obtaining a similar estimate for the SAWC map 96 
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requires an error propagation model that combines the different errors associated with the 97 

mapping of each layer of the soil properties involved in the SAWC calculation. Román 98 

Dobarco et al. (2019) used a first-order Taylor analysis to propagate mapping errors and 99 

pedotransfer function errors to the final SAWC predictions. They showed that the mapping of 100 

the SAWC components (soil texture and coarse fragment) was the main source of SAWC 101 

mapping uncertainty. However, the soil thickness mapping errors were not considered in their 102 

analysis, although Algayer et al. (2019) demonstrated that soil thickness can be the most 103 

critical component in the SAWC estimation. Furthermore, the error propagation model 104 

proposed by Román Dobarco et al. (2019) neglected the error correlations between the SAWC 105 

components, which assumed that these errors were independent of each other, which has not 106 

been demonstrated. 107 

The objective of this study was to build a SAWC mapping approach with the best possible 108 

inference strategy that could predict all SAWC values for three maximum rooting  depths (60, 109 

100 and 200 cm) and their associated prediction uncertainties while taking into account all 110 

SAWC component mapping errors and their correlations. The approach was tested in the 111 

former Languedoc-Roussillon region (Southern France). 112 

 113 

2. The Study Case 114 

2.1. Study area 115 

This study was carried out in the former Languedoc-Roussillon French administrative region, 116 

which is now part of the new Occitanie region (Figure 1). Located in southern France, the 117 

former region covers 27,236 km² of land that stretches from the Mediterranean Sea to the 118 

Pyrenees and Massif Central mountains. The region includes a wide-ranging diversity of 119 

climates, geologies, and landscapes that lead to a large pedodiversity, with 18 WRB major 120 
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soil groups, which represent 75% of all soil groups in Europe, being included in this study 121 

area. Further details can be found in Vaysse and Lagacherie (2015, 2017). 122 

 123 

Figure 1. Location of the study area (in color) 124 

2.2. Soil profiles with observed SAWC components 125 

In this study, we used a legacy dataset of 2024 measured soil profiles from Vaysse and 126 

Lagacherie (2015, 2017). SAWC for the different soil profiles were harmonized for providing 127 

AWC component values at the fixed soil layers that were considered for SAWC mapping (0-128 

30 cm, 30-60 cm, 60-100 cm and 100-200 cm) (see explanation further on section 3.3.). For 129 

that, each AWC components were estimated at these layers from the initial soil horizons using 130 

mass conservation cubic splines (Bishop et al, 1999). For each considered soil layer, we 131 

selected the profiles at which all AWC components (soil texture, coarse fragments and soil 132 



7 

 

layer thicknesses) were fully documented (see details below). This resulted in a reduction of 133 

the number of soil profiles for mapping each layer (Table 1). 134 

Table 1. Number of soil profiles for each soil layer 135 

Soil layer depths (cm) Number of profiles 

0-30 1464 

30-60 1323 

60-100 1064 

100-200 822 

 136 

Documenting soil layer thicknesses 137 

The soil layer thicknesses (SLT) were documented  by considering the following rules : 138 

• If  the lower limit of the soil layer (LL) was less than both the maximum soil 139 

observation depth (MSOD) of the soil profiles and the upper depth of a lithic or 140 

paralithic contact (UDPLC), then SLT was equal to the difference between its fixed 141 

lower and upper limits (e.g. the SLT of 30-60 cm soil layer is 30 cm) 142 

• Else if  LL was less than MSOD but greater than UDPLC, SLT was equal to the 143 

difference between UDPLC and LL (e.g. the SLT of the 30-60 cm layer with a lithic 144 

contact appearing at 50 cm is 20 cm) 145 

• Else if LL was greater than MSOP, the SLT could not be determined, which lead to 146 

remove the soil layer from the input soil dataset. 147 

 148 

2.3. Pedotransfer functions 149 

In this study, we used the national-level pedotransfer functions (PTFs) developed by Román 150 

Dobarco et al. (2019) because our case study was in the domain of applicability of these 151 

PTFs, which ensured the best possible performances (Roman Dobarco et al, 2019). The 152 
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volumetric soil water contents at field capacity (Eq. 3) and permanent wilting point (Eq. 4). 153 

These PTFs used clay and sand contents (%) as the predictive variables, which were 154 

calculated as follows: 155 

(3) �:;
 = 0.278 + 2.45 10$B �C8D − 1.35 10$B �89� (3) 

