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E N V I R O N M E N T A L  S T U D I E S

Long-term (1990–2019) monitoring of forest cover 
changes in the humid tropics
C. Vancutsem1*, F. Achard1, J.-F. Pekel1, G. Vieilledent1,2,3,4, S. Carboni5, D. Simonetti1, 
J. Gallego1, L. E. O. C. Aragão6, R. Nasi7

Accurate characterization of tropical moist forest changes is needed to support conservation policies and to 
quantify their contribution to global carbon fluxes more effectively. We document, at pantropical scale, the ex-
tent and changes (degradation, deforestation, and recovery) of these forests over the past three decades. We 
estimate that 17% of tropical moist forests have disappeared since 1990 with a remaining area of 1071 million hect-
ares in 2019, from which 10% are degraded. Our study underlines the importance of the degradation process in 
these ecosystems, in particular, as a precursor of deforestation, and in the recent increase in tropical moist forest 
disturbances (natural and anthropogenic degradation or deforestation). Without a reduction of the present dis-
turbance rates, undisturbed forests will disappear entirely in large tropical humid regions by 2050. Our study 
suggests that reinforcing actions are needed to prevent the initial degradation that leads to forest clearance in 
45% of the cases.

INTRODUCTION
Tropical moist forests (TMF) have immense environmental value. 
They play an important role in biodiversity conservation, terrestrial 
carbon cycle, hydrological regimes, indigenous population subsistence, 
and human health (1–5). They are increasingly recognized as an 
essential element of any strategy to mitigate climate change (6, 7). 
Deforestation and degradation compromise the functioning of trop-
ical forests as an ecosystem, leading to biodiversity loss (1, 4, 5, 8, 9) 
and reduced carbon storage capacity (10–17). Deforestation and frag-
mentation are increasing the risk of viral disease outbreaks (18–20).

For human well-being, it is a major challenge and shared re-
sponsibility to achieve sustainable economic growth and ensure 
conservation of the remaining TMF. A consistent, accurate, and geo-
graphically explicit characterization of long-term disturbances at the 
pantropical scale is a prerequisite for coherent territorial planning 
to support the Sustainable Development Goals and the Nationally 
Determined Contributions of the Paris Agreement (2015). Advances 
in remote sensing, cloud computing facilities, and free access to the 
Landsat satellite archive (21–23) enable the systematic monitoring 
and consistent dynamic characterization of the entire TMF over a 
long period. Global maps have been derived to quantify tree cover 
loss since 2000 (24–25) and to identify remaining intact forest land-
scapes (17). However, detailed spatial information about the long-
term cover changes of TMFs, and, particularly, on forest degradation 
and postdeforestation recovery, is still lacking. These data are needed 
to accurately estimate the carbon loss associated with forest disturbances 
(2, 13, 15) and to assess their impact on biodiversity (5, 8).

RESULTS AND DISCUSSION
Here, we provide unprecedented information through wall-to-wall 
mapping of TMF cover changes over a long period (January 1990 

to December 2019) with Landsat imagery at 0.09-ha resolution 
(pixel size of 30  m by 30 m), which is freely available from 
https://forobs.jrc.ec.europa.eu/TMF/ (see Materials and Methods). 
A description of the forest types included in the TMF is provided 
in the “Study area and forest types” section. This validated dataset 
depicts the TMF extent, the related disturbances (natural and an-
thropogenic degradation or deforestation), and the postdeforesta-
tion recovery on an annual basis over the past three decades (see 
Supplementary Text on annual change dataset, as well as fig. S1). 
One major innovation is the characterization of the sequential dy-
namics of changes by providing transition stages from the initial 
observation period to the end of 2019, i.e., undisturbed forest, de-
graded forest, forest regrowth, deforested land, conversion to plan-
tations, conversion to water, afforestation, and changes within the 
mangroves (Figs. 1 and 2 and see Supplementary Text on transition 
map and figs. S2 to S7), as well as the timing (dates and duration), 
recurrence, and intensity of each disturbance.

Although no ecosystem may be considered truly undisturbed, 
as some degree of human impact is present everywhere (26), we 
define an undisturbed TMF as a closed evergreen or semiever-
green forest without any disturbance observed over the full Landsat 
historical dataset (see the “Study area and forest types” section). 
Consequently, our map baseline of undisturbed forests may include 
old secondary forests or forests that have been degraded in years 
before the start of the Landsat archive. This is because we do not 
have detailed spatial data before the observation period of existing 
satellite imagery.

At the pantropical scale, the occurrence and extent of forest cover 
degradation are documented on an annual basis, adding to defor-
estation data. We define forest degradation as a disturbance in the 
tree cover canopy that is visible from space over a short time period 
(less than 2.5 years), leading to a loss of biodiversity and/or carbon 
storage. The degraded pixel remains forested land (covered by ex-
isting or regrowing trees), whereas deforestation leads to the long-
term (visible more than 2.5 years) conversion into nonforested land. 
The detection of the degradation has been achieved through the 
analysis of each individual valid observation of the Landsat archive 
(see the “Data” and “Mapping method” sections), making it possi-
ble to capture short-duration disturbances, such as selective logging 

1European Commission, Joint Research Centre, Via E. Fermi 2749–TP 261, I-21027 
Ispra (VA), Italy. 2CIRAD, UMR AMAP, F-34398 Montpellier, France. 3CIRAD, Forêts et 
Sociétés, F-34398 Montpellier, France. 4AMAP, Univ Montpellier, CIRAD, CNRS, 
INRAE, IRD, Montpellier, France. 5GFT Italia Srl, Via Sile 18, Milan, Italy. 6National 
Institute for Space Research (INPE), São José dos Campos, Brazil. 7Center for Inter-
national Forestry Research (CIFOR), Bogor, Indonesia.
*Corresponding author. Email: christelle.vancutsem@gmail.com

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

 on M
arch 9, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

https://forobs.jrc.ec.europa.eu/TMF/
mailto:christelle.vancutsem@gmail.com
http://advances.sciencemag.org/


Vancutsem et al., Sci. Adv. 2021; 7 : eabe1603     5 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 21

Fig. 1. Remaining TMFs. Map of TMFs remaining in January 2020.
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(Fig. 2F and fig. S3), fires (Fig. 2B), and unusual weather events 
(hurricanes, droughts, and blowdown) (fig. S7).

The accuracy of the disturbance mapping is 91.4%. Uncertain-
ties in the area estimates were quantified on the basis of a sample-
based reference in accordance with the latest statistical practices (27), 
indicating an underestimation of the forest disturbance areas by 11.8% 
(representing 38.4 million ha, with 15 million ha having a confidence 
interval of 95%) (see the “Validation” section and Supplementary 
Text on validation, figs. S8 to S10, and tables S1 to S4).

