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Abstract: The chemical properties, ecotoxicity, and microbiome of leachates from phytomanaged
Cu-contaminated soils were analyzed. The phytomanagement was carried out using Cu-tolerant
poplar Populus trichocarpa × deltoides cv. Beaupré and black bent Agrostis gigantea L., aided by soil
amendments, i.e., dolomitic limestone (DL) and compost (OM), alone and in combination (OMDL).
Plants plus either DL or OMDL amendments reduced in leachates the electrical conductivity, the Cu
concentration, and the concentration of total organic C except for the OMDL treatment, and decreased
leachate toxicity towards bacteria. Total N concentration increased in the OM leachates. The aided
phytostabilization increased the culturable bacteria numbers and the proportion of Cu-resistant
bacteria in the leachates, as compared to the leachate from the untreated soil. Phytomanagement also
enriched the microbial communities of the leachates with plant beneficial bacteria. Overall, the Cu
stabilization and phytomanagement induced positive changes in the microbial communities of the
soil leachates.

Keywords: metal polluted soil; soil leachate; aided phytostabilization; soil toxicity; bacterial
Cu-resistance; microbial diversity

1. Introduction

Soils host highly diverse microbial communities that may reach up to 106 of bacterial species per
gram of soil [1–3]. Such extreme microbial richness is due to a large number of microhabitats within
the soil structure [4,5] that offers, at the same time, conditions for the proliferation of the dominant
microbial phylotypes and suitable protective niches for rare species, both playing a fundamental role in
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microbially driven soil functions [6,7]. The composition and structure of the soil microbial communities
are influenced by main soil properties such as pH value and nutrient availability [8], climate [9],
vegetation cover due to the plant-induced microbial selection [10], and soil management [11,12]. Soil
microbial diversity has been mainly assessed by analyzing the soil solid phases, and therefore the
current knowledge refers to the bulk soil or soil aggregates [13]. However, soil is a heterogeneous
environmental matrix consisting of solid, liquid, and gaseous phases, and the complexity of intact soils
prevents a systematic study of the microbial communities adhering to the solid phases or present in the
soil solution [14]. The soil solution is the liquid phase in which nutrients diffuse and become available
for uptake by plant roots and microorganisms [15], in which the dissolved organic matter (DOM)
is transported to the deeper soil horizons, and soil hydration influences the bacterial community
composition and microbial physiological activity [16]. In addition, the soil solution is the medium
in which bacterial and virus dispersal and transport occurs [17–19], and from the microbiological
point of view, the soil solution can be considered as one of the most interactive soil phases. In
metal(loid)-contaminated soils, generally only a fraction of metal(loid)s are present in the aqueous
phase both as free ions after desorption from the surface of the solid phases or bound with soluble
organic and inorganic ligands [20]. The DOM can increase the mobility and transport of several
metal(loid)s such as Cu, Pb, and As [21], particularly for those having high affinity for the organic
ligands in solution such as Cu [22].