(4) �:F
 = 0.080 + 4.01 10$B �C8D − 2.93 10$H �89� (4) 

where �:;
 and �:F
 are the volumetric water contents at field capacity and permanent wilting 156 

point, respectively. 157 

2.4. Soil covariates 158 

The employed DSM process, which relies on the scorpan model (McBratney et al., 2003), 159 

used the quantitative relationships between the target soil properties and available spatial 160 

variables related with soil, which are also called the “soil covariates”. 161 

The soil covariates of this study area were selected by Vaysse and Lagacherie  (2015) 162 

following  163 

two criteria: i) they could be derived from freely available geo-datasets for at least the French 164 

national level, and ii) they had a logical and process-based relationship with soil properties 165 

according to the literature. The soil covariates (table 1) accounted for the impact of 166 

topography, climate, organisms, and parent material. The regional-scale map (1:250,000) that 167 

delinated the major landscape types across the region was also considered as a soil covariate. 168 

All the soil covariates were computed at the nodes of the 90 m x 90 m grid of the SRTM 169 

Digital Elevation model, which corresponded also to the resolution of the predicted SAWC 170 

map. More details can be found in the descriptions of several applications of DSM to the 171 

region (Vaysse and Lagacherie, 2015, 2017; Styc and Lagacherie, 2019). 172 
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Table 2. The soil covariates 173 

Variables Abbreviation Resolution/Scale Source 

Soil 

forming 

factor1 

Type2 

Topography 

     

Elevation ELEV 90 m SRTM r Q 

Multiresolution Valley Bottom Flatness MRVBF 90 m SRTM r Q 

Slope SLOPE 90 m SRTM r Q 

Topographic Wetness Index TWI 90 m SRTM r Q 

Plan Curvature PLANCURV 90 m SRTM r Q 

Profile Curvature PROCURV 90 m SRTM r Q 

Multiresolution    Ridge Top Flatness MRRTF 90 m SRTM r Q 

Topographic Position    Index TPI 90 m SRTM r Q 

Geology 

     

Hardness HARDNESS 90 m 

Geological 

map/soil 

profile 

p C 

Texture TEXTURE 90 m 

Geological 

map/soil 

profile 

p C 

Mineralogy MINERALOGY 90 m 

Geological 

map/soil 

profile 

p C 

Climate 

     

Martonne Index MARTONNE 90 m WorldClim  c Q 

Emberger Index EMBERGER 90 m WorldClim  c Q 

Maximum Temperature TMAX 90 m WorldClim  c Q 

Minimum Temperature TMIN 90 m WorldClim  c Q 

Precipitation PRECIPITATION 90 m WorldClim  c Q 

Organisms 

     

Land Use LANDUSE 30 m Landsat 7  o C 

Soil 

 

          

Soil Map SOILMAP 1:250 000 RRP s C 

1: SCORPAN factors (s=soil property, c = climate, o = organisms, r = relief, p=parent 

material) 
  

2: Q = quantitative, C = categorical 

SRTM = Shuttle Radar Topography Mission; RRP = Référentiel Régional Pédologique.  

3. The method 174 
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3.1. Random Forest 175 

Random forest models (Breiman, 2001) are an ensemble learning method for both 176 

classification and regression. A forest, which is an ensemble of randomized decision trees, is 177 

built and trained based on a bootstrap approach. Individual trees are built using the principle 178 

of recursive partitioning. “The feature space is recursively split into regions containing 179 

observations with similar response value” (Strobl et al., 2009). The predictions of the 180 

individual trees are finally averaged to give one single prediction. 181 

3.2. Mapping model: the quantile regression forest 182 

In this study, we use one of the most commonly used algorithms in DSM studies, namely, the 183 

quantile regression forest algorithm (QRF; Meinshausen, 2006), which is an extension of 184 

Breiman’s random forests (RF; 2001). For the regression, RF provides an ensemble prediction 185 

based on n regression trees. For every tree, the algorithm integrates random features by 186 

randomly selecting a subset of features to be split. While RF provides solely the conditional 187 

mean, QRF supplies the whole conditional distribution of the target variable by keeping all 188 

observations at the terminal nodes and can infer estimates for the conditional quantiles 189 

(Meinshausen, 2006). More details on QRF can be found in Meinshausen (2006). 190 

QRF was run with the ranger package, which is a fast implementation of Breiman’s random 191 

forest and Meinshausen’s quantile regression forest (Wright and Ziegler, 2015). 192 

