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Abstract 12 

Accurate and timely observations of wheat phenology and, particularly, of heading date are instrumental 13 

for many scientific and technical domains such as wheat ecophysiology, crop breeding, crop 14 

management or precision agriculture. Visual annotation of the heading date in situ is a labour-intensive 15 

task that may become prohibitive in scientific and technical activities where high-throughput is needed. 16 

This study presents an automatic method to estimate wheat heading date from a series of daily images 17 

acquired by a fixed RGB camera in the field. A convolutional neural network (CNN) is trained to identify 18 
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the presence of spikes in small patches. The heading date is then estimated from the dynamics of the 19 

spike presence in the patches over time. The method is applied and validated over a large set of 47 20 

experimental sites located in different regions in France, covering three years with nine wheat cultivars. 21 

Results show that our method provides good estimates of the heading dates with a root mean square 22 

error close to 2 days when compared to the visual scoring from experts. It outperforms the predictions 23 

of a phenological model based on the ARCWHEAT crop model calibrated for our local conditions. The 24 

potentials and limits of the proposed methodology towards a possible operational implementation in 25 

agronomic applications and decision support systems are finally further discussed.  26 

Keywords 27 

Phenology, Internet of things for Agriculture, Convolutional Neural Networks, field sensors, phenology 28 

modelling 29 

1 Introduction 30 

Phenological observations are essential in agronomy, as crop management strategies (irrigation, 31 

fertilizing or crop protection) are planned considering plant development (Brown et al., 2005; 32 

Chmielewski, 2013). In wheat, the heading stage is one of the critical developmental phases as the plant 33 

becomes highly sensitive to abiotic stress – heat stress, frost, water constraints – with a strong impact on 34 

yield components (Slafer and Rawson, 1994). Several studies have quantified the effect of post-heading 35 

abiotic stress on yield (Ferris et al., 1998; Gooding et al., 2003; Wheeler et al., 1996) due to a significant 36 

decrease in the grain weight,, along with a fall in the number of grains per plant. More recently, Balla et 37 

al., (2019) analysed the possible impact of temperature on yield components at different development 38 

stages over a large wheat genotype panel, highlighting the high sensitivity of grain number to heat stress 39 

episodes around heading. Also, García et al., (2015) and Lobell and Ortiz-Monasterio, (2007) have shown 40 
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that the increase in minimum temperature during nights owing to changing climatic conditions 41 

accelerates the rate of crop development and reduces yield. 42 

The timing and duration of stress through wheat developmental phases are thus essential to understand 43 

the impact of environmental factors on yield (Sadras and Slafer, 2012). Wheat phenology is driven by 44 

several eco-physiological mechanisms involving the response to temperature, photoperiod and 45 

vernalization (Gate, 1995) that are regulated by complex genetic pathways (Guedira et al., 2016; Whittal 46 

et al., 2018). Phenology has been traditionally one of the most important traits used to genetically 47 

improve wheat adaptation, matching crop development – particularly reproductive and grain-filling 48 

phases – to the optimal growing conditions of a target environment (Foulkes et al., 2011; Slafer, 2012). 49 

Indeed, phenology constitutes, in wheat breeding programs, one of the main levers enabling to optimize 50 

assimilates partitioning while reducing the impact of adverse weather events such as heat stress and 51 

frost during the grain-filling stage (Camargo et al., 2016; Chapman et al., 2012; Reynolds et al., 2009).  52 

Accurate and timely observations of wheat phenology and, particularly, of heading date are, therefore, 53 

instrumental for many scientific and technical domains such as wheat ecophysiology, crop breeding, crop 54 

management or precision agriculture. Heading date is commonly scored visually in situ by operators that 55 

are frequently surveying the crops. It constitutes a labour-intensive task that requires skilled experts. For 56 

certain applications like high-throughput phenotyping in crop breeding programs on large genotype 57 

panels (Araus and Cairns, 2014; Cabrera-Bosquet et al., 2012) an accurate visual annotation of the 58 

heading date –with experts frequently visiting the field– can be difficult to achieve as the number of 59 

microplots increase geometrically. In other applications oriented towards crop management, 60 

phenological models may represent a valid alternative to in situ phenology observations (Bogard et al., 61 

2014; White et al., 2008; Zheng et al., 2012), provided that those models are calibrated for each specific 62 

genotypes. However, such genotype-specific calibration necessitates extensive phenology observations 63 

from field experiments (Wallach et al., 2019).  64 



4 
 

The recent development of field sensors and unmanned platforms with imaging capabilities –including 65 

aerial (UAVs) and ground vehicles (UGVs)– have opened new avenues to monitor automatically crops in 66 

near-real time (Baret et al., 2018; Comar et al., 2012; Jay et al., 2017; Madec et al., 2017; White and 67 

Conley, 2013; Yang et al., 2017). In parallel, the advances in computational resources and data science 68 

achieved in the last years have fostered a significant breakthrough in computer vision and has paved the 69 

way to implement advanced algorithms to extract relevant information from high spatial resolution 70 

imagery. Deep learning algorithms including convolutional neural network (CNN), have shown excellent 71 

performances for object recognition (LeCun et al., 2015). These capabilities have favoured their 72 

progressive adoption in the fields of agronomy and phenomics (Kamilaris and Prenafeta-Boldú, 2018; 73 

Singh et al., 2018). For instance, they have been successfully used to detect and count individual cereal 74 

heads from RGB images (Hasan et al., 2018; Lu et al., 2017; Madec et al., 2019) and LiDAR data 75 