Copper is a micro-nutrient required as a cofactor in several oxo-reductase enzymes involved in
basic cellular metabolic pathways, owing to its ability to alternate between Cu(I) and cupric Cu(II)
oxidation states [23]. Copper, along with Cd, Cr, Pb, and Zn, may exceed its background levels
in soils of anthropogenic areas [24], being released by many industrial and agricultural activities,
and can reach particularly high concentrations in topsoils of industrial areas such as those where
wood impregnation is practiced [25]. Soil Cu contamination results in a range of adverse effects,
including phytotoxicity [26], reduced microbial activity, and diversity with deleterious effects on
soil organic matter (SOM) decomposition and nutrient mineralization [27–30], leading to a general
loss of soil fertility [31]. Excess Cu alters the microbial community structure [28,29] and can lead
to the positive selection of Cu-tolerance within the microbial community [27]. The remediation of
Cu-contaminated soils is relatively complicated due to strong Cu retention by the soil exchange
complex and SOM. Soil washing with extractants and chelating agents is a common technology for
Cu removal from soil [32–34], but although efficient, the engineering technologies are not sustainable
for large-scale remediation interventions and can cause irreversible loss of soil ecological functions.
Phytomanagement is a remediation approach for contaminated sites based on the use of plants,
microorganisms, soil conditioners, and agro-ecological practices to reduce the environmental risks
posed by soil contamination to an acceptable level, into a risk management based framework [35].
Unlike civil engineering technologies, the requirements of phytomanagement for chemicals and energy
are low, as well as the total cost, making it use sustainable for the remediation of large contaminated areas,
enhancing soil fertility resulting in high sustainability and social acceptance of such practice. Among
the phytomanagement options for meta(loid)-contaminated soils, the cultivation of metal(loid)-tolerant
woody plants aided by soil amendments can either mobilize or immobilize metal(loid)s, reduce the
soil toxicity, and restore the soil microbial diversity and microbial functions in a relatively short
time [36]. In contaminated soils, the metal(loid) pools in the aqueous phase are those having higher
interactions with soil microorganisms [37]. While it is postulated that restoration of microbiological
diversity and functions of metal(loid)-contaminated soils under aided phytostabilization is led by
decreased metal(loid) solubility and bioavailability, such beneficial effects have been demonstrated for
the microbial communities of the bulk soil. To our knowledge, the influence of phytomanagement on
the microbial diversity and bacterial metal-resistance in the soil solution has been poorly studied.

We hypothesize that an aided phytostabilization approach can reduce the metal(loid) solubility in
contaminated soils, as well as decrease their toxicity on soil microorganisms and increase the microbial
diversity. We tested such a hypothesis by analyzing the water leached from a Cu-contaminated soil
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of a wood preservation site, either untreated or amended with organic and inorganic amendments
and cultivated with the Cu-tolerant poplar Populus trichocarpa × deltoides cv. Beaupré and black bent
(Agrostis gigantea L). We analyzed the main chemical parameters, Cu concentration, and ecotoxicity
of soil leachates from large outdoor lysimeters after three phytomanagement years and related these
parameters to the microbial diversity and Cu-resistance of the endogenic bacteria.

Our results can improve the current knowledge of the chemical improvement and the
composition of the microbial community in the solution of Cu-contaminated soils managed by
aided phytostabilization.

2. Materials and Methods

2.1. Site Characteristics and Leachate Collection

The soil was collected at a wood preservation site (10 ha) located in Gironde (SW France, 44430N;
0300W) [25]. The soil is of alluvial origin, classified as Fluvisol-Eutric Gleysol (WRB, 2006), with a
coarse sandy texture and neutral pH value.

In March 2007, vats of 75 dm3 and 0.5 m diameter (Figure 1) were filled with three successive layers,
including two undisturbed layers of sandy soil collected in a trench at the P3 subsite (Table A1) [25,38]:
5 cm of coarse gravels (1–3 cm, diameter), 22 cm of sub-soil (from the 30–60 cm soil layer), and 25
cm of topsoil (from the 0–30 cm soil layer). A geotextile separated gravels and the sub-soil. Total Cu
concentrations (mg kg−1) were 1110 in the topsoil and 111–153 in the subsoil (Table A1). Amendments
were carefully mixed with the topsoil using a vat, alone and in combination (% air-dried soil DW, w/w),
before filling the lysimeters, to consist the four soil treatments: bare untreated soil (Unt), 5% compost
made of bark wood chips and poultry manure (OM, Orisol, Cestas, France), 0.2% dolomitic limestone
(DL) [39], and OM with DL (OMDL). Lysimeters were prepared in triplicates for each treatment.
Stem cuttings (roughly 20 cm long) of P. trichocarpa × deltoides cv. Beaupré, a commercial cultivar
(INRA, Nancy, France), were sampled in January 2006 from trees established in a nursery (Gironde
district, France) and were rooted in individual pots, placed in a greenhouse, on perlite imbibed with
a quarter-strength Hoagland nutrient solution. Agrostis gigantea L. (2 patches, 5 cm in diameter of a
population originated from the surrounding of a Cu/Ni smelter in Sudbury (Canada) and one Beaupré
poplar (initial shoot length: 30 ± 5 cm) were transplanted in all lysimeters except for the Unt treatment.
Lysimeters (n = 21) were placed in situ (March 2007). The soil pH value did not significantly vary
across the treatments, ranging between 7.16 ± 0.12 for the Unt soils and 7.33 ± 0.12 for the OMDL
ones (Table A1) [38]. The annual maintenance for the lysimeters was to harvest the senescent shoots
of A. gigantea at the end of the winter (February). Lysimeter leachates were periodically collected in
plastic bottles (1.5 dm3) from 5 March 2007 after each major precipitation event (>30 mm, leachate
volume >1.5 L). They were collected in March 2010, 3 years after the soil treatment, kept at 4 ◦C, and
analyzed after 48 h from the collection.