3.3. Inference trajectories 193 

Since SAWC is a soil indicator that involves several soil properties determined at several soil 194 

layers, it can be estimated following various possible inference following the order with 195 

which the three different steps, i.e., “combining primary soil properties”, “aggregating soil 196 

layers across depths” and “mapping” are executed to provide the targeted output (Styc and 197 

Lagacherie, 2019). Styc and Lagacherie (2019) tested a total of 18 inference trajectories for 198 

throughout Languedoc-Roussillon that were performed to obtain the most appropriate SAWC 199 
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map. From this study, we considered the best performing inference trajectory, i.e., we 200 

computed first AWC in four layers (0-30, 30-60, 60-100 and 100-200 cm) obtained by 201 

merging the three first layers defined in the GlobalSoilmap specifications (Arrouays et al, 202 

2014), mapped them and then aggregating the maps of the four soil layers to obtain the final 203 

SAWC maps. To account for the different possible rooting depths across the different crops, 204 

these aggregations were performed over three different maximal rooting depth (60 cm, 100 205 

cm, 200 cm). 206 

However, we modified the inference trajectory (Figure 2) by mapping, the soil thickness and 207 

the elementary available water capacity (���I) separately for each layer. AWCE represent 208 

the water retention capacity for one centimeter of soil (in cm.cm-1) and is defined as follows: 209 

(5) ���I =  "�##$%&'
�## ( ∗  )*∑ +,--,�,�� +  /2 − *∑ +,--,�,�� +  /26  (5) 

 210 

Figure 2. Conceptual diagram of SAWC digital soil mapping with an example of 211 

inference trajectory including the new level of soil property combination, elementary 212 

available water capacity (AWCE) and soil layer thickness (modified from Styc and 213 

Lagacherie, 2019) (in color) 214 
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The rationale of this modification was to separately map two soil properties that exhibited 215 

very low correlations, meaning that their variations could result from different landscape 216 

drivers that could be imperfectly considered by a single mapping model. 217 

3.4. Uncertainty analysis using error propagation modeling 218 

Following Román Dobarco et al. (2019), the error propagation was modeled using first-order 219 

Taylor expansion to calculate the variance of the SAWC predictions. This variance was 220 

considered a proxy of the prediction uncertainty of the target variable (Heuvelink et al., 1989). 221 

This method relies on the approximation of the estimates obtained for the soil property (i.e., 222 

the available water capacity). Let Y be an estimation of a given soil property as follows (Eq. 223 

6): 224 

 J = K�L� (6) 

where K is a continuously differentiable function from ℝ� into ℝ and z is the vector of the n 225 

input variable of f. The approximation of f uses a series centered on the mean values of the n 226 

input variables μ = Oμ�, μQ, … , μ�RS (Heuvelink et al., 1989). The variance of Y = f(z) is 227 

calculated with the following formula (Eq. 7): 228 

(7) TUQ ≈  ∑ "WX�Y�
WZ'

(Q TL
Q + 2 ∑ ∑ "WX�Y�
WZ'

( "WX�Y�
WZ[

( TL
L\�\��
\]


�
��

]\

�
��   (7) 

where TUQ is the variance of Y, L
 and L\ are the soil input variables, TL
L\ is the covariation 229 

of the L
 and L\ errors from the ^ and _ variables, TL
 is the standard deviation of L
 and 
WX�Y�

WZ'
 230 

and 
WX�Y�

WZ[
 are the partial derivatives of f(z) around μ. TL
 is estimated by the standard 231 

deviations of the conditional distributions provided by QRF at each predicted location 232 

(Meinshausen, 2006). 233 

Then, the estimate of the variance can be used to compute the limits of the confidence 234 

interval. Assuming a normal distribution, the limits of the confidence interval can be 235 

computed as follows (Eq. 8): 236 
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 �` 
 =  Dab ± 1.645 TUeb  (8) 

where �` 
 is the interval limits of the prediction, Dab the mean of the distribution, TUf  the 237 

standard deviation and 1.645 is the Student’s coefficient for a 90% confidence interval 238 

estimation. 239 

Error propagation was performed using the propagate R package (Spiess, 2018). 240 