Main results on degradation
Analysis of the yearly dynamics of TMF disturbances (deforestation 
or degradation that can have a natural or anthropogenic cause) over 
the past 30 years underlines the importance of the degradation pro-
cess in TMF ecosystems, with the following key outcomes (see the 
“Trend analysis” section, Tables 1 to 10, and fig. S11):

1) Over the past three decades, 218.7 million ha of TMF has 
disappeared, and 106.5 million ha is in a degraded state (Tables 2 
and 10). This represents 10% of the 1070.9 million ha of forest area 
remaining in January 2020. Degraded forests account for 33% of 
the observed changes in forest cover (i.e., from total changes includ-
ing deforested land and forest regrowth) with high variability be-
tween regions and countries, ranging from 96% in Venezuela, 74% 
in Gabon, and 69% in Papua New Guinea through to 21% in Brazil 
and Madagascar, and 13% in Cambodia (table S6). As much as 
40.7% of the degraded forests are in Asia-Oceania (compared with 
36.9% in Latin America and 22.3% in Africa) (Table 10).

2) About 84.5% of the degraded forests (i.e., 90 million ha) is 
attributable to short-term disturbances (observed for less than 
1 year and mostly due to selective logging, natural events, and light-
impact fires), of which 30 million ha has been degraded two or three 
times over the past 30 years (observed each time over a short period). 

Fig. 2. Illustrations of the transition map. Sample patterns of forest cover disturbances (deforestation and degradation) during the period 1990–2019: (A) Remaining 
mangroves and related changes in Guinea-Bissau (14.9°W, 11.1°N), (B) fires in the Mato Grosso province of Brazil (53.8°W, 13°S), (C) recent deforestation in Colombia 
(74.4°W, 0.7°N), (D) logging in Mato Grosso (54.5°W, 12°S), (E) deforestation and degradation caused by the railway in Cameroon (13.4°E, 5.8°N), (F) recent selective logging 
in the Ouésso region of the Republic of Congo (15.7°E, 1.4°N), (G) deforestation for the creation of a dam in Malaysia (113.8°E, 2.4°S), (H) massive deforestation in Cambodia 
(105.6°E, 12.7°N), and (I) commodities in the Riau province of Indonesia (102°E, 0.4°N). The size of each box is 20 km by 20 km.
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Table 1. Areas (in million hectares) of undisturbed TMFs for the years 1990, 1995, 2000, 2005, 2010, 2015, and 2020 (on 1 January) by subregion and 
continent and relative decline (in percentage) over intervals of 30 years (1990–2019) and 10 years (1990–1999, 2000–2009, and 2010–2019). The values 
appearing in italic indicate those derived from an average percentage of invalid pixel observations over the baseline TMF domain (Table 9) higher than 40%. 

Area of undisturbed TMFs on 1 January (Mha) Decline (% of the forest)

Subregion 1990 1995 2000 2005 2010 2015 2020 [1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 34.6 34.1 32.8 27.4 23.9 20.6 15.6 55.0 5.0 27.1 35.0

Central Africa 223.1 221.5 216.1 207.2 201.1 193.7 184.7 17.2 3.1 6.9 8.2

Southeast 
Africa 15.7 15.0 12.5 10.1 8.9 7.6 6.4 59.2 20.7 28.6 27.9

Central 
America 34.5 32.3 27.4 24.1 21.7 19.6 16.2 53.0 20.8 20.6 25.3

South America 670.6 655.4 628.8 600.9 583.2 568,9 548.2 18.2 6.2 7.3 6.0

Continental 
Southeast 
Asia

73.3 67.2 57.7 50.2 44.4 39.9 34.2 53.3 21.2 23.2 22.9

Insular 
Southeast 
Asia

237.9 229.5 207.8 192.9 180.8 170.5 159.1 33.1 12.6 13.0 12.0

Continent 1990 1995 2000 2005 2010 2015 2020 [1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 273.4 270.6 261.4 244.7 234.0 221.9 206.7 24.4 4.4 10.5 11.7

Latin America 705.1 687.7 656.1 625.0 604.9 588.5 564.4 19.9 6.9 7.8 6.7

Asia-Oceania 311.1 296.7 265.6 243.2 225.2 210.4 193.3 37.9 14.6 15.2 14.2

Total 1289.6 1255.0 1183.1 1112.9 1064.0 1020.8 964.4 25.2 8.3 10.1 9.4

Table 2. Areas (in million hectares) of undisturbed and degraded TMFs for the years 1990, 1995, 2000, 2005, 2010, 2015, and 2020 (on 1 January) by 
subregion and continent and relative decline (in percentage) over intervals of 30 years (1990–2019) and 10 years (1990–1999, 2000–2009, and 
2010–2019). The values appearing in italic indicate those derived from an average percentage of invalid pixel observations over the baseline TMF domain 
(Table 11) higher than 40%. 

Area of TMFs (undisturbed and degraded) at the end of the year (Mha) Decline (% of the forest)

Subregion 1990 1995 2000 2005 2010 2015 2020 [1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 34.6 34.3 33.3 29.8 27.4 25.1 22.1 36.0 3.6 17.8 19.3

Central Africa 223.1 222.3 218.6 212.7 208.9 204.4 199.9 10.4 2.0 4.4 4.3

Southeast 
Africa 15.7 15.2 12.9 11.0 10.1 9.2 8.5 45.9 17.8 21.8 15.9

Central 
America 34.5 32.8 29.0 26.8 25.3 24.0 22.1 35.9 16.0 12.8 12.5

South 
America 670.6 657.7 635.5 613.7 601.0 592.4 581.6 13.3 5.2 5.4 3.2

Continental 
Southeast 
Asia

73.3 69.1 61.3 55.7 52.0 49.2 46.4 36.6 16.3 15.2 10.6

Insular 
Southeast 
Asia

237.9 232.6 218.4 208.9 201.2 194.9 190.2 20.0 8.2 7.9 5.5

Continent 1990 1995 2000 2005 2010 2015 2020 [1990–
2020]

[1990–
2000]

[2000–
2010]

[2010–
2020]

Africa 273.4 271.7 264.8 253.5 246.4 238.7 230.5 15.7 3.1 7.0 6.5

Latin America 705.1 690.5 664.5 640.5 626.3 616.4 603.7 14.4 5.8 5.7 3.6

Asia-Oceania 311.1 301.7 279.7 264.5 253.2 244.1 236.7 23.9 10.1 9.5 6.5

Total 1289.6 1263.9 1209.0 1158.5 1125.9 1099.2 1070.9 17.0 6.2 6.9 4.9
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The remaining 15.5% (16.5 million ha) is mainly the result of in-
tense fires, with a disturbance duration (period in which the distur-
bance effect is visible on Landsat imagery) of 1 to 2.5 years.

3) As much as 45.4% of the degradation (88.6 million ha) is a 
precursor of deforestation events occurring, on average, after 7.5 years 
(without substantial variability between continents). This is partic-
ularly true for Southeast Africa and Southeast Asia, which show, 
respectively, 60.4% (with 65% for Madagascar) and 53% (with 59% 
for Cambodia) of degraded forests becoming deforested after a re-
covery period (Table 7). These proportions are underestimated be-
cause 45.4% of recent degradation (e.g., in the past 7 years) will 
most likely lead to deforestation in future years.