(Malambo et al., 2019). Nevertheless, the potential of such algorithms to provide accurate, automatic in 76 

situ estimations of crop phenology remains, up to now, underexploited. The use of well-known 77 

capabilities of CNNs to detect plant organs on individual images to derive crop phenology from image 78 

series needs to be further explored. At the time of writing this article, only very few studies have 79 

attempted to do that. The work of Yalcin (2018) proposing a CNN-based method for the discrimination of 80 

phenological stages for several crops, including wheat, seems promising, but no results on the absolute 81 

accuracy of the method have been provided. More recently Desai et al., (2019) have developed a deep 82 

learning approach to estimate the heading date on rice, but it was only tested over a small number of 83 

situations, preventing from drawing general conclusions about its performance under operational 84 

conditions.  85 

The development of operational methods for automatic heading date detection using in situ images 86 

would enable to increase enormously the acquisition throughput at a reasonable cost. This would 87 
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represent an important contribution to the afore-mentioned scientific and technical domains, where 88 

frequent phenology observations are critical. 89 

In that context, the objective of this study is to present an automatic method to estimate wheat heading 90 

date from daily high-resolution images taken in the field from fixed cameras. The method developed rely 91 

on deep learning techniques: daily images are interpreted using a CNN classifier that detects the 92 

presence of wheat spikes in the image, and the dynamics of the presence of spikes along the season 93 

permits to determine the heading date. A major aspect that differentiates this study against the existing 94 

works on this subject is the use of an extensive dataset of observations used to validate the method 95 

proposed, which enables to discuss its possible implementation under operational conditions. The 96 

dataset comprises 47 field plots sown with several soft and durum wheat cultivars in different regions of 97 

France, where fixed cameras were installed, and actual heading dates were annotated by experts. The 98 

performance of our CNN-based method to estimate the actual heading date are also concurrently 99 

compared with those of a phenology model based on ARCWHEAT (Weir et al., 1984) and calibrated for 100 

local conditions. The robustness of our method and its potential operational implementation are 101 

discussed with emphasis on possible limitations–e.g. image quality issues, environmental conditions 102 

during image acquisition– that may impact the performances. 103 



6 
 

2 Materials and Methods 104 

2.1 Study sites 105 

 106 

Figure 1. Location of the 4 regions where field sensors installed during the 2017, 2018 and 2019 growing seasons. The graph 107 

indicates the average monthly temperatures in the period 1986-2018 observed in 4 near weather stations from INRA and Meteo 108 

france: St. Gilles (Gréoux-les-Bains), Gif-sur-Yvette (Boigneville, only since 1999), Erneville (St-Hilare-en-Wovre), and Fagnieres 109 

(Chalons-en-Champagne). 110 

This study was conducted during the years 2017, 2018 and 2019 in different commercial and 111 

experimental fields belonging to four contrasted agro-climatic regions around the following cities: 112 

Gréoux-les-Bains (43.8° N, 5.9° E) in the south-east of France, Boigneville (48.3° N 2.4° E) in the center of 113 

France; Chalons-en-Champagne (49.0° N, 4.4° E) and Saint-Hilaire-en-Woëvre (49.1° N, 5.7° E) in the 114 

north-east of France (Figure 1). 115 

The climate in Greoux-les-Bains is Mediterranean (Kottek et al., 2006), with a maximum average 116 

temperature of 20°C, 690 mm of rainfall. In Boigneville, the climate is temperate and humid, with a 117 

maximum average temperature of 15.3⁰C over the year and rainfall of 677 mm (Meteo France). The 118 



7 
 

climate in Chalons-en-Champagne is similar to that of Boigneville, whereas in Saint Hilaire-en-Wovre 119 

conditions are slightly colder, especially during winter (Figure 1), and more humid (average precipitation 120 

close to 1000 mm/year).  121 

Among these four sites, 24 field sensors equipped with RGB cameras (see 2.2) were installed in 122 

microplots with a size of 10 x 2 meters belonging to larger experimental fields. The remaining 23 sensors 123 

were installed in production plots, with a size similar to a commercial field (around 800 x 200 meters). 124 

Often, the production plots are subdivided in homogeneous units with different cultivars or agro 125 

management. In the sites at the north of France, production plots and microplots are sown with winter 126 

soft wheat (Triticum aestivum) cultivars Descartes, Oregrain, Fructidor, RGT Sacramento, Matheo and 127 

Rebelde. In Greoux-les-Bains, the winter durum wheat (Triticum durum) cultivars RGT Voilur, Anvergur 128 

and Toscadou were grown. A summary of the 47 sites considered is given in Table 1. Please refer to Table 129 

A in Appendix for a detailed description of the sites, their location and average temperature over the 130 

growing season. The field sensors were installed in relatively homogenous areas of the fields which 131 

provided daily information over a footprint of about 10m2 (see 2.2). During the installation, special 132 

attention was paid to orientate the camera field-of-view towards the centre of the microplot to prevent 133 

possible border effects. 134 

Table 1 Description of the distribution of the 47 sites across years and regions. The number of sites available each year per region 135 

and year is indicated along with the corresponding number of cultivars.  136 

Locations 

2017 2018 2019 

Sites Cultivars Sites Cultivars Sites Cultivars 

Gréoux-les-Bains - - 7 3 2 2 

Boigneville 8 1 12 3 12 3 

Chalons en Champagne  - - - - 3 1 
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Saint_Hilaire en Woëvre - - - - 3 1 