2.2. Chemical Analysis of the Leachates and Microbial Toxicity Test

The leachates were split into aliquots. To measure the leachate Cu concentrations, samples were
filtered at 0.22 µm, acidified with 0.2 mL HNO3 prior to elemental quantification by inductively
coupled plasma optical emission spectrometry (IRIS II XSP, Thermo Fisher Scientific, Courtaboeuf
cedex, France).
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Microbial toxicity of leachate samples was assayed by using the BioToxTM Flash Test (Aboatox
Oy, Turku, Finland), which is based on the inhibition of the luciferase activity of the bioluminescent
Alivibrio fisheri bacteria, according to the standard method (ISO 21338:2010). The pH and conductivity
values during the test were adjusted as recommended by the manufacturer. The A. fisheri
bioluminescence was detected by Sirius luminometer (Berthold D.S., Pforzheim, Germany), allowing
automatic correction of color and turbidity [40], and recorded by Sirius Software for Windows at time
zero and after 15 min of sample–bacteria contact. The bioluminescence inhibition percentage (inh%)
was determined by comparing the bioluminescence intensity of control bacteria suspensions with that
of the tested materials, according to the following formula:

inh% = 100 − [(IT15/KF·IT0) × 100] (1)

where IT15 and IT0 are the luminescence values of samples at time 15 min and zero, respectively, and
KF is a correction factor given by the ratio between the luminescence after 15 min and that at zero time
in control samples.

2.3. Cu Resistance of Culturable Bacteria

The Cu resistance of culturable bacteria was evaluated by plate counts of colony-forming units
(CFU) of bacteria plated on Petri dishes. The bacteria resistance to Cu was evaluated, growing them
on minimal salt medium containing 0.8 mM CuSO4 [41]. The culturable oligotrophic bacteria were
determined by the CFU formed onto the minimal salt medium without CuSO4 addition, and the
total culturable bacteria were counted after growth onto Luria Bertani broth (Sigma). For microbial
colony development, Petri dishes were incubated at a constant 37 ◦C in the dark for 7 days [41]. The
proportion of the Cu-resistant bacteria was expressed as a percentage of CFU on Cu-selective medium
and the total culturable bacteria grown on LB broth.

2.4. High throughput Sequencing Analysis

Soil total DNA was extracted using the SPIN DNA kit (MP Biomedicals) according to the
manufacturer instructions, except that a vortex at maximum speed for 10 minutes was used instead of
the FastPrep disruptor and the DNA was eluted in 100 µL of sterile H2O. DNA was purified by the
DNA Clean Up Kit (MoBIO) according to the manufacturer’s protocol with the following exceptions:
clean up started at Step 11, and purified DNA was eluted using 50 µL of sterile water. The 16S
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rRNA gene sequences were amplified by PCR using the specific forward (515F-SBS3) and reverse
(806R:SBS12-1) primers. The PCR was performed with an initial denaturation temperature of 94 ◦C for
3 min, followed by 20 cycles of 94 ◦C for 45 s, 50 ◦C for 30 s, and 65 ◦C for 90 s. A final elongation step
of 65 ◦C was run for 10 min. The amplicon sequencing was conducted on an Illumina IIx, with two
101 base pair, paired reads. The rRNA reads were trimmed to retain only reads longer than 100 bp
and high-quality bases (Phred score > 30) using PRINSEQ [42]. Trimmed sequences were treated as
previously described [43]. A taxonomic assignment was obtained using UCLUST on QIIME v1.9.1 [44].
The bacterial operational taxonomic units (OTUs) were summarized based on 97% sequence similarity,
and taxonomic data were generated through the classification algorithm using the Silva database
version 132 [45]. The total number of classified OTUs was used to calculate the following alpha
diversity indices: diversity (Shannon), richness (Chao1), dominance, and evenness, followed by the
one-way ANOVA statistical analysis using PAST 3.03 [46]. Differences among treatments were tested
using Kruskal–Wallis, followed by Tukey posthoc test.