3.5. The experiment 241 

In this study, we considered two sources of uncertainty: i) the mapping error of both SAWC 242 

components, i.e., the soil thickness and the AWCE, and ii) the error of the AWC of every soil 243 

layer.  244 

3.5.1. The tested options of error propagation 245 

To evaluate the importance of the correlations of the AWC components errors for the 246 

quantification of SAWC uncertainty, four options of error propagation were considered 247 

according to whether are considered: i) the error correlations between the predicted properties 248 

involved in the determination of AWC at each soil layer, i.e. AWC  and soil layer thickness 249 

(denoted further SP) ii) the error correlations between the predicted AWC at different soil 250 

layers (denoted further SL), iii) both of these correlations (denoted further SP.SL) or iv) none 251 

of these correlations (denoted further NONE). 252 

To compute the error correlations, we considered the residuals calculated by the K-fold cross 253 

validation (see next section). 254 

Additionally, we derived the SAWC predictions according to three different fixed maximum 255 

soil depth, i.e. 200 cm, 100 cm and 60 cm. The rationale was to determine if the predictions 256 

for the deepest layers (60-100 cm and 100-200 cm) played a beneficial or nonbeneficial roles 257 

in the SAWC predictions. 258 

3.5.2. Evaluation protocol 259 
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The performance of the SAWC DSM was evaluated by k-fold cross validation. This 260 

evaluation procedure consisted of randomly dividing the data into k subsets. Then, the holdout 261 

method was repeated k times such that one of the k subsets was used as the validation set in 262 

each repetition, while the other k-1 subsets were merged to form the calibration set. Following 263 

this procedure, every data point was included in a calibration set k-1 times. In this study, we 264 

selected k = 10; to increase the robustness of the evaluation, the 10-fold cross-validation was 265 

iterated 20 times. The k-fold cross-validation was performed using cvTools (Alfons, 2012) 266 

that was used  to define the folds. 267 

To evaluate the prediction performances, we used classic performance indicators, e.g., the 268 

mean square error skill score (SSMSE, Nussbaum et al., 2017), which has the same 269 

interpretation as the percentage of variance explained by the model, the root mean square 270 

error (RMSE) and the bias. 271 

Furthermore, we evaluated the estimation of the prediction uncertainty using the prediction 272 

interval coverage probability (PICP, Eq. 9) (Shrestha and Solomatine, 2006), which was 273 

computed as follows: 274 

(8) -`�- = ghi9�� - 
 < D
 < k- 
�
9  × 100 (9) 

where 9 is the total number of observations in the validation set, and the numerator counts if 275 

the observation D
 fits within the prediction limits prior to estimation by the error propagation 276 

method. For a 90% confidence level, which is usually chosen in DSM studies (Arrouays et al., 277 

2014), the uncertainty is optimally predicted when the PICP value is close to 90%. 278 

In addition to PICP, we verified that the largest errors were at locations having the largest 279 

widths of estimated prediction intervals. For that, the population of validation sites was split 280 

into four quartiles of predicted interval widths and four RMSEs were computed separately for 281 

each quartile. 282 

4. Results 283 
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4.1. Basic statistics 284 

4.1.1. Soil input distributions 285 

In Figure 3, we present the distributions of the soil thickness and the elementary available 286 

water capacity across the set of soil profiles that was used as input of the mapping model. 287 

The soil thickness ranged from 5 to 200 cm (i.e., the maximum soil observation depth was 288 

fixed at 200 cm), with the average ST at 89 cm, which was close to the median value (90 cm). 289 

The most common ST in the dataset was 120 cm soil thickness. Then, the distribution dropped 290 

dramatically, showing that deep soils were less represented than shallow soils. The shape of 291 

the distribution was far from normal, although the skewness and kurtosis tests indicated a 292 

normal distribution. The AWCE for the 0-30 cm and 30-60 cm soil layers were nearly 293 

normally distributed, with peaks at 0.09 and 0.10, respectively. The AWCE for the 60-100 cm 294 

and 100-200 cm soil layers differed from the shallowest layers by the shapes of their 295 

distributions, which were bimodal (two distribution peaks located at 0.03 cm/cm and at 0.11 296 

cm/cm). While the skewness test indicated that the distributions of the AWCE values of every 297 

soil layer were approximatively symmetric, the excess kurtosis test showed that the 298 

distributions were less peaked and presented less extreme values than a normal distribution. 299 
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Figure 3. Distributions of the observed SAWC components at sampling locations ; a) soil 301 

thickness, b) elementary available water capacity of the 0-30 cm soil layer, c) elementary 302 

available water capacity of the 30-60 cm soil layer, d) elementary available water 303 

capacity of the 60-100 cm soil layer and e) elementary available water capacity of the 304 