2.2 Acquisition of daily images of the canopy with IoTA systems 137 

The field observation systems installed in the 47 sites were developed by Bosch and Hiphen 138 

(www.hiphen-plant.com/our-solutions/iot-field-sensor) and are named IoTA (Internet of Things for 139 

Agriculture). They consist of a telescopic pole placed vertically and equipped with an RGB camera as well 140 

as meteorological sensors (Figure 2a). The RGB camera takes one image (Figure 2b) each day at solar 141 

noon, and automatically uploads it to a cloud storage system through a GSM network. The image 142 

dimensions are 1024 x 768 pixels and is recorded in PNG format. The camera was set up at a height of 143 

approximately 1m above the top of the crop (installed after emergence), with a 45° inclination angle 144 

oriented in a compass direction perpendicular to the row. In some of the fields of 2017 and 2018, the 145 

length of the pole was adjusted mid-growing campaign to ensure that the camera was always well above 146 

the plant canopy. In the 2019 campaign, the height of the pole was fixed at 1.5 m to avoid this mid-147 

campaign intervention. It has a field of view (FOV) of 55° x 41° providing a footprint of 10.8 m2. Because 148 

of the relatively large FOV, the ground resolution is non-uniform throughout the image, particularly in 149 

the vertical direction (Figure 2b).  150 
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    151 

Figure 2 a) The IoTA systems installed in a field. The top part inclined at 45° hosts the RGB camera. The cylinder attached to the 152 

vertical pole includes sensors to monitor the local air temperature and moisture. b) An example of a raw image. 153 

2.3 Heading date determined by experts  154 

The heading stage corresponds to the emergence of the developing spike from the flag leaf sheath. 155 

(Bonnett, 1936; Zadoks et al., 1974). In the field, the heading stage is identified according to the 156 

definition given by Zadoks et al., (1974): 50% stems with spikes, at least, half-emerged, corresponding to 157 

the phase code 54 of the Zadoks scale. For the 27 sites monitored in 2017 and 2018 (Table 1), an online 158 

questionnaire was prepared with IoTA images covering a 9 to 13 consecutive days period approximately 159 

centered on the heading date. A panel of 14 experts was asked to identify the reference heading date for 160 

all the sites by applying the definition of Zadoks et al., (1974) for heading stage: 50% stems with spikes at 161 

least half-emerged. The experts could view the images at their full resolution. Eight of the experts had 162 

more than 10 years of experience in working with wheat phenology and only four of them had less than 163 

two years of experience. The reference heading date for each of the 27 sites was considered as the 164 

average date of all the 14 experts. The standard deviation of the heading dates for each site was also 165 

calculated to quantify the variability of the expert replies. 166 

a) b) 
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In 2019, the actual heading dates were determined in situ by experts on all the 20 available sites (Table 167 

1). They followed the definition by Zadoks et al. (1974) and visited the fields every two or three days. 168 

Note that this reference heading date might be different from the one derived from the 2017-2018 169 

questionnaire since experts were scoring the heading date from images, not from direct observation of 170 

the crop in the field. 171 

2.4 Heading date estimation from IoTA images and CNN  172 

2.4.1 Image preparation 173 

To get a more uniform ground pixel size, each image was first cropped into 1024 x 384 pixels by 174 

removing the top region of the image where the crop-sensor distance is too large, resulting in blurred 175 

objects (Figure 2b). Then 14 overlapping patches of size 256 x 256 pixels were extracted from the 176 

cropped image. The overlap between patches was 50% in either vertical or horizontal directions to 177 

minimize possible border effects. Working with patches permits to benefit from the full resolution of the 178 

IoTA image while avoiding memory issues.  179 

2.4.2 Spikes Labelling 180 

The patches from the 27 sites observed during the 2017 and 2018 growing seasons were labelled into 181 

two classes: “spikes present” or “spikes absent”. This represents a total of 40,500 patches out of which 182 

17,000 were labelled as “spikes present” and 23,500 as “spikes absent”. All the patches belonging to 183 

images acquired until five days before the actual heading date determined by experts were automatically 184 

assigned to the “spikes absent” class. Similarly, the patches from the images acquired from five days 185 

after the actual heading date onwards were assigned to the “spikes present” class. Therefore, only those 186 

patches within a window of ±5 days around the actual heading date were visually attributed to their 187 

respective classes. Few patches with unclear assignation, such as emerging and sparse spikes were 188 
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excluded from the training dataset. A few examples belonging to the two classes can be found in Figure 189 

3. 190 

 191 

Figure 3 Samples extracted from patches belonging to the 9 wheat varieties monitored in our study. The patches were classified 192 

as ‘spikes present’ (top row) and ‘spikes absent’ (bottom row). 193 

2.4.3 Identifying the presence of wheat spikes with the ResNet50 194 

Wheat spikes were identified in the images using the ResNet50 (He et al., 2016), which obtained the best 195 

results in object detection at the ImageNet Large Scale Visual Recognition Challenge 2015 (Russakovsky 196 

et al., 2015). This network has a depth of 50 layers and uses residual blocks with identity mappings. The 197 