4) A further 30.3% of the undisturbed forest areas (291.8 million ha) 
is potentially disturbance edge-affected forests, i.e., located within 
120 m of a disturbance (see Materials and Methods). This propor-
tion indicates greater forest fragmentation in Asia (45.2%) com-
pared with other continents (25.6 and 28.9% in the Americas and 
Africa, respectively).

5) As much as 82.8% of the TMF mapped as degraded in December 
2019 corresponds to short-term disturbances that have never been iden-
tified at the pantropical scale. Over the period covered by the Global 
Forest Change (GFC) product (24), i.e., 2001 to 2019, about 21.2 million 
ha has been captured as tree cover loss compared with 86 million ha 
detected as degraded forests by our study during the same period (see 
the “Comparison with the GFC dataset” section, Fig. 3, and table S5).

6) We show that the annual rate of degradation is closely related 
to climatic conditions (Figs. 3 and 4 and fig. S11). Whereas the 
trends in deforestation rates seem to be related to changes in na-
tional territorial policies, degradation rates usually show peaks during 
drought periods and do not seem to be affected by forest conserva-
tion policies. The drought conditions that occurred during strong 
and very strong El Niño–Southern Oscillation (ENSO) events of 
1997–1998 and 2015–2016 were optimal for forest fires (28–30) and 
resulted in a significant increase in forest degradation (29). The 
impact of these fires in 2015–2016 is particularly strong and visible 
in all regions except Southeast Africa.

Our results stress the paramount importance of (i) integrating mea-
sures for reducing degradation in forest conservation and climate 
mitigation programs and (ii) considering forest degradation as a risk 
factor of deforestation and as an indicator of climate change and 
climate oscillations. We expect that improved knowledge of forest 
degradation processes and the resulting fragmentation will help to make 
accurate assessments of the anthropogenic impact on tropical ecosystem 
services and of the effects on biosphere-atmosphere-hydrosphere 
feedbacks. Future policies will have to account for this finding.

Main results on deforestation and postdeforestation 
regrowth
Deforestation in TMF cover is documented in an unprecedentedly 
comprehensive manner: (i) by covering a 30-year period of analysis, 
(ii) by separating direct deforestation of undisturbed forest from 
deforestation of degraded forest, (iii) by mapping postdeforestation 
recovery (or forest regrowth), (iv) by identifying specific forest con-
version to commodities or water (Fig. 2, G and I), (v) by including 
changes within the mangroves (Fig. 2A), and (vi) by documenting 
each deforestation event at the pixel level by its timing (date and 
duration), intensity, recurrence, and, when appropriate, start date 
and duration of postdeforestation regrowth. Direct deforestation is 
characterized by the full removal of trees within a few months, while 

deforestation of degraded forest is characterized by the removal of 
remaining and regrowing trees after a partial removal that happened 
at least 1 year before.

Overall, 17.2% of the initial TMF area (i.e., 218.7 million ha of 
1289.6 million ha) has disappeared since 1990, falling to 1070.9 million 
ha of TMF in January 2020 (Table 4). We report the gross loss of 
TMF area for the entire pantropical region varying from 5.5 million 
to 8.3 million ha per year within the period (Table 11). A compari-
son with previous studies results in the following outcomes:

1) Estimations reported by Food and Agriculture Organization 
of the United Nations (FAO) national statistics (31) and the sample-
based estimations from Tyukavina et al. (32) for the natural tropical 
forest, including both moist and dry forest types, are higher by 0.9 
and 27%, respectively, compared with our TMF deforestation rates 
(which exclude the conversion to tree plantations to approach the 
“natural forest” definition of these two studies) for the same period 
(Table  11). At the continental scale, Tyukavina et  al. (32) shows 
lower estimates than our study for Africa (−23%) and for Asia 
(−4%) and higher estimates for Latin America (+16%).

2) Comparison with GFC loss (see the “Comparison with the 
GFC dataset” section and Fig. 3) (24) shows a lower deforestation 
rate (−33%) than our study for the period 2000–2012 over the same 
forest extent (using our TMF extent for the year 2000) (Table 11). 
Underestimation of GFC loss has been documented by previous 
studies (32, 33). Tyukavina et al. (32) reported an underestimation 
of GFC loss of 19.4% when considering the entire forest cover (moist 
and deciduous) loss during the period 2001–2012, with a larger un-
derestimation for Africa (−39.4%) than for other continents (−13% 
for Latin America and −5.7% for Asia). The ranking of this under-
estimation by continent is consistent with the ranking observed in 
our study (first, Africa; second, Latin America; and, third, Asia). The 
differences with GFC loss are explained by three specific assets of 
our approach: (i) the use of single-date images, enabling the detec-
tion of short-duration disturbance events (i.e., visible from space 
for only a few weeks), compared with the use of annual syntheses; 
(ii) a dedicated algorithm for TMF, enabling the monitoring of seven 
classes of forest cover change, compared with the global monitor-
ing of forest clearance; and (iii) cloud masking and quality control 
optimized for equatorial regions, enabling a more comprehensive 
analysis of the Landsat archive.