100-200 cm soil layer (in color) 305 

4.1.2. Correlation of error between the AWCE and the soil thickness 306 

The correlations between the errors from AWCE and soil thickness (table 3) were very low 307 

whatever the considered soil layer and even non-significant for layers 0-30 cm and 60-100 308 

cm. It may reveal that the mapping models of these soil properties were very different by 309 

weighing very differently the used soil covariates. 310 

Table 3. Correlation of the error between the elementary available water capacity 311 

(AWCE) and the soil layer thickness 312 

Soil properties 

  

AWCE 

 

Depth intervals (cm) 0-30 30-60 60-100 100-200 

Soil layer thickness 

0-30 0.01 ns - - - 

30-60 - 0.09 ** - - 

60-100 - - 0.02 ns - 

100-200 - - - -0.13 * 

ns: not significant (p-value ˃ 0.05); *: p-value ≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001 313 

 314 

4.1.3. Correlation of the errors between soil layers 315 

Table 4 shows the correlation of the AWC errors between soil layers. The AWC errors of the 316 

soil layers were correlated, especially for the consecutive soil layers, and the correlations 317 

decreased for deeper layers, which may denote large similarities between mapping models of 318 

consecutive soil layers. It is worth noting that all error correlations between the soil layers 319 

were significant and generally higher than the error correlations between the primary soil 320 

properties.  321 
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Table 4. Correlation of the available water capacity (AWC) error between the soil layers 322 

Soil property Depth intervals (cm) 

AWC 
 

0-30 30-60 60-100 

 
30-60 0.67 *** - - 

 
60-100 0.42 *** 0.63 *** - 

 
100-200 0.16 ** 0.24 *** 0.36 *** 

AWC: available water capacity 

4.2. SAWC component prediction performances 323 

In Table 5, we present the performances of the SAWC component predictions. While the 324 

SSMSE values of both the clay and sand contents increased in depth, SSMSE of both the coarse 325 

fragment content and soil thickness showed very low performances (e.g., the SSMSE was close 326 

to 0%) as well low RMSE and bias values. The performances of the AWCE indicated a weak 327 

SSMSE that ranged from 6 to 14% of explained variance. 328 

Table 5. Prediction performances of soil available water capacity (SAWC) components: 329 

Mean values (standard deviations) over 20 iterations of SSMSE (mean square error skill 330 

score) RMSE (root mean square error) and bias. 331 

Soil properties Unit 
Depth interval 

(cm) 
SSMSE RMSE Bias  

Clay (% mass) 0-30 0.16 (0.007) 10 (0.05) -2 (0.04) 

30-60 0.20 (0.006) 11 (0.06) -2 (0.04) 

60-100 0.26 (0.008) 12 (0.07) -2 (0.09) 

100-200 0.27 (0.011) 12 (0.11) -2 (0.13) 

Sand (% mass) 0-30 0.29 (0.005) 15 (0.09) 1 (0.08) 

30-60 0.29 (0.006) 18 (0.07) 0 (0.07) 

60-100 0.33 (0.008) 16 (0.11) 0 (0.12) 

100-200 0.32 (0.009) 17 (0.23) -1 (0.18) 

Coarse fragments (% vol) 0-30 0.07 (0.008) 20 (0.09) -4 (0.21) 

30-60 0.09 (0.01) 26 (0.15) -4 (0.12) 

60-100 0.07 (0.013) 29 (0.21) -3 (0.12) 

100-200 0.03 (0.013) 30 (0.21) -3 (0.14) 

AWCE (cm.cm-1) 0-30 0.12 (0.007) 0.03 (0.0001) 0 (0.0001) 

 30-60 0.14 (0.007) 0.03 (0.0001) 0 (0.0001) 



19 

 

 60-100 0.11 (0.008) 0.04 (0.0002) 0 (0.0002) 

 100-200 0.06 (0.008) 0.04 (0.0002) 0 (0.0002) 

      

Soil layer 

thickness 
(cm) 0-30 -0.01 (0.005) 3 (0.01) 1 (0.01) 

 30-60 -0.04 (0.009) 10 (0.03) 4 (0.02) 

 60-100 0 (0.015) 17 (0.11) 4 (0.14) 

 100-200 0.01 (0.013) 26 (0.15) -9 (0.09) 