ResNet50 pre-trained on the ImageNet dataset which is available in the Keras Python deep learning 198 

library (Chollet, 2015) was used.  199 

We replaced the original top layers of the pre-trained ResNet50 by two fully connected layers with 200 

dimensions, respectively of 512 and 1 to build a binary classifier (spikes present/absent). The network 201 

was re-trained with the labelled image patches by fine-tuning the weights of the entire network with a 202 

low learning rate to identify only the high-level features which were relevant to detect spikes and classify 203 

the patches as “spikes present” or “spikes absent”. This strategy, called transfer learning, performs 204 

generally better than training the full network from scratch (Lee et al., 2015; Tajbakhsh et al., 2016). The 205 
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training dataset comprises the 27 sites available in 2017 and 2018. First-order data augmentation was 206 

applied to the patches: translation, rotation, zoom, flip and changes in brightness levels. This improves 207 

the generalization capacity of the neural network and increases the size of the training set at marginal 208 

cost. Two different training and validation schemes were followed: 209 

• Twofold-cross validation on 2017 and 2018 sites: the 27 sites available in 2017 and 2018 were 210 

divided randomly into folds of 13 and 14 sites with approximately 19500 and 21000 labelled 211 

patches in each fold. ResNet50 was re-trained on each of the two folds independently and 212 

validated with the other one. 213 

• Independent validation on 2019 sites: In this second scheme, a unique set of the 27 sites 214 

corresponding to 40500 patches from the 2017 and 2018 sites is used for fine-tuning ResNet50. 215 

The purpose of this scheme is to mimic the operational conditions when CNNs are trained with 216 

data from the previous years: the CNN is trained on data acquired in years different from those 217 

used for the validation. 218 

In both schemes, 20% of the data were held back for performance testing at the end of each epoch of 219 

the ResNet50 re-training. The “binary cross entropy loss” available in the Keras library was used as the 220 

loss function. To avoid over-fitting, we reduced the learning rate by a factor of 0.5 when the validation 221 

mean absolute error did not improve after three consecutive epochs and stopped the training when the 222 

validation mean absolute error did not improve after five consecutive epochs. The pertinence of the 223 

ResNet50 network was further evaluated using Gradient-weighted Class Activation Maps (Grad-CAM, 224 

developed by Selvaraju et al. , 2016). These maps highlight the regions that contribute to the output 225 

score using the gradient values input to the final convolutional layer (shown in Figure 6 and Figure 8). 226 
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2.4.4 Heading date estimation 227 

The heading date is determined from the dynamics of the presence of spikes in the images. For each day, 228 

�, the fraction of patches per image classified by the CNN as ‘spikes present’ , ��������, is calculated 229 

along the growing season (Figure 4). It provides a fair approximation of the Zadoks definition followed by 230 

the experts: the proportion of patches with emerged spikes in an image is a reasonable proxy to the 231 

proportion of stems with spikes emerged in the image. Then, a three-parameter logistic function is fitted 232 

to the time-series of �������� for every site: 233 

�������� 	 

���
���
���  Eq. 1 

where � is the maximum value of ��������, fixed by construction to � 	 1.0 (Figure 4). The maximum 234 

growth rate, �, and �� are estimated using the Scipy Python package (Jones et al., 2001). Parameter �� 235 

represents the date when 50% of the patches have spikes. 236 

 237 

Figure 4 Typical dynamics of the fraction of patches with spikes (����� 		shown as green dots). The logistic curve fitted to the 238 

dynamics of ����� is shown using dashed blue line. The heading date estimated from adjusted parameter �� is represented by 239 

the vertical blue line. 240 
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2.5 Heading date from ARCWHEAT model 241 

A version of the phenology module of ARCWHEAT (Weir et al., 1984) adapted to the French local 242 

conditions by Gate (1995) was used. It is based on cumulated temperature with the effects of 243 

vernalization and photoperiod (Gouache et al., 2012). The model was run with actual daily temperatures 244 

collected by the Meteo France weather stations that are the closest to the sites in the period 2016-2019. 245 

Cultivar-specific parameters for vernalization and photoperiod corresponding to the nine cultivars 246 

observed in this study were adjusted using optimization algorithms based on independent field 247 

experiments  (Thépot, 2014). 248 

2.6 Performance metrics 249 

The accuracy of the CNN classification was evaluated based on the overall accuracy (OA): 250 

 �� 	 �����
�        Eq. 2 251 

where �� and �  are, respectively, the number of patches correctly classified as “spikes present” (true 252 

positive) and “spikes absent” (true negative); and ! is the total number of patches in the test dataset. 253 

The root mean squared error (RMSE) was computed to quantify the errors between estimated and 254 

observed heading dates: 255 

"#$% 	 &∑ �()*+(),�-./0
1

�   Eq. 3 

where 234 is the reference heading date obtained from experts, 23� is the heading date estimated by 256 

the indirect method (CNNs or phenology model) and ! is the number of sites used. 257 
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3 Results 258 

3.1 Accuracy of heading date estimates from the CNN model 259 

The automatic method proposed estimated the heading date with a RMSE close to 2.0 days (Figure 5), as 260 

compared to the reference dates given by the experts. Moreover, the errors when the CNN is trained 261 

and validated with images from years 2017 and 2018 using a twofold cross-validation (Figure 5a) are 262 

similar to those obtained when validating the method against a completely independent set of images 263 

from year 2019 (Figure 5b). Moreover, the coefficient of determination R2 is very close to 1 especially in 264 

2019, where the variability in the time to heading among the plots monitored is large. In that year, 265 

heading was observed about 180 days after sowing for two durum wheat plots (varieties Anvergur and 266 