3) Comparison with the Brazilian Projeto de Monitoramento do 
Desmatamento na Amazônia Legal por Satélite (PRODES) data (30) 
using their primary forest extent (Fig. 3) shows a similar decrease in 
annual deforestation rates between the 2000s and the past decade; this 
can be related to a set of economic and public policy actions (29). 
Differences in the deforestation rates are observed (i) during the period 
2001–2004 with a higher deforestation rate for PRODES (2.32 million 
ha/year) compared with our study (2 million ha/year) and with GFC 
loss (1.53 million ha/year), and (ii) in the past 10 years, there has been 
a lower average deforestation rate for PRODES compared with our 
study and GFC loss (0.67 million, 1.1 million, and 1.34 million ha 
per year, respectively) (Table 11). These differences are accentuated in 
the past 5 years (0.77 million, 1.33 million, and 1.76 million ha per 
year, respectively). Discrepancies in area estimates between our product 
and the PRODES data are explained by (i) difference in minimum 
mapping units (0.09 ha compared with 6.25 ha in PRODES) and (ii) 
the impacts of strong fires that are captured in our study (deforestation 
followed by forest regrowth) and in GFC loss but are discarded in the 
PRODES approach (because they are not considered deforestation).
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Fig. 3. Dynamics of annual disturbed areas for the Amazônia Legal region and Indonesia. Dynamics of annual disturbed areas from 2001 to 2019 for the Amazônia 
Legal region of Brazil within the primary forest extent in 2000 from National Institute for Space Research (INPE) and Indonesia using the entire TMF extent (undisturbed 
and degraded) in 2000 (x axis in years and y axis in million hectares) in comparison with GFC loss and the PRODES data for the Amazônia Legal region of Brazil. Asterisks 
(*) indicate that the average proportion of disturbance types within total disturbances over the period 2005–2014 is used to distribute the disturbance types for years 
2017 to 2019. Defor, deforestation.
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Fig. 4. Evolution of annual deforestation and degradation at the regional scale. Evolution of annual deforestation and degradation (A) over the past 25 years in 
South America, (B) in continental Southeast Asia, and (C) over the past 15 years in all regions. “Short-term degradation” refers to disturbances that have been observed 
over less than 1 year, mostly due to selective logging, natural events, and light-impact fires, whereas “long-term degradation” refers mostly to fires that are detected over 
a period of 1 to 2.5 years.
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This study documents, in an unprecedented manner, the extent 
and age of young secondary forests for the entire pantropical do-
main. These secondary forests are defined here as tree cover regrowth 
(visible for at least 3 years) after a full removal of tree cover that has 
remained without regrowing trees for at least 2.5 years. They grow 
rapidly under tropical moist conditions and absorb large amounts 
of carbon, but they were poorly documented. We show that 13.5% 
of the deforested areas (i.e., 29.5 million ha) is recovering in a sub-
sequent stage, with 33% of these secondary forests aged more than 
10 years at the end of 2019 (Table 10). The proportion of second-
ary forests within total deforestation is higher in Asia (18.3%) 
than in Latin America (12.3%) and Africa (7.9%). The distur-
bance events followed by forest regrowth include intense fires, 
which are accentuated by drought conditions. This is very visible 
for South America (Fig. 4) for the years 1997–1998 and 2010. In 
addition, 10 million ha is characterized as evergreen vegetation 
regrowth of areas initially classified as nonforest cover, i.e., which 
can be considered as forestation (i.e., afforestation and reforesta-
tion) aged more than 10 years.

This study confirms that most of the deforestation caused by the 
expansion of oil palm and rubber and assigned to the commodity 
classes in our study (Figs. 2I and 4B and see Supplementary Text on 
ancillary datasets, fig. S11, and table S6), is concentrated in Asia 
with 18.3 million ha (representing 86% of the entire TMF conver-
sion to plantations) and more specifically in Indonesia (57.4%) and 
Malaysia (23.8%).

Deforestation and degradation trends
The evolution of deforestation and degradation over the past three 
decades shows the highest peaks of annual disturbance in Latin America 
and Southeast Asia during the period 1995–2000, with 6.3 million 
and 6.2 million ha/year, respectively. The ENSO of 1997–1998 may, 
at least partially, explain these peaks of forest disturbance, in partic-
ular, for Indonesia and Brazil, where these peaks manifest them-
selves in the annual change trends, with the highest proportion of 
degradation events over the total disturbance areas (Figs. 4 and 5 
and fig. S11). From 2000 to 2004 and from 2015 to 2019, the distur-
bance rates declined by half in South America and by 45% in South-
east Africa and continental Southeast Asia. Brazil, which accounts 
for 29% of the world’s remaining TMF, made a large contribution to 
this reduction (from 4.3 million ha/year down to 2.1 million ha/year) 
(Figs. 3, 4, and 5, Table 11, table S6, and fig. S11).

In recent years, our study shows a marked increase in distur-
bance rates (deforestation and degradation) (+2.1 million ha/year 
for the past 5 years compared with the period 2005–2014), reaching 
a level close to that of the early 2000s and with the highest increases 
observed in West Africa and Latin America (48% higher) (Table 3). 
Degradation is the main contributor of this recent increase (aver-
age increase of 38% while annual deforestation declined by 5%) 
(Tables 5 and 7), notably caused by specific climatic conditions in 
2015–2016 (Figs. 4 and 5) (30). The Asia-Oceania region shows a 
smaller increase in degradation rate (31%) than Africa (34%) and 
Latin America (49%) and a much bigger decline in deforestation 

Table 3. Average annual losses of undisturbed TMF areas (in million hectares) due to deforestation and degradation, from 1990 to 2020 over intervals 
of 5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and continent. The values 
appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Annual loss of undisturbed TMF areas (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.10 0.24 1.08 0.70 0.67 1.01 0.6 0.2 0.9 0.8

Central 
Africa 0.33 1.07 1.79 1.22 1.49 1.79 1.3 0.7 1.5 1.5

Southeast 
Africa 0.13 0.52 0.47 0.24 0.26 0.24 0.3 0.3 0.4 0.3

Central 
America 0.45 0.99 0.66 0.47 0.43 0.67 0.6 0.7 0.6 0.6

South 
America 3.03 5.33 5.56 3.56 2.85 4.14 4.1 4.2 4.6 4.1

Continental 
Southeast 
Asia

1.21 1.90 1.50 1.17 0.89 1.14 1.3 1.6 1.3 1.2

Insular 
Southeast 
Asia

1.68 4.32 2.98 2.43 2.07 2.28 2.6 3.0 2.7 2.5

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2010]

[2010–
2020]

Africa 0.56 1.82 3.34 2.15 2.42 3.04 2.2 1.2 2.7 2.6

Latin 
America 3.48 6.32 6.22 4.03 3.27 4.81 4.7 4.9 5.1 4.8

Asia-Oceania 2.89 6.22 4.48 3.60 2.96 3.42 3.9 4.6 4.0 3.7

Total 6.93 14.37 14.04 9.78 8.66 11.27 10.8 10.6 11.9 11.1
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rate (28%) compared with Africa (5%) and Latin America (12%) 
(Tables 4 to 8).

Undisturbed TMF decline and projections
Since 1990, the extent of undisturbed TMF has shrunk by 23.9% 
with an average loss rate of 10.8 million ha/year (Tables 1 and 3). 
The decline of undisturbed TMF is particularly marked for Ivory 

Coast (81.5% of their extent in 1990), Mexico (73.7%), Ghana 
(70.8%), Madagascar (69%), Vietnam (67.8%), Angola (67.1%), 
Nicaragua (65.8%), Lao People’s Democratic Republic (PDR) (65.1%), 
and India (63.9%) (table S6). If the average rates of the period 
2010–2019 remain constant in the near to medium term (see Mate-
rials and Methods and fig. S12), then undisturbed TMF would dis-
appear by 2026–2029 in Ivory Coast and Ghana; by 2040 in Central 

Fig. 5. Hot spots of deforestation and degradation. Evolution of total deforested (A) and degraded (B) areas (per box of 1° latitude by 1° longitude size; scale in million 
hectares) within the labeled time intervals (1990–1999, 2000–2009, and 2010–2019).
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America and Cambodia; by 2050 in Nigeria, Lao PDR, Madagascar, 
and Angola; and by 2065 for all the countries of continental South-
east Asia and Malaysia. By 2050, a total of 15 countries, including 
Malaysia (the country with the ninth biggest TMF), will lose more 
than 50% of their undisturbed forests (table S6).