2.5. Statistical Analysis

The chemical parameters and ecotoxicity values of the leachates from all treatments were the
mean values of three independent lysimeters, and the significance of differences was assessed by
one-way ANOVA followed by the Fisher HSD test.

3. Results

3.1. Chemical Parameters and Toxicity of the Soil Leachates

The soil leachates had pH values ranging between 5.63 and 5.91 with no significant differences
among the treatments, whereas the EC value was significantly higher for the leachate of the bare
untreated soil (Unt) than that of the amended soils under phytomanagement (Table 1). The TOC
concentrations showed higher and similar values in the Unt, OM, and OMDL leachates as compared to
the DL ones, whereas the total N concentration was significantly higher in the OM leachates than in
other treatments (Table 1). The Cu concentrations were highest in the Unt and OM leachates and lowest
in the DL and OMDL ones. The highest value of bioluminescence inhibition of A. fischeri determined by
the BioTox test was observed for the Unt leachates (28.9%); an inhibition value of 22.5% was observed
for the OM leachates, whereas the bioluminescence inhibition was below the toxicity threshold for the
DL and OMDL leachates (Table 1).

Table 1. Chemical properties and ecotoxicity of the leachates from untreated and phytomanaged soils.

Treatment pH EC (µS) Ca
(mg L−1) Mg (mg L−1)

Cu
Concentration

(µM)

Total
Organic C
(mg L−1)

Total N (mg
kg−1)

Microbial
Toxicity

(Inhibition %)

Unt 5.91
(±0.32) a 255 (±75) a 4.70

(±1.33) a 1.21 (±0.17) a 17.0 (±0.37) a 12.9 (±5.8) a 1.15 (±0.16) b 28.9 (±5.4) a

DL 5.83
(±0.32) a 121 (±19) b 8.78

(±4.39) a 2.66 (±0.66) bc 7.40 (±0.12) b 7.58 (±1.5) b 1.05 (±0.18) b 11.4 (±3.9) c

OM 5.63
(±0.09) a 124 (±37) b 5.15

(±0.57) a 1.85 (±0.20) ab 16.2 (±0.13) a 13.7 (±1.1) a 1.56 (±0.13) a 22.5 (±5.0) b

OMDL 5.81
(±0.75) a 155 (±19) b 10.25

(±2.21) a 3.14 (±0.21) c 6.77 (±0.22) b 14.8 (±3.36) a 0.86 (±0.73) b 9.6 (±5.0) c

Values are the average of three replicates, and values in brackets are the standard deviation of the means. Values
followed by the same letter(s) are not significantly different at p value ≤ 0.05 by ANOVA and the Fisher HSD test.

3.2. Microbial Diversity, Cultural Bacteria, and Cu Resistant Bacteria

The total culturable bacteria showed a significant increase in CFU values for the OM and OMDL
leachates, whereas the culturable oligotrophic bacteria showed the lowers CFU values in the leachates
from the Unt soils (Table 2). The culturable Cu-resistant bacteria showed significantly higher CFU
values in the OM and OMDL than in the Unt and DL leachates (Table 2); however, by comparison with
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the culturable oligotrophic, the highest proportion of Cu-resistant bacteria, defined as the percentage
of the culturable oligotrophic bacteria, were detected in the leachates from the Unt soil and the lowest
proportions in the DL and OMDL leachates (Table 2).