RGT Voilur) at Greoux-les-Bains, more than 20 days earlier than both varieties in 2018. This is explained 267 

by higher seasonal temperatures in the 2019 season compared to the 2018 season (seasonal average of 268 

13.3 °C in 2019, against 10.1°C in 2018, see details in the Appendix Table A).  269 

 270 

Figure 5 Comparison of reference heading dates and those estimated by our CNN-based method. a) 2017 and 2018, using a 271 

twofold cross-validation for years 2017 and 2018; b) independent validation over year 2019. Horizontal error bars represent the 272 

a) b) 
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standard deviation of the expert annotations for each site in 2017 and 2018. The dotted black lines represent the standard 273 

deviation (1.5 days) between experts when identifying the heading dates from photographs.  274 

For two sites at Boigneville monitored in 2018 (Figure 5a), the CNN estimations show discrepancies 275 

reaching up to 6 days with the reference dates from the experts. The dynamics of spike appearance for 276 

these two sites are shown in Figure 6 along with the GradCAM (Gradient Class Activation Maps) which 277 

highlights the regions that influence the CNN prediction. In one of the sites (Figure 6a) the 278 

misclassification was due to the poor quality of the images: leaf blades appear bluish because of a poor 279 

white balance camera setup that was fixed only after day 203 (Figure 6a). These quality issues introduced 280 

substantial artifacts in the time-series that impacted the logistic curve fit. In the second site (Figure 6b), 281 

the water droplets on leaves observed on days 195 and 196 after sowing were wrongly identified by the 282 

CNN as spikes. Although the CNN seems to slightly over-detect the presence of spikes in this site (Figure 283 

6b) even when no droplets were observed, the errors due to presence of droplets contributed to 284 

increase substantially the discrepancies against observed dates. Besides these two specific cases, the 285 

issues of CNN misclassification were marginal over the whole dataset. The cross-validation conducted 286 

with images from 2017 and 2018 revealed an overall accuracy of 98.45% for classifying individual patches 287 

as spikes present/absent. Moreover, the classification errors observed did not exhibit any systematic 288 

bias.  289 
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 290 

Figure 6 Dynamics of ����� for two sites in Boigneville in 2018 where large errors on heading date estimations by the CNN 291 

method were observed due to non-optimal image quality (a); image misclassification due to the presence of water droplets (b).  292 

3.2 Accuracy of heading date prediction by the ARCWHEAT phenology model  293 

The ARCWHEAT crop model, adapted to French conditions had an RMSE of 4.1 days to predict the 294 

heading date for the 47 sites monitored from 2017 to 2019 (Figure 7). This represents twice the error 295 

yielded by our CNN based method. A similar study conducted by Bogard et al. (2014), which evaluated 296 

the use of phenology models specifically calibrated for different cultivars to predict heading dates, 297 

reported errors comparable to those given by ARCWHEAT in this study. Other works where phenology 298 

models are applied at the regional or continental scale with no cultivar-specific calibration show even 299 

larger discrepancies reaching up to 20 days (McMaster and Smika, 1988; Ceglar et al., 2019).  300 

Although the ARCWHEAT model is capable to simulate the variability of the heading date among sites 301 

and years ("5=0.92), it clearly underperformed when compared to the automatic method based on CNN. 302 

Only 37% of the sites were within the ± 1.5 days interval that represent the variability of the heading 303 

dates determined by the experts. Moreover the discrepancies between the model predictions and the 304 

a) b) 
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observed heading dates were above 10 days for two sites (Figure 7), which is not acceptable for precision 305 

agriculture or phenotyping applications. 306 

 307 

Figure 7 A comparison between the heading date predictions from the crop phenology model with the reference heading date for 308 

all the 47 sites in our study from the 3 growing seasons. The dashed lines around the 1:1 line corresponds to the 1.5 days interval. 309 

To ensure that all the 47 points are visible on the graph despite the overlap, a negligible random noise was added while plotting 310 

the points. 311 
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4 Discussion 312 

4.1 Suitability of the automatic CNN-based methodology to estimate wheat heading 313 

date in operational applications 314 

Our proposed CNN based method estimated heading dates with about 2 days uncertainties as evaluated 315 

over the 47 sites spanning across several regions, years and cultivars. The performances of the method 316 

proposed are considered satisfactory since the errors are close to the standard deviation of the expert 317 

panel replies provided for years 2017 and 2018. Moreover, this is close to the expected accuracy of an 318 

expert visiting the fields every two or three days to annotate crop development stage. The recent study 319 

of Desai et al., (2019) reported estimation errors between one and two days using also a CNN-based 320 

approach for paddy rice heading date, but the number of observations and sites were substantially 321 

smaller than in our study. Further, among the 20 sites monitored in the 2019 validation dataset, 6 of 322 

them were sown with cultivars that were not included in the training set of the CNN, indicating that the 323 

method is resistant to possible morphological differences among spikes between cultivars. The 324 

robustness of our method is essentially due to three factors: the reliability of the ResNet50 CNN to 325 

identify the presence of spikes in the patches; the statistics computed across patches within each image 326 

that smooth out individual errors; and the use of a logistic fit to determine the heading date from the 327 

daily statistics. 328 

The ResNet50 CNN was used here to classify the patches with spikes. This approach was preferred to 329 

directly identifying spikes in the image and counting them (Madec et al., 2019). Using CNN for image 330 

classification increases the efficiency with which the training dataset is generated. Indeed, assigning 331 

individual images to the spikes present/absent classes is relatively straightforward: it permitted to 332 

generate a training dataset of more than 40,000 patches that contributed to improve the robustness of 333 