It is now possible to monitor deforestation and degradation in 
TMFs consistently over a long historical period and at fine spatial 
resolution. The mapping of forest transition stages will make it pos-
sible to derive more targeted indicators to measure the achievements in 
forest, biodiversity, health, and climate policy goals from local to in-
ternational levels (34). Our study shows that TMFs are disappearing 
at much faster rates than previously estimated, underlining the pre-
cursor role of forest degradation in this process. These results should 
make decision makers aware of the pressing need to reinforce actions 
for preserving tropical forests, in particular, by avoiding the initial 
degradation that most likely leads to subsequent forest clearance.

MATERIALS AND METHODS
Study area and forest types
Our study covers the TMFs, which include all closed forests in the 
humid tropics (35) with two main forest types (36): the tropical rain 
forest and the tropical moist deciduous forest. Tropical rain forest is 
found in permanently humid areas, i.e., those with, at most, only 
limited seasonality in rainfall distribution, while tropical moist de-
ciduous forest, also called monsoon forest, is found in areas with a 
distinct dry season. Each of these two main forest types can be di-

vided into numerous subtypes (37), such as the lowland evergreen 
moist forest, the montane moist forest, the mangrove forest, the swamp 
forest, and the tropical semievergreen moist forest. “Evergreenness” 
varies from permanently evergreen to evergreen seasonal (mostly 
evergreen but with individual trees that may lose their leaves), semi-
evergreen seasonal (up to about one-third of the top canopy can be 
deciduous, although not necessarily leafless at the same time), and 
moist deciduous (dominant deciduous species with evergreen sec-
ondary canopy layer). The TMFs are characterized by low variability 
in annual temperature and high levels of rainfall (>200 cm annually). 
In the Holdridge life zones classification scheme (38), the TMFs in-
clude the moist forest, the wet forest, and the rain forest. Our study 
area covers the following Global Ecological Zones (39): “tropical 
rain forest,” “tropical moist forest,” “tropical mountain system,” 
and “tropical dry forest” (fig. S13), stopping at the borders of China, 
Pakistan, Uruguay, and United States. The TMFs are located mostly 
in the tropical moist and humid climatic domains, but they also in-
clude small areas of gallery forests in the tropical dry domain.

We do not intend to map specifically intact or primary forest, as 
the Landsat observation period is too short to discriminate between 
never-cut primary forest and secondary forest older than the obser-
vation period. However, by documenting all the disturbances ob-
served over the past three decades, the remaining undisturbed TMF 
in 2019 is getting closer to the primary forest extent. While our en-
tire TMF, including undisturbed and degraded forests, in 1990 and 
2019 are comparable, our undisturbed forest of 1990 and 2019 are 
less comparable.

Table 4. Average annual losses of TMF areas (in million hectares) due to deforestation (with or without prior degradation), from 1990 to 2020 over 
intervals of 5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and 
continent. The values appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Total deforestation on an annual basis by period (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.06 0.19 0.71 0.48 0.45 0.60 0.4 0.1 0.6 0.5

Central 
Africa 0.17 0.74 1.18 0.76 0.90 0.91 0.8 0.5 1.0 0.9

Southeast 
Africa 0.10 0.45 0.38 0.18 0.18 0.14 0.2 0.3 0.3 0.2

Central 
America 0.34 0.76 0.45 0.29 0.26 0.37 0.4 0.6 0.4 0.3

South 
America 2.57 4.44 4.35 2.54 1.73 2.16 3.0 3.5 3.4 1.9

Continental 
Southeast 
Asia

0.84 1.55 1.13 0.74 0.56 0.54 0.9 1.2 0.9 0.6

Insular 
Southeast 
Asia

1.05 2.83 1.91 1.53 1.27 0.94 1.6 1.9 1.7 1.1

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 0.33 1.38 2.26 1.42 1.54 1.65 1.43 0.86 1.84 1.59

Latin 
America 2.91 5.21 4.80 2.83 1.99 2.53 3.38 4.06 3.82 2.26

Asia-Oceania 1.89 4.38 3.04 2.27 1.83 1.48 2.48 3.14 2.65 1.65

Total 5.14 10.97 10.10 6.52 5.35 5.66 7.29 8.06 8.31 5.51
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Data
The Landsat archive is the only free and long-term satellite image 
record suitable for analyzing land cover changes on an annual basis 
over a long period at fine spatial resolution. We used the entire L1T 
archive (orthorectified top of atmosphere reflectance) acquired 
from July 1982 to December 2019 from the following Landsat sen-
sors: Thematic Mapper (TM) on board Landsat 4 and Landsat 5, 
Enhanced Thematic Mapper Plus (ETM+) on board Landsat 7, and 
the Operational Land Imager on board Landsat 8 (23, 40–42). Land-
sat 4 was launched in July 1982 and collected images from its TM 
sensor until December 1993. Landsat 5 was launched in March 1984 
and collected images until November 2011. Landsat 7 was launched 
in April 1999 and acquired images normally until May 2003 when 
the scan line corrector (SLC) failed (43). All Landsat 7 data acquired 
after the date of the SLC failure have been used in our analysis. 
Landsat 8 began operational imaging in April 2013.

The Landsat archive coverage presents large geographical and 
temporal unevenness (40, 44). The main reason for the limited 
availability of images for some regions is that Landsat 4 and Landsat 
5 had no onboard data recorders, and links with data relay satellites 
failed over time; cover was therefore often limited to the line of sight 
of receiving stations (42). Commercial management of the program 
from 1985 to the early 1990s led to data being acquired mostly when 
preordered (40). From 1999 onward, the launch of Landsat 7 and its 
onboard data recording capabilities, associated with the continua-
tion of the Landsat 5 acquisitions, considerably improved global 
coverage.

In the tropical regions, Africa is particularly affected by the lim-
ited availability of image acquisitions, especially in the first part of 
the archive. From a total of around 1,370,860 Landsat scenes that 
were available for our study area, only 265,098 were located in Africa 
(compared with 573,589 and 532,173 for Latin America and Asia, 
respectively). The most critical area is located around the Gulf of 
Guinea, with an overall average number of valid observations (i.e., 
without clouds, hazes, sensor artifacts, and geolocation issues) over 
the full archive (fig. S14) amounting to less than 50 per location 
(pixel) and with the first valid observations starting mostly at the 
end of the 1990s (fig. S15). Small parts of Ecuador, Colombia, the 
Solomon Islands, and Papua New Guinea present a similarly low 
number of total valid observations, often with an earlier first valid 
observation around the end of the 1980s. Apart from these regions, 
the first valid observation occurs mostly within the periods 1982–1984, 
1984–1986, or 1986–1988 for Latin America, Africa, and Southeast 
Asia, respectively.

The average number of annual valid observations (fig. S16) shows 
a gradual increase during the 38-year period for the three continents, 
with two major jumps: in 1999 with the launch of Landsat 7 and in 
2013 with the launch of Landsat 8. There is also a clear drop in 2012 
for Southeast Asia and Latin America with the decommissioning of 
Landsat 5 in November 2011 and a small drop in 2003 as a conse-
quence of the Landsat 7 SLC-off issue. There are major differences 
between Africa and the two other continents: Africa has significantly 
fewer valid observations, in particular, during the period 1982–1999, 
and a much larger increase in number of observations from 2013.