AWCE: elementary available water capacity 

 332 

We present in Table 6 the performances of the SAWC predictions obtained by aggregating the 333 

predictions of AWCE and soil thickness of the four aggregated soil layers till the selected 334 

maximum rooting depths (60 cm, 100 cm or 200 cm). 335 

SAWC was poorly predicted regardless of the maximum rooting depth considered. The 336 

variance explained by the model reached 12-13%. Positive bias values (between 0.51 and 0.97 337 

cm) denoted an overall overestimation of SAWC. 338 

Table 6. Performances of the soil available water capacity (SAWC) predictions : Mean 339 

values (standard deviations) over 20 iterations of SSMSE (mean square error skill score) 340 

RMSE (root mean square error) and bias. 341 

Maximum rooting depth (cm) SS
MSE

 RMSE (cm) Bias (cm) 

60 0.13 (0.008) 1.86 (0.008) 0.51 (0.006) 

100 0.12 (0.007) 3.29 (0.013) 0.97 (0.013) 

200 0.12 (0.007) 4.2 (0.018) 0.66 (0.017) 

 342 
 343 

4.3. Uncertainty in the SAWC mapping prediction performances 344 

In Table 7, we present the uncertainty evaluation of the predictions averaged with their 345 

standard deviations using the PICP. The PICP values ranged from 71% to 91%; the PICP 346 

values were closer to optimal (i.e., 90%) when the correlation of the errors between the soil 347 

layers was considered regardless of whether the correlation of errors between the soil 348 

properties were considered during error propagation. It is worth noting that when the 349 

correlation of the errors between the soil layers was not accounted for, the PICP dropped 350 
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dramatically to values ranging between 71 and 81%, which led to an underestimation of the 351 

SAWC uncertainty. 352 

Table 7. Uncertainty prediction evaluation: Mean values (standard deviations) over 20 353 

iterations of PICP (prediction interval coverage probability) with different options for 354 

error propagation: considering the error correlation between both soil properties and 355 

soil layers (SP.SL), solely the soil layer error correlation (SL), solely the soil property 356 

error correlation (SP) or no correlation (NONE). 357 

 358 

Maximum rooting depth (cm) PICP (%) 
Options for error propagation 

SP.SL SL SP NONE 
60 89 (0.46) 88 (0.40) 81 (0.53) 80 (0.59) 

100 88 (0.40) 87 (0.40) 71 (0.59) 71 (0.51) 

200 91 (0.28) 91 (0.34) 75 (0.53) 75 (0.48) 

 359 

Table 8 shows the differences in the prediction performances (RMSE) for the different 360 

quartiles in the 90% confidence interval width using the error propagation model for SL (i.e., 361 

the one that considered the correlation of the error between soil layers only) for SAWC 362 

predicted at 200 cm. The RMSE calculated separately for each quartile tended to increase 363 

from the predicted confidence interval with the smallest width to the largest confidence 364 

interval (from 3.12 cm to 5.51 cm). Therefore, as expected, the uncertainty predicted by the 365 

model was related to the uncertainty observed through the validation protocol. Similar trends 366 

were observed for SAWC predictions at 100 and 60 cm.  367 

Table 8. RMSEs for the quartiles of prediction interval widths. 368 

Maximum rooting depth (cm) Predicted uncertainty (cm) RMSE (cm) 

60 < 5.81 1.67 

 5.81 - 6.23 1.86 

 6.23 - 6.67 1.95 

 > 6.67 1.96 

 

100 <9.45 2.64 

 9.45 - 10.39 3.04 

 10.39 - 11.23 3.38 

 > 11.23 3.96 
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200 < 11.6 3.12 

 11.6 - 13.1 3.77 

 13.1 - 15 4.02 

> 15 5.51 

 369 

 370 

4.4. Spatial distribution and uncertainly of the SAWC 371 

4.4.3. Spatial distribution of the SAWC 372 

According to the previously presented results (cf. Table 7), there was no clear difference in 373 

performance in the SAWC predictions of 60, 100 or 200 cm, so we chose to present the 374 

SAWC map for the maximum soil thickness of 200 cm. 375 

The SAWC map (Figure 5) was mainly divided in two regions of contrasting soil thickness 376 

that corresponded to different lithologies and reliefs. The low predicted values of SAWC 377 

(shown in red) were predominant in the mountainous crystalline rocks of the Pyrenees and the 378 