ResNet50. By contrast, annotating images for spikes identification or spikes counting is time-consuming. 334 
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Although CNN-based classification provides much less information than object counting/detection 335 

algorithms, the results indicate that this approach is sufficient for heading date estimation. In Figure 8, 336 

the first image (top row) spikes are not yet emerged and the Grad-CAM heat map shows low confidence, 337 

whereas in the second one (bottom row) the presence of emerged spikes is obvious, and the probability 338 

increases up to 0.82. ResNet50 may only detect the presence of a proportion of the spikes present in the 339 

patch, but this appears sufficient to correctly classify it. This makes the classification approach more 340 

robust for phenology identification as compared to the approaches based on object detection or 341 

counting by regression, where the variability of spike size and shape among cultivars or environmental 342 

conditions during image acquisition may severely affect the performances (Park et al., 2010). The 343 

presence of water droplets induced only a moderate bias in heading date estimation in two of the sites 344 

(Figure 6b). Images with droplets represent less than 1% of the training dataset cases. That was probably 345 

not sufficient to teach the CNN to distinguish between droplets and spikes. These issues can only be 346 

solved by increasing the variability by including more images taken under diverse environmental 347 

conditions.  348 
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 349 

Figure 8 Patches extracted from two images of the same IoTA system and acquired on the reference heading date (top) and one 350 

day after (bottom) with their corresponding class activation maps. The confidence score provided by the CNN towards the 351 

presence of spikes is shown along with the Grad-CAM heat map which shows the areas which influence the CNN output 352 

The logistic function smooths the daily values of ��������, and reduces the influence of possible 353 

unsystematic classification errors on the heading date estimation. Furthermore, to minimize the possible 354 

impact of classification errors, in operational conditions it would be possible to prevent unrealistic 355 

estimations by imposing some constraints on the logistic model based on prior knowledge of the heading 356 

date: 357 

�������� 	 0.0					6�						� < ��4894 − ;
�������� 	 1.0					6�						� > ��4894 + ;   Eq. 4 358 

With ��4894 being the prior value of the heading date derived from previous years observations or from 359 

phenological models, and ; being the associated maximum error. Anyhow, the use of a logistic function 360 

fit makes difficult to estimate the heading date in real time. The correct function fit is only possible a 361 

posteriori, i.e. when some images where �������� 	 1.0	 have been already observed, which may only 362 
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happen 5 to 10 days after the actual heading date. This may limit the use of the method proposed on 363 

operational applications of crop management requiring a rapid assessment of the heading date. 364 

Compared to a phenological model calibrated under local conditions, our CNN-based method provides 365 

better accuracy while not requiring ancillary information (e.g. sowing dates, variety-specific model 366 

parameters) or daily weather data. This is an important advantage, since the accuracy achieved by 367 

ARCWHEAT over the 47 sites monitored in this study (RMSE= 4 days) was mainly due to the cultivar-368 

specific calibration of model parameters. However, such a cultivar-specific calibration is time-consuming 369 

and requires frequent observations throughout the crop cycle, repeated over several locations and years 370 

(Cabelguenne et al., 1990; Jégo et al., 2010). Moreover, phenological models largely rely on the quality of 371 

meteorological variables, which sometimes are interpolated from weather stations that are far from the 372 

sites to be monitored without accounting for possible microclimatic effects (Joly et al., 2011; Monestiez 373 

et al., 2001). In any case, mechanistic modelling of plant phenology remains always necessary on 374 

prospective studies and to predict cultivar performance under a range of climatic scenarios. It also 375 

constitutes an attractive alternative for heading date estimation for some applications where the 376 

acquisition of high-throughput canopy images is not feasible. Phenological models can also largely 377 

benefit from the method developed in this paper: the use of IoTA field systems and deep learning 378 

approaches would substantially reduce the cost of calibration experiments and would permit also to 379 

increase the environmental variability of the field trials giving access to frequent observations from 380 

remote locations. 381 

Our CNN based method constitutes a robust and cost-efficient approach for heading date estimation for 382 

operational applications when daily images of the canopy are available, as it is the case for some high-383 

throughput phenotyping platforms. In those platforms, vectors such as unmanned ground vehicles and 384 

hand-pushed carts are often used to frequently monitor the plant development and characterize 385 

biophysical traits of the different cultivars using optical images (Deery et al., 2014; Mueller-Sim et al., 386 
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2017; White and Conley, 2013). In such applications, the proposed automatic method showcased in this 387 

study could be directly integrated into other data processing pipelines at almost no cost to estimate 388 

heading date from the existing RGB images. 389 

In agronomic or breeding applications where the phenology on distant fields need to be monitored –e.g. 390 

regional or national networks of agricultural fields– the whole system presented, including the fixed 391 

camera and the CNN-based method to estimate heading dates, may present important advantages in 392 

terms of costs compared to in situ visual annotation. The initial investment in each camera (including the 393 

pole, batteries and the hardware for data transmission) raises up to, approximately, 650 €; and the 394 

yearly costs of system maintenance and real-time data transmission by GSM is about 150 € per camera. 395 