Table 5. Average annual losses of undisturbed TMF areas (in million hectares) due to degradation (followed or not by deforestation), from 1990 to 
2020 over intervals of 5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and 
continent. The values appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Total degradation on an annual basis by period (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.08 0.16 0.87 0.50 0.35 0.61 0.4 0.1 0.7 0.5

Central 
Africa 0.28 0.83 1.40 0.91 0.92 1.24 0.9 0.6 1.2 1.1

Southeast 
Africa 0.09 0.27 0.28 0.14 0.13 0.13 0.2 0.2 0.2 0.1

Central 
America 0.29 0.64 0.49 0.34 0.27 0.45 0.4 0.5 0.4 0.4

South 
America 1.25 2.29 2.61 1.83 1.59 2.54 2.0 1.8 2.2 2.1

Continental 
Southeast 
Asia

0.88 1.23 1.03 0.81 0.49 0.78 0.9 1.1 0.9 0.6

Insular 
Southeast 
Asia

1.16 2.80 1.98 1.39 1.03 1.65 1.7 2.0 1.7 1.3

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 0.45 1.26 2.56 1.55 1.40 1.98 1.53 0.86 2.05 1.69

Latin 
America 1.54 2.93 3.10 2.16 1.85 2.99 2.43 2.24 2.63 2.42

Asia-Oceania 2.04 4.03 3.00 2.21 1.51 2.43 2.54 3.04 2.61 1.97

Total 4.03 8.23 8.66 5.92 4.77 7.40 6.50 6.13 7.29 6.09
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The geographical unevenness of the first year of acquisition con-
strains the monitoring capability period. Our method accounts for 
this constraint notably by recording the effective duration of the 
archive at the pixel level (see next subsection). Data quality issues 
affecting the Landsat collection were addressed by excluding pixels 
where (i) detector artifacts occur (manifested as random speckle or 
striping), (ii) one or more spectral bands are missing (typically oc-
curring at image edges), or (iii) scene geolocation is inaccurate.

Mapping method
To map the extent and changes of the TMF over a long period, we 
developed an expert system that exploits the multispectral and multi-
temporal attributes of the Landsat archive to identify the main 
change trajectories over the past three decades and that uses ancillary 
information to identify subclasses of forest conversion (see Supple-
mentary Text on ancillary data). The inference engine of our system 
is a procedural sequential decision tree, where the expert knowledge 
is represented in the form of rules. Techniques for big data explora-
tion and information extraction, namely, visual analytics (45) and 
evidential reasoning (46), were used similarly to a recent study ded-
icated to global surface water mapping (44). The advantages of 
these techniques for remotely sensed data analysis are presented in 
this previous study (44). These notably include accounting for un-
certainty in data, guiding and informing the expert’s decisions, and 
incorporating image interpretation expertise and multiple data 
sources. The expert system was developed and operated in the Google 
Earth Engine (GEE) geospatial cloud computing platform (22). The 

mapping method includes four main steps described hereafter: (i) 
single-date multispectral classification into three classes, (ii) analysis 
of trajectory of changes using the temporal information and produc-
tion of a “transition” map (with seven classes) (Figs. 1 and 2 and 
figs. S2 to S7), (iii) identification of subclasses of transition based 
on ancillary datasets (see Supplementary Text on ancillary datasets) 
and visual interpretation, and (iv) production of annual change 
maps (fig. S1).

In the first step, each image of the Landsat archive was analyzed 
on a single-date basis (through a multispectral classification), 
whereas previous large-scale studies used annual syntheses or intra-
annual statistics, such as the mean and SD of available Landsat 
observations (47–53). The classification of individual images is 
challenging but presents three main advantages: it allows us (i) to 
capture the disturbance events that are visible from space for only a 
short period, such as logging activities; (ii) to record the precise timing 
of the disturbances and the number of disruption observations; and 
(iii) to detect the disturbance at an early stage, i.e., even if the distur-
bance starts at the end of the year, it is detected and counted as a 
disturbance for this year, whereas other approaches notably based 
on composites will detect the disturbance with a delay of 1 year.

A disruption observation is defined here as the detection of an 
absence of tree foliage cover within a Landsat pixel for a single-date 
observation. The number of disruption observations constitutes a 
proxy of disturbance intensity.

Each pixel within a Landsat image was initially assigned through 
single-date multispectral classification to one of the three following 

Table 6. Average annual losses of undisturbed TMF areas (in million hectares) due to direct deforestation (without prior degradation), from 1990 to 
2020 over intervals of 5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and 
continent. The values appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Annual direct deforestation by period (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.02 0.08 0.21 0.19 0.32 0.40 0.2 0.0 0.2 0.04

Central 
Africa 0.05 0.24 0.38 0.31 0.57 0.56 0.4 0.1 0.3 0.6

Southeast 
Africa 0.05 0.24 0.19 0.10 0.13 0.10 0.1 0.1 0.1 0.1

Central 
America 0.16 0.34 0.17 0.13 0.16 0.22 0.2 0.2 0.2 0.2

South 
America 1.78 3.05 2.95 1.73 1.26 1.61 2.1 2.4 2.3 1.4

Continental 
Southeast 
Asia

0.33 0.66 0.48 0.36 0.41 0.36 0.4 0.5 0.4 0.4

Insular 
Southeast 
Asia

0.52 1.53 1.00 1.03 1.04 0.62 1.0 1.0 1.0 0.8

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 0.11 0.56 0.78 0.60 1.02 1.06 0.69 0.34 0.69 1.04

Latin 
America 1.94 3.39 3.12 1.86 1.42 1.82 2.26 2.66 2.49 1.62

Asia-Oceania 0.85 2.19 1.48 1.39 1.45 0.99 1.39 1.52 1.44 1.22

Total 2.90 6.14 5.38 3.86 3.89 3.87 4.34 4.52 4.62 3.88
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classes: (i) potential moist forest cover, (ii) potential disruption, and 
(iii) invalid observation (cloud, cloud shadow, haze, and sensor issue). 
The temporal sequence of classes (i) and (ii) was then used to de-
termine the seven transition classes, described in the second step 
of the mapping approach. However, not all pixels could be un-
ambiguously spectrally assigned to one of the three single-date 
classes because the multispectral cluster hulls of these classes are 
overlapping in the multidimensional feature space. In cases of spec-
tral confusion, evidential reasoning was used to guide class assign-
ment by taking into consideration the temporal trajectory of 
single-date classifications, as spectral overlap between land cover 
types may occur only during specific periods of the year. For instance, 
pixels covered by deciduous forests, grassland, or agriculture may 
behave, from a spectral point of view, as potential moist forest cover 
during the humid seasons and as potential disruptions during the 
dry seasons and, consequently, can be assigned to the other land 
cover transition class. Disturbed moist forests (degraded or deforested) 
appear as potential moist forest cover at the start of the archive and 
as potential disruption assignments later.