Table 2. Total culturable bacteria, Cu-resistant bacteria, and the proportion of Cu-resistant bacteria in
the leachates of the untreated and phytomanaged soils.

Treatment Total Culturable
Bacteria (CFU mL−1)

Oligotrophic
Bacteria (CFU mL−1)

Cu Resistant
Bacteria (CFU mL−1)

Cu Resistant
Bacteria (%)

Unt 2.4 (±2.1) × 103 b 2.7 (±2.1) × 103 b 5.8 (±1.9) × 102 b 21.4 (±2.1) a
DL 9.4 (±3.7) × 103 b 1.5 (±3.7) × 104 a 5.6 (±1.0) × 102 b 3.8 (±1.3) d
OM 2.8 (±2.6) × 104 a 8.3 (±2.6) × 104 a 1.3 (±2.8) × 103 a 15.6 (±2.4) b

OMDL 1.0 (±0.1) × 104 a 1.4 (±0.1) × 104 a 1.3 (±4.7) × 103 a 9.8 (±2.1) c

Values are the average of three replicates, and values in brackets are the standard deviation of the means. Values
followed by the same letter(s) are not significantly different at p value 0.05 by ANOVA and the Fisher HSD test.

The relative abundance of the prokaryotic phyla accounting for ≥1% of the total of sequences
detected in at least one replicate per treatment, showed that Proteobacteria was the most abundant
phylogenetic group ranging from 39.3% to 47.2% of the total sequences, followed by Bacteroidetes,
Chlamydiae, and Planctomycetes in variable relative abundances depending on the treatment (Figure 2).
The largest changes in the relative abundance of bacterial phylotypes were observed in the DL treatment,
in which the Spirochaetes group appeared, and the Planctomycetes, Proteobacteria, Planctomycetes,
and Bacteroidetes groups were reduced (Figure 2).
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Figure 2. Prokaryotic phyla with relative abundance ≥1% detected in at least one treatment replicate of
the total sequences revealed by the analysis of the 16S rRNA gene using high throughput sequencing.

No significant differences among treatments were observed at the phylum level. Differences were
observed among the leachates from different treatments in the prokaryotic OTUs at the genus
level with an abundance of ≥1% of the total sequences and detected in at least one replicate
per treatment (Figure 3). Among the genera detected in single treatments, Verrucomicrobia
Pedosphaeraceae ADurb.Bin063-1 were characteristic of the Unt treatment, Bacteroidetes Chitinofaga
sp., Proteobacteria Paracaedibacteraceae, Proteobacteria Oligoflexales 0319-6G20, Spirochaetes Leptospira
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sp. were characteristic of the DL treatment, Planctomycetes Planctomycetales, Proteobacteria
Desulfobulbaceae, Proteobacteria Gammaproteobacteria sp. Verrucomicrobia Prosthecobacter sp.
were characteristic of the OMDL treatment (Figure 3). Among the genera common to two treatments,
the Bacteroidetes Chitinophagaceae_2, Planctomycetes Gemmata, Bacteroidetes Chitinophagaceae_2,
Proteobacteria Gammaproteobacteria EC3 characteristic of both DL and OMDL treatments,
Proteobacteria Reyranellaceae (Reyranella sp.), Proteobacteria Sphingomonadaceae (Sphingomonas
sp.) characteristic of both OM and OMDL treatments (Figure 3).
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Figure 3. Heatmap prokaryotic operational taxonomic units (OTUs) at genus level with relative
abundance >1% of the total sequences detected in at least one treatment replicate revealed by the
analysis of the 16S rRNA gene using high throughput sequencing.

No significant differences were observed in the alpha diversity indexes among treatments (p > 0.05),
although the diversity was slightly lower in the leachates of from all amended soils, with lowest
values for the OM and DL ones (Figure 4). Differently, the Unt soil was the soil with lower dominance,
whereas the highest values were found for the DL and OM soils (Figure 4).
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phytomanaged soils. Black bar corresponds to the median. No significant differences were observed
(p > 0.05).