The cost-efficiency –and the benefits in terms of environmental impact– of a system based on network 396 

of cameras compared to expert visits has to be determined case by case, and will largely depend on the 397 

distance between the fields to be monitored: the larger the network is, the more efficient remote 398 

observations are compared to field visits. 399 
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4.2 Subjectivity of visual annotations of the heading date from experts using RGB 400 

images 401 

The visual determination of heading date is a task that includes some degree of subjectivity. For the 27 402 

sites monitored in 2017 and 2018, the panel of 14 experts provided different estimates of the heading 403 

dates after inspecting visually the IoTA images. In most of the cases, the panel members selected 5 to 7 404 

different dates per site out of those proposed in the questionnaire, although they were asked to follow 405 

the same definition of the heading date (Zadoks et al. 1974). The distribution of the deviations between 406 

individual replies and the average date for each site was roughly Gaussian with a standard deviation of 407 

1.5 days (Figure 9), very close to the RMSE of our CNN based method proposed in this paper.  408 

The subjectivity when determining visually heading date from images is obviously higher compared to in 409 

situ scoring. Issues regarding the image quality exacerbated the discrepancies among experts. According 410 

to the feedback provided by the panel, image saturation and blur due to a suboptimal camera setup 411 

made difficult to see the emergence of spikes in some of the images. Further, spikes were harder to 412 

identify in images taken under direct illumination conditions due to low image contrast, as well as for 413 

cultivars with awns.  414 

The variability of expert replies evaluated in the 27 sites constitutes a good benchmark for our CNN 415 

based method, as image quality issues may also affect the identification of spikes by ResNet50 when 416 

classifying patches. The similarity between the 2 days RMSE associated to our CNN based method with 417 

the 1.5 days confidence interval of the expert date demonstrates that the performances of our CNN 418 

based method can be considered comparable to the expert reply when observing the same images. 419 
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 420 

Figure 9 Distribution of the difference in days between the individual heading date identified by the experts and the mean 421 

heading date value. 422 

5 Conclusion 423 

In this study, we propose a CNN based method to estimate the heading date from daily images acquired 424 

over wheat crops using an RGB camera fixed in the field. Images are processed per patch based on a 425 

binary CNN-classifier to construct the dynamics of spikes appearance. Our method is easy to implement 426 

since the labelling of patches is not time-consuming as compared to individual object annotation 427 

required for other CNN models used for object identification or counting. The reliability of the CNN-428 

classifier to identify the presence of emerged spikes was marginally affected by the illumination 429 

conditions and cultivar diversity, since the training dataset included images acquired under diverse 430 

environmental conditions. Our method achieved satisfactory performances with RMSE≈2.0 days, which is 431 

close to the uncertainties of expert annotations, and substantially better than phenological models 432 

specifically calibrated for the cultivars monitored.  433 
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The proven robustness of the proposed method suggests a strong potential for cost-efficient operational 434 

applications in the field of phenotyping and agronomic applications. However, our method is limited by 435 

the image footprint close to 5 m² if only the bottom half of the image is used, as done in our study. 436 

However, the good consistency with expert observations taken over a larger sampling area demonstrates 437 

that our restricted sampling was sufficient. Nevertheless, the representativeness of such small footprint 438 

estimations to characterize phenology over large and heterogenous fields remains an open question for 439 

future works. 440 

This method has been developed using a camera looking to the crop in a fixed position, but a similar 441 

approach could be transposed to time series of images from other vectors used in phenotyping 442 

experiments, such as unmanned ground and aerial vehicles, providing that the revisit time and resolution 443 

are sufficient. Further, the method could be adapted to identify other crop development stages 444 

associated with the identification of certain organs, such as the appearance of anthers for wheat to date 445 

flowering, or the appearance of tassels for the male flowering in maize. 446 
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Appendix 634 

Table A Description of the 47 sites considered in our study over 3 growing seasons and 9 different varieties of wheat 635 

Field 

Id 

Coordinates Year 

Mean 

Seasonal 

Temperature 

Oct to July 

(°C) 

Growing 

Degree 

Days °C 

(sowing to 

heading) 

Heading 

date 

Variety 

Sowing 

date 

Harvest 

date 

Comments 

D-D1 48.322452, 

2.383738 
2017 

11.43 1518.15 17-05-2017 
Descartes 20-10-2016 - 

Experimental 

plots 

D-D2 48.322483, 

2.383812 
2017 

11.43 1518.15 16-05-2017 
Descartes 20-10-2016 - 

D-D3 48.321520, 

2.382034 
2017 

11.43 1518.15 17-05-2017 
Descartes 20-10-2016 - 

D-I1 48.321570, 

2.382026 
2017 

11.43 1518.15 17-05-2017 
Descartes 20-10-2016 - 

D-I2 48.321530, 

2.383126 
2017 

11.43 1518.15 16-05-2017 
Descartes 20-10-2016 - 

D-I3 48.322499, 

2.383748 
2017 

11.43 1518.15 17-05-2017 
Descartes 20-10-2016 - 

D-S1 48.320248, 

2.379639 
2017 

11.43 1518.15 18-05-2017 
Descartes 20-10-2016 - 

D-S2 48.320221, 

2.379579 
2017 

11.43 1518.15 19-05-2017 
Descartes 20-10-2016 - 
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E-A 44.238959, 