For the three initial classes (potential moist forest cover, poten-
tial disruption, and invalid observation), multispectral clusters were 
defined first by establishing a spectral library capturing the spectral 
signatures of the land cover types and atmosphere perturbations 
that are present over the pantropical belt and targeted for these 
three classes: (i) moist forest types; (ii) deciduous forest, logged areas, 
savanna, bare soil, irrigated and nonirrigated cropland, evergreen 
shrubland, and water (for the potential disruption class); and (iii) 

clouds, haze, and cloud shadows (for the invalid observations). A 
total sample of 38,326 sampled pixels belonging to 1512 Landsat 
scenes (L5, L7, and L8), were labeled through visual interpretation. 
The HSV (hue, saturation, and value) transformation of the spectral 
bands, well adapted for satellite image analysis (44, 54), was used to 
complement the spectral library. These components were computed 
using a standard transformation (55) for the following Landsat band 
combination: short-wave infrared (SWIR2), near infrared, and red. 
The stability of hue to the impacts of atmospheric effect is particu-
larly desirable for identifying potential disruption in the humid 
tropics. The sensitivity of saturation and value to atmospheric vari-
ability is mainly used to detect invalid observations (haze). Value is 
particularly useful for identifying cloud shadows. The thermal in-
frared band was relevant to detect invalid observations (clouds and 
haze) and bare soil and the normalized difference water index to 
identify irrigated areas. The information held in the spectral library 
was analyzed through visual analytics to extract equations describ-
ing class cluster hulls in the multidimensional feature space (fig. S17). 
An exploratory data analysis tool designed in a previous study (44) 
was used to support the interactive analysis.

In the second step of the mapping approach, the temporal se-
quence of single-date classifications at pixel scale was analyzed to 
first determine the initial extent of the TMF domain and then to 
identify the change trajectories from this initial forest extent (fig. S2). 
Long-term changes cannot be determined uniformly for the entire 
pantropical region because the observation record varies (see the 
“Data” section), e.g., the first year of observation (fig. S18) is c. 1982 

Table 7. Average annual losses of undisturbed TMF areas (in million hectares) due to annual degradation before deforestation, from 1990 to 2020 
over intervals of 5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and 
continent. The values appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Annual degradation before deforestation by period (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.04 0.11 0.50 0.28 0.14 0.20 0.2 0.1 0.4 0.2

Central 
Africa 0.12 0.50 0.79 0.45 0.33 0.35 0.4 0.3 0.6 0.3

Southeast 
Africa 0.06 0.21 0.19 0.08 0.05 0.04 0.1 0.1 0.1 0.0

Central 
America 0.18 0.42 0.28 0.16 0.10 0.16 0.2 0.3 0.2 0.1

South 
America 0.79 1.40 1.40 0.81 0.47 0.55 0.9 1.1 1.1 0.5

Continental 
Southeast 
Asia

0.51 0.89 0.65 0.38 0.15 0.18 0.5 0.7 0.5 0.2

Insular 
Southeast 
Asia

0.53 1.31 0.91 0.50 0.23 0.31 0.6 0.9 0.7 0.3

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 0.22 0.82 1.48 0.82 0.52 0.59 0.74 0.52 1.15 0.55

Latin 
America 0.98 1.82 1.68 0.97 0.57 0.71 1.12 1.40 1.33 064

Asia-Oceania 1.05 2.19 1.56 0.88 0.38 0.49 1.09 1.62 1.22 0.44

Total 2.24 4.83 4.72 2.66 1.74 1.79 2.95 3.54 3.69 1.63
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for Brazil and c. 2000 along the Gulf of Guinea. We have addressed 
these geographic and temporal discontinuities of the Landsat ar-
chive by determining at the pixel level (i) a reference initial period 
(baseline) for mapping the initial TMF extent and (ii) a monitoring 
period for detecting the changes. The data gaps at the beginning of 
the archive were tackled by requiring a minimum period of 4 years 
with a minimum of three valid observations per year or a minimum 
of 5 years with two valid observations per year from the first avail-
able valid observation. Hence, the annual number of valid observa-
tions is lower, while the initial period is longer. This minimizes the 
risk of inclusion of nonforest cover types (such as agriculture) and 
deciduous forests in the baseline when there are few valid observa-
tions over a short period. In addition, we have reduced the commission 
errors in our baseline by accounting for possible confusion with com-
modities, wetlands, bamboo, and deciduous forest (see Supplemen-
tary Text on ancillary datasets and specific tropical forest types).

From our initial TMF extent, we identified seven main transition 
classes (fig. S2), which are defined thereafter. The first year of the 
monitoring period (which follows the initial period) is represented 
in fig. S18; it starts at the earliest in 1987 (mostly for South America) 
and, for very limited cases, at the latest in 2016 (e.g., Gabon).

Although no ecosystem may be considered truly undisturbed 
since some degree of human impact is present everywhere (26), we 
define the undisturbed moist forests (class 1) as tropical moist (ev-
ergreen or semievergreen) forest coverage without any disturbance 
(degradation or deforestation) observed over the Landsat historical 

record (see the “Study area and forest types” section). Our TMF 
baseline may include old forest regrowth (old secondary forests) or 
previously degraded forests, as the Landsat observation period is too 
short to distinguish never-cut primary forest from second-growth 
naturally recovered forest older than the observation period. This 
class includes two subclasses of bamboo-dominated forest (class 1a) 
and undisturbed mangrove (class 1b).

Deforested land (class 2) is defined as a permanent conversion 
from moist forest cover to another land cover, while a degraded for-
est (class 3) is defined as moist forest cover where disturbances were 
observed over a short period. Here, we assumed that the duration of 
the disturbance (and, consequently, the period over which we detect 
the disturbance with satellite imagery) is a proxy of the disturbance 
impact, i.e., the longer the duration of the detected disturbance, the 
higher is the impact on the forest and the higher the risk of having a 
permanent conversion of the TMF. In considering short-term dis-
turbances, we include logging activities, fires, and natural damaging 
events, such as wind breaks and extreme dryness periods. Hence, we 
are getting closer to the most commonly accepted definition of deg-
radation (56), one that considers a loss of productivity, a loss of bio-
diversity, unusual disturbances (droughts and blowdown), and a 
reduction of carbon storage.

The threshold applied to the duration parameter, used to separate 
degraded forests from deforested land, is based on our knowledge 
of impacts from human activity and from natural or human-
induced events such as fires. We empirically identified two levels of 

Table 8. Average annual losses of TMF areas (in million hectares) due to deforestation followed by regrowth, from 1990 to 2020 over intervals of  
5 years, 30 years (1990–2019), 20 years (2000–2019), and 10 years (1990–1999, 2000–2009, and 2010–2019) by subregion and continent. The values 
appearing in italic indicate those derived from an average percentage of invalid observations (Table 9) higher than 40%. 