4. Discussion

The adopted phytomanagement was effective in Cu immobilization for both DL and OMDL soils,
based on Cu concentration in the soil leachates (Table 1) likely by precipitation reactions driven by the
addition of dolomitic limestone, containing Ca and Mg oxides and carbonates, and sorption with the
OM from the compost incorporation. The limestone addition in soil can increase the availability of
macronutrients such as Ca and Mg, facilitating uptake by plants and reducing the effect of Cu toxicity,
as reported by Juang et al. [47] and Ambrosini et al. [48]. Franceschi and Nakata [49] showed that
higher Ca concentration in shoots may decrease the phytotoxic effect of Cu, facilitating the formation of
calcium oxalate crystals, which incorporate metals, such as Cu, in their structure, whereas Yruela [50]
reported that higher Mg concentration in plant tissue may compete with Cu ions and prevent the
replacement of the central Mg ion of the chlorophyll molecule. Our results were in line with those by
Fan et al. [51], reporting effective Cu immobilization in contaminated soils amended with Ca-rich sludge
from water treatment residues. Moreover, our results confirmed those reported by Trentin et al. [52]
about the effectiveness of the use of the limestone to reduce the Cu availability and phytotoxicity.
The Cu stabilization significantly reduced the leachate toxicity to microorganisms, which could, in
turn, explain both the reduced proportion of Cu-resistant bacteria in the phytomanaged soils, also in
absolute values for the DL treatment (Table 2). In fact, tolerable environmental Cu concentrations for
non-resistant bacteria are lower than 10 µM [53], and such low concentrations were only detected in the
DL and OMDL leachates (Table 1). Concerning the higher bacterial Cu-resistance in the OM treatment
as compared to DL and OMDL, this could be explained by the bacterial proliferation triggered by
the larger C availability as compared to the latter treatments, indicated by the increase of the total
and oligotrophic bacteria (Table 2) which contained a high proportion of Cu-resistant bacteria (i.e.
Unt bacterial community in Table 2) in the presence of relatively high Cu concentrations in solution
(Table 1). This explanation was also supported by slight toxicity of the OM leachates indicated by the
BioTox test and by the increase of species dominance in the bacterial community of the OM leachates
(Figure 3) coupled to the lack of significant differences in soil bacterial communities among treatments
at the phylum level (Figure 2).
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The microbial community of the soil leachates showed the typical composition of the soil
microbiome with the Acidobacteria, Actinobacteria, Proteobacteria, Bacteriodetes, and Firmicutes
being the dominating phyla [54]. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria,
Gemmatimonadetes, Verrucomicrobia, Thaumarchaeota, Firmicutes, and Nitrospirae were reported as
the dominant phyla in a long-term Cd contaminated soil [55]. Nevertheless, the phytomanagement
influenced the microbial community composition, with major changes observed for Verrucomicrobia
and Actinobacteria, Gemmatimonadetes, and Dependentiae, and in the increase of phyla of
Proteobacteria, Planctomyces, and Cyanobacteria. Such changes could be attributed to the decreased
Cu concentration in the soil leachates, and this relationship was observed for several most abundant
and rare phylogenetic groups. The Actinobacteria, Gemmatimonadetes, and Dependentiae phyla
comprise several metal-tolerant species; their relative abundances in the leachates from phytomanaged
soil paralleled that of the Cu resistance in culturable bacteria and could be attributed to the reduced Cu
concentration in the soil leachates. The same reduction of Cu-induced selective pressure could also be
hypothesized for the slight reduction of Chlamydiae and Patescibacteria, which tolerate soil metal(loid)
pollution [56] and are generally detected in contaminated environments [57,58]. Species belonging
to Gemmatimonadetes have also been detected in metal-contaminated soils [59]. Acidobacteria
and Thaumarchaeota comprise species with variable tolerance to metal(loid)s and display divergent
lifestyles [60,61]. This may explain the lack of definite trends observed for these phylogenetic groups.
The observed reduction of relative abundance of Verrucomicrobia was in line with their negative
correlation with pollution levels in Cu-contaminated soils [62], and support the hypothesis that this
phylum may be used as a molecular biomarker of soil contamination [63].