5.928383 
2018 

7.45 1612.904 11-05-2018 
RGT Voilur 25-10-2017 - 

Production 

plots 

E-ME 44.261415, 

5.870530 
2018 

8.61 1841.848 06-05-2018 

Anvergur 
04-10-2017 - 

E-MO 44.262088, 

5.869253 
2018 

8.61 1894.37 09-05-2018 

Anvergur 
04-10-2017 - 

E-MN 43.766323, 

6.098798 
2018 

10.08 1780.29 17-05-2018 

Toscadou 
10-10-2017 - 

E-MS 43.765653, 

6.100184 
2018 

10.15 1754.06 14-05-2018 

Toscadou 
10-10-2017 - 

E-S 43.812474, 

5.772345 
2018 

11.22 1620.32 09-05-2018 

RGT Voilur 
22-10-2017 - 

E-V 43.791706, 

6.120393 
2018 

10.08 1878.21 14-05-2018 

Toscadou 
10-10-2017 

- 

A-201 48.323864, 

2.378989 
2018 

10.06 1586.40 11-05-2018 

Oregrain 
16-10-2017 10-07-2018 

Experimental 

plots with 

different 

nitrogen 

management 

A-207 48.348859, 

2.432

189 

2018 

10.06 1575.05 10-05-2018 

Oregrain 

16-10-2017 10-07-2018 

A-210 48.345231, 

2.432945 
2018 

10.06 1613.05 13-05-2018 

Oregrain 
16-10-2017 10-07-2018 

A-301 48.349030, 

2.432

504 

2018 

10.06 1586.40 11-05-2018 

Oregrain 

16-10-2017 10-07-2018 

A-305 48.323589, 

2.378951 
2018 

10.06 1601.60 12-05-2018 

Oregrain 
16-10-2017 10-07-2018 
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A-308 48.347419, 

2.43389 
2018 

10.06 1586.40 11-05-2018 

Oregrain 
16-10-2017 10-07-2018 

A-310 48.344959, 

2.432586 
2018 

10.06 1613.05 13-05-2018 

Oregrain 
16-10-2017 10-07-2018 

22-DS 48.325583, 

2.386405 
2018 

10.06 1624.20 14-05-2018 

Fructidor 
20-10-2017 

09-07-2018 

Production 

plots 

22-SS 48.324231, 

2.385779 
2018 

10.06 1639.85 15-05-2018 

Fructidor 
20-10-2017 

09-07-2018 

331-

MS 48.321029, 

2.384333 

2018 

10.06 1613.05 13-05-2018 RGT 

Sacramen

to 

20-10-2017 

09-07-2018 

331-

SS1 48.319074, 

2.380753 

2018 

10.06 1601.60 12-05-2018 RGT 

Sacramen

to 

20-10-2017 

09-07-2018 

331-

SS2 48.319046, 

2.380693 

2018 

10.06 1601.60 12-05-2018 RGT 

Sacramen

to 

20-10-2017 

09-07-2018 

SI-1 49.073911, 

5.704641 
2019 

8.80 1582.76 27-05-2019 

Fructidor 
14-10-2018 

-  

SI-2 49.073735, 

5.704535 

2019 8.80 1582.76 27-05-2019 

Fructidor 

14-10-2018 - 

SI-3 49.074086, 

5.704128 

2019 8.80 1582.76 27-05-2019 

Fructidor 

14-10-2018 - 

C-B1 48.958538, 

4.253838 

2019 9.48 1671.19 23-05-2019 

Matheo 
14-10-2018 

-  

C-B2 48.958576, 2019 9.48 1671.19 23-05-2019 Matheo 14-10-2018 - 
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4.253507 

C-B3 48.95826, 

4.253713 
2019 

9.48 1671.19 23-05-2019 

Matheo 

14-10-2018 - 

T-217 48.323273, 

2.379553 

2019 9.62 1529.25 16-05-2019 

Oregrain 
23-10-2018 

- 

Experimental 

plots with 

different 

nitrogen 

management 

T-205 48.323624, 

2.379038 

2019 9.62 1529.25 16-05-2019 

Oregrain 

23-10-2018 - 

T-202 48.323761, 

2.378927 

2019 9.62 1543.0 17-05-2019 

Oregrain 

23-10-2018 - 

T-305 48.323589, 

2.378951 

2019 9.62 1529.25 16-05-2019 

Oregrain 

23-10-2018 - 

T-201 48.323864, 

2.378989 
2019 

9.62 1557.70 18-05-2019 

Oregrain 

23-10-2018 - 

T-110 48.323586, 

2.379289 

2019 9.62 1529.25 16-05-2019 

Oregrain 

23-10-2018 - 

332-DS 48.32201, 

2.383564 

2019 9.62 1518.65 16-05-2019 

Rebelde 
24-10-2018 

- 

Production 

plots 

332-SS 48.319752, 

2.37894 

2019 9.62 1558.70 19-05-2019 

Rebelde 

24-10-2018 - 

332-

MS 

48.320652, 

2.381057 

2019 9.62 1558.70 19-05-2019 

Rebelde 

24-10-2018 - 

411-SS 48.317192, 

2.387024 

2019 9.62 1570.45 27-05-2019 

Fructidor 
06-11-2018 

- 

411-DS 48.318287, 

2.388875 

2019 9.62 1553.5 26-05-2019 

Fructidor 

06-11-2018 - 

411- 48.316154, 2019 9.62 1570.45 27-05-2019 Fructidor 06-11-2018 - 
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MS 2.384733 

E-F1 43.710176, 

4.534401 

2019 13.31 1854.88 21-04-2019 

RGT Voilur 
25-10-2018 

- 

E-M1 43.843360, 

4.442453 

2019 13.12 1874.5 22-04-2019 

Anvergur 
25-10-2018 

- 
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