Massif Central mountains, which were located in the south and northwest of the region, 379 

respectively, and on the hard limestone plateaus (the Causses). The high predicted values of 380 

the SAWC (in blue color) were located in the hills and plains of the soft marine and fluviatile 381 

sediments located near the seaside and in a narrow channel in the west of the region. 382 

However, more subtle differences in the predicted SAWC could be observed within the two 383 

regions. In the sedimentary area, a gradient was observed from high predicted SAWCs in the 384 

alluvium valleys, which had deep soil with low coarse fragment contents, to low predicted 385 

SAWCs in the stony soils of the old alluvial terraces (e.g., Nîmes Costières, which is in a red 386 

circle in Figure 5) the soils on tertiary sediment (“molasse”) hillsides showed intermediate 387 

values. The mountainous crystalline rock areas and the Causses also showed identifiable 388 

differences in the predicted SAWCs (dark blue circle in Figure 5) that could be explained by 389 

the soil map and DEM derivative covariates (e.g., Multi Resolution Valley Bottom Flatness 390 
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index, Multi Resolution Ridge Top Flatness index and slope). Similar situations were 391 

encountered in the Causses (light blue circles in Figure 5). 392 

 393 

Figure 5. Predicted soil available water capacity (SAWC) map of Languedoc-Roussillon 394 

(in color). 395 

4.4.4. Spatial distribution of the SAWC prediction uncertainty 396 

In Figure 6, we provide an uncertainty map estimated as the width of the 90% confident 397 

prediction interval represented according to the quartile classes. The high uncertainty 398 

predictions were mainly located in the alluvium valley in the littoral region. The moderated 399 

uncertainty predictions were located in a large portion of the alluvium valley and in the littoral 400 

Crystalline

mountain area

Causses

Nîmes Costières
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region, while the low uncertainty predictions occupied the rest of the study area (i.e., the 401 

plateaus and mountain regions). It is worth noting that the amount of predicted uncertainty 402 

seemed to be mainly related to the values of the predicted SAWC, the biggest errors being 403 

related with the predictions of the largest SAWC values.   404 

 405 

Figure 6. Uncertainty map presented by the classes estimated from the quartiles of the 406 

validation distribution (in color) 407 

 408 

5. Discussion 409 

5.1. Evaluation protocol 410 
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The evaluation protocol that was applied in this study consisted of a 10-fold cross validation 411 

approach with 20 repetitions, with the reference data being the soil profiles at punctual sites 412 

with the observed properties (textural fractions, coarse fragments and soil thickness) used to 413 

produce a local estimation of the SAWC using the pedotransfer functions. This protocol 414 

ensured both, an evaluation of the SAWC predictions from independent samples and a 415 

comprehensive consideration of the mapping errors of all SAWC components. To our 416 

knowledge, this is the first time that these two conditions were fulfilled in an evaluation 417 

protocol dealing with the SAWC, which makes the comparisons with previous papers dealing 418 

with SAWC (e.g. Poggio et al, 2010; Hong et al, 2013; Leenaars et al, 2018) difficult. 419 

However, our evaluation protocol had two main limitations. First, the evaluation sites were 420 

not characterized by the real SAWC measurements, and the fine earth water retention was 421 

estimated with the pedotransfer functions. This did not allow us to account for the PTF errors, 422 

as Román Dobarco et al. (2019) did in their study. However, these authors showed that PTF 423 

errors played a minor role in comparison with the mapping errors of the SAWC components. 424 

This should be even more true with the addition of the ST mapping errors in the evaluation 425 

protocol in comparison with the protocol of Román Dobarco et al (2019). Furthermore, the 426 

introduction of the PTF error in our error propagation models following the technique 427 

proposed by Román Dobarco et al. (2019) did not modify the ex-ante uncertainty evaluation 428 

of the SAWC paper (result not shown in this paper). However, a full evaluation of the SAWC 429 

mapping would be preferable, which means investing in costly field and laboratory 430 

measurements or finding accurate and inexpensive proxies for the SAWC (Coulouma et al, 431 

2020). 432 

A second limitation of our evaluation protocol was that SAWC mapping was evaluated at the 433 

site level, which was not representative of the decision-making units of the end-user and 434 

represents the worst case scenario for assessing the soil property prediction quality. Ideally, 435 
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the evaluation should be performed for areal units (Bishop et al, 2015), which would produce 436 

more realistic results that would be in accordance with the visual evaluation of the map (see 437 

further). However, evaluating the SAWC from the areal units would require data collection 438 

that cannot be reasonably envisaged. Consistency checking involving data available at larger 439 

spatial support and closely related with AWC could be an alternative (Vanderlinden, 2005) 440 

