Selective breeding to reduce the ecological footprint of aquaculture

Marc Vandeputte, Mathieu Besson, François Allal, F. Phocas, Edwige Quillet

To cite this version:

Marc Vandeputte, Mathieu Besson, François Allal, F. Phocas, Edwige Quillet. Selective breeding to reduce the ecological footprint of aquaculture. Aquaculture Europe 2017, Oct 2017, Dubrovnik, Croatia. hal-03156701

HAL Id: hal-03156701
https://hal.inrae.fr/hal-03156701
Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SELECTIVE BREEDING TO REDUCE THE ECOLOGICAL FOOTPRINT OF AQUACULTURE

M. Vandeputte, M. Besson, F. Allal, F. Phocas, E. Quillet

The big question

Fish farming has to grow to meet increased demand for fish
Selective breeding is an efficient method that has mostly been used to increase production in quantity (growth rate)
How to use this potential to improve production efficiency and decrease global and local environmental impact?

Our vision

Adaptation to Plant-based Diets
Feed Efficiency
Survival/ Disease resistance
Fillet yield

5.8 kg ⇔ 2.9 kg ⇔ 2.6 kg ⇔ 1.0 kg

Producing 1 kg of sea bass fillet requires 5.8 kg of compound feed
All efficiency traits have a genetic basis that can be selected
Could sea bass reach the efficiency of rainbow trout?

1.9 kg ⇔ 1.7 kg ⇔ 1.6 kg ⇔ 1.0 kg

Challenges to be met

Develop efficient phenotyping methods and/or indirect predictors of efficiency traits
Evaluate how genomic selection can help use less (more precise) phenotypes
Ultimately, co-adapt fish strains and novel, agro-ecological production systems

This research has received funding from the European Union’s FP7 and Horizon 2020 research and innovation programmes. This output reflects the views only of the author(s) and the European Union cannot be held responsible for any use which may be made of the information contained therein.