The reduced Cu solubility and toxicity could also have interactive effects with the TOC
concentration in the soil leachates. In particular, the significantly lower TOC in the DL leachates
could be due to the stabilization of the SOM by reaction with Ca- and Mg carbonates [64]. This lower
TOC could have influenced the bacterial community, in particular, the balance between copiotrophic
and oligotrophic microorganisms. For example, the higher TOC in the OM and OMDL leachates as
compared to the Unt leachates (Table 1) could explain the increase of the Proteobacteria [65] and of
Planctomycetes [66]. Lejon et al. [67] suggested that adaptation of soil microorganisms to Cu was
related to the SOM quality. Moreover, the lower TOC concentration in the DL leachates could also
have reduced the microbial dispersal in the soil leachates. In fact, higher DOM content can increase
the groundwater transport of bacteria, mainly coating and saturating the sorption sites of the soil
solid phases [18]. Owing to their high metal sensitivity [68], the observed increase of Cyanobacteria,
particularly in the DL leachates, could be attributed to the strong reduction of Cu concentrations. The
leachate pH value was not significantly changed by the phytomanagement (Table 1). This allowed
us to better discriminate the phytomanagement effects on the microorganisms, as the pH value is an
important factor shaping the structure of soil microbial community [69].

Long-term field experiments indicated a rapid influence and sustainable efficiency of the OMDL
soil treatment over a 10-year period [30,36]. The cost is low as compared to dig-and-dump and other
ex-situ physico-chemical solutions as this in situ option only included costs for soil loosening, dolomite
and compost and their application, annual cultural practices (including inorganic N–P–K fertilization
in case of the cultivation of annual high yielding plants), and harvest.

5. Conclusions

Our results provided insights on the changes in the chemical properties and ecotoxicity and
on the microbial diversity and metal-resistance of the leachates from a Cu-contaminated soil, either
untreated or under aided phytomanagement. The adopted phytomanagement significantly reduced
the Cu in the soil leachates, the soil toxicity and the incidence of Cu-resistant bacteria, and also
led to an increase of Cyanobacteria, Proteobacteria, and Planctomyces phylogenetic groups, which
are generally plant beneficial and metal sensitive that tend to decrease in metal(loid) contaminated
soils. Overall, the results confirmed the potential of phytomanagement as an ecological remediation



Agronomy 2020, 10, 719 10 of 14

strategy. To our knowledge, this was the first study on the effects of aided phytostabilization on the
microbial communities of the soil leachate, a potential proxy for the soil solution, and we suggest that
further investigations should be conducted to assess the effects of phytomanagement on arbuscular
mycorrhizal as well as non-symbiotic fungal communities.
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Appendix A

Table A1. Main properties of the soil layers used to fill the lysimeters and main soil characteristics [38].

Soil Properties 0–30 cm Soil Layer 30–60 Soil Layer

Sand % 85.8 85.5
Silt% 8.3 11.2

Clay % 5.9 3.3
Organic matter (g/Kg) 16 5.42

C/N 17.2 8.63
CEC (cmol/Kg) 3.5 1.17

pH 7 4.04
As (mg/Kg) 9.8 4.7
Cd (mg/Kg) 0.12
Co (mg/Kg) <2 2.3
Cu (mg/Kg) 1110-1460 111-153
Cr (mg/Kg) 23 18.4
Fe (mg/Kg) 6090 7900
Mn (mg/Kg) 181 185
Ni (mg/Kg) 5 8
Pb (mg/Kg) 27
Tl (mg/Kg) 0.24
Zn (mg/Kg) 46 28.7

pCu2+ 7.66 5.12

pCu2+ = 3.20 + 1.47 pH – 1.84 log10 (total soil Cu).
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