5.2.  Error propagation model 441 

Following Román Dobarco et al. (2019), an error propagation model using a first-order Taylor 442 

expansion was developed for the ex-ante estimation of SAWC mapping uncertainty. This 443 

model was, to some extent, more complete than the one developed by Román Dobarco et al. 444 

(2019) in that it considered the error in the soil thickness maps and the correlations between 445 

the error in the SAWC component maps that were not considered in Román Dobarco et al. 446 

(2019). This model was obtained by selecting an inference trajectory that included separate 447 

mapping of the soil layer thicknesses, which allowed easy application of the first-order Taylor 448 

expansion. The results revealed that the consideration of the error correlations had an impact 449 

on the final result if they reached a given level, which was the case for the error correlations 450 

between the soil layer maps (Table 4). The results showed that the ex-ante estimation of 451 

uncertainty was only slightly biased (differences with nominal values of 90% less than 1 for 452 

two out of three SAWC maps), which corresponded to much smaller uncertainty estimation 453 

biases than those obtained by Román Dobarco et al. (2019). We also verified that the RMSE 454 

obtained from the validation protocol was closely related to the predicted uncertainty (Figure 455 

4), which, to our knowledge, has not yet been verified. We note, however, that the error 456 

propagation model built in this study did not consider the PTF errors. This error could be 457 

easily added by following the procedure proposed by Román Dobarco et al. (2019). 458 

5.3. General performances of the SAWC predictions 459 
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Although the SAWC map of the Languedoc-Roussillon region exhibited expected and 460 

pedologically sound soil patterns, poor results were obtained from the evaluation protocol 461 

(Table 6). This was likely related to the difficulty of mapping the two most critical 462 

components of the SAWC, namely, the coarse fragments and the soil layer thicknesses (Table 463 

5). As observed by Vaysse et al. (2015), the soil thickness and coarse fragments were 464 

characterized by a pre-eminence of short-scale variations that could not be captured by a 465 

DSM model using a so sparse soil spatial sampling according to the soil layer depths (Table 466 

1). A denser spatial sampling is therefore necessary in this situation. Furthermore, the coarse 467 

fragment data were obtained from visual observations of the soil profile, which carry a greater 468 

uncertainty than the ones of other soil properties that are measured in a laboratory. More 469 

accurate field protocols for measuring the proportion of coarse fragments (Algayer et al, 470 

2019) are required to improve this situation.  471 

It is also important to notice that biases were important components of the SAWC prediction 472 

errors (between 15 and 30% as shown on table 6), which generated an overall SAWC 473 

overestimation.  This overestimation can be related with the important positive biases 474 

observed for the predictions of the thicknesses of the three first soil layers (table 5). Such 475 

biases should be caused by the difficulties of the Random Forest algorithm to deal with the 476 

important subset of locations having null soil layer thicknesses. Dealing with zero-inflated 477 

input datasets of regression models is a well-known problem in ecology (Martin et al, 2005). 478 

Specific regression approaches adapted to zero-inflated datasets (Savage et al, 2015) should 479 

be applied to mitigate this problem.   480 

Conversely, the last soil layer exhibited a negative bias (table 5) that can be related with the 481 

unbalanced distribution of soil thicknesses in the set of sampling locations (figure 3). Indeed, 482 

a very small proportion of deep soils were sampled because of the low maximum observation 483 

depths (only 15% of the soil profiles had maximum observation depths greater than 120 cm). 484 
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This too small proportion generated the underestimation of the deepest soil layers thicknesses 485 

since, the random forest algorithm is known to behave like an interpolator and to smooth the 486 

outliers (Song, 2015). A more balanced sampling of the ST across the study region is 487 

therefore necessary. 488 

 489 

6. Conclusions 490 

• We developed a DSM model that mapped the SAWC values and provided an ex 491 

ante local estimation of the prediction uncertainty. For the first time, this 492 

uncertainty model took into account all SAWC component mapping errors for all 493 

soil layers. 494 

• The results showed weak performances of the SAWC predictions, although the 495 

final map exhibited pedologically sound spatial patterns of predicted SAWC. This 496 

paradoxical result could be caused by the inadequate spatial support at which the 497 

evaluations were conducted (punctual one). 498 
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