Total deforestation followed by regrowth on an annual basis by period (Mha)

Subregion [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

West Africa 0.00 0.00 0.01 0.04 0.06 0.03 0.0 0.0 0.0 0.0

Central 
Africa 0.02 0.04 0.07 0.10 0.13 0.06 0.1 0.0 0.1 0.1

Southeast 
Africa 0.00 0.01 0.02 0.03 0.03 0.01 0.0 0.0 0.0 0.0

Central 
America 0.05 0.09 0.07 0.07 0.05 0.02 0.1 0.1 0.1 0.0

South 
America 0.21 0.40 0.50 0.49 0.37 0.20 0.4 0.3 0.5 0.3

Continental 
Southeast 
Asia

0.10 0.20 0.24 0.23 0.14 0.06 0.2 0.2 0.2 0.1

Insular 
Southeast 
Asia

0.11 0.33 0.44 0.42 0.30 0.15 0.3 0.2 0.4 0.2

Continent [1990–
1994]

[1995–
1999]

[2000–
2004]

[2005–
2009]

[2010–
2014]

[2015–
2019]

[1990–
2019]

[1990–
1999]

[2000–
2009]

[2010–
2019]

Africa 0.02 0.06 0.10 0.17 0.21 0.10 0.11 0.04 0.13 0.15

Latin 
America 0.26 0.48 0.58 0.56 0.43 0.22 0.42 0.37 0.57 0.32

Asia-Oceania 0.21 0.53 0.68 0.65 0.44 0.21 0.45 0.37 0.66 0.32

Total 0.50 1.06 1.36 1.37 1.08 0.53 0.98 0.78 1.37 0.80
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degradation: (class 3a) degradation with short-duration impacts 
(observed within 1 year), which includes most logging activities, 
natural events, and minor fires; and (class 3b) degradation with 
long-duration impacts (from 1 to 2.5 years), which mainly corre-
sponds to strong fires (burned forests). Most of the degradation 
(50%) is observed over a duration of less than 6 months (fig. S19). 
All disturbance events for which the impacts were observed over a 
period of more than 2.5 years (900 days) were considered as defor-
estation processes, with 68% of these events observed over more 

than 5 years. When a deforestation process is not followed by a re-
growth period at least over the past 3 years, it is considered deforested 
land. Deforested land is also characterized by the recurrence of dis-
ruptions, i.e., the ratio between the number of years with at least one 
disruption observation and the total number of years between the 
first and last disruption observations. This information allowed us 
to discriminate between (i) deforestation of undisturbed forest and 
(ii) deforestation of degraded forest (when deforestation happens at 
least 1 year after degradation), with the second case (ii) having a 

Table 9. Average percentage of invalid observations over the baseline TMF domain. Average percentage of invalid observations over the baseline TMF 
domain (A) per year from 1982 to 2020 and (B) over intervals of 5 years (except for the first interval that includes 8 years), by subregion and continent. The 
values appearing in italic indicate an average percentage of invalid observations higher than 40%. 

A

Average % of invalid observations (over the total forest domain, per year)

Subregion 1982 1990 1995 2000 2005 2010 2015 2019

West Africa 100.0 90.8 84.3 71.8 5.9 0.7 0.2 0.0

Central Africa 100.0 97.7 87.6 67.8 10.2 3.7 1.9 0.0

Southeast Africa 100.0 92.1 41.5 8.4 1.5 1.0 0.5 0.0

Central America 69.4 17.0 5.8 1.8 0.7 0.2 0.0 0.0

South America 55.6 1.7 0.8 0.3 0.1 0.0 0.0 0.0

Continental 
Southeast 
Asia

55.2 49.1 2.0 1.0 0.0 0.0 0.0 0.0

Insular 
Southeast 
Asia

34.6 31.2 6.5 1.9 0.2 0.1 0.0 0.0

Continent 1982 1990 1995 2000 2005 2010 2015 2019

Africa 100.0 93.5 71.2 49.3 5.9 1.8 0.9 0.0

Latin America 62.5 9.4 3.3 1.0 0.4 0.1 0.0 0.0

Asia-Oceania 44.9 40.2 4.3 1.4 0.1 0.1 0.0 0.0

Total 69.1 47.7 26.2 17.3 2.1 0.7 0.3 0.0

B

Average % of invalid observations (over the total forest domain, per year)

Subregion [1982–1989] [1990–1994] [1995–1999] [2000–2004] [2005–2009] [2010–2014] [2015–2019]

West Africa 98.1 87.1 82.5 40.0 2.8 0.4 0.0

Central Africa 99.4 94.7 80.8 37.2 6.7 2.9 0.4

Southeast Africa 97.9 80.8 20.7 3.9 1.3 0.8 0.1

Central America 50.1 12.4 4.3 1.2 0.4 0.1 0.0

South America 30.5 1.2 0.6 0.2 0.0 0.0 0.0

Continental 
Southeast 
Asia

54.5 14.6 1.3 0.4 0.0 0.0 0.0

Insular 
Southeast 
Asia

34.3 16.3 4.2 0.8 0.1 0.1 0.0

Continent [1982–1989] [1990–1994] [1995–1999] [2000–2004] [2005–2009] [2010–2015] [2015–2020]

Africa 99.1 92.9 77.6 35.7 5.9 2.4 0.3

Latin America 31.3 1.6 0.8 0.2 0.1 0.0 0.0

Asia-Oceania 29.5 12.0 3.7 1.3 0.3 0.2 0.0

Total 21.2 31.9 23.1 10.1 2.3 0.8 0.1
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lower recurrence of disruption events due to the period without any 
disruption between the degradation and deforestation stages (see 
Supplementary Text on annual change dataset).

For recent degradation and deforestation (class 4) that was initi-
ated in the past 3 years (after year 2016) and that cannot yet be at-
tributed to a long-term conversion to nonforest cover, owing to the 
limited historical period of observation, specific rules were applied. 
Within this class, we separated degradation from deforestation by 
taking a duration of at least 366 days for the years 2017–2018 and a 
threshold of 10 disruption observations for the past year (2019) to 
consider deforested land.

Forest regrowth (class 5) is a two-phase transition from moist 
forest to (i) deforested land and then (ii) vegetative regrowth. A 
minimum of 3-year duration of permanent moist forest cover pres-
ence is needed to classify a pixel as forest regrowth (to avoid confu-
sion with agriculture).

Other land cover (class 6) includes savanna, deciduous forest, 
agriculture, evergreen shrubland, and nonvegetated cover. Last, 
vegetation regrowth (class 7) consists of a transition from other land 
cover to vegetation regrowth and includes two subclasses based on 
the age of regrowth (from 3 to 10 years and from 10 to 20 years) and 
a transition class from water to vegetation regrowth.

The third mapping step allowed us to identify three subclasses from 
the deforested land class. We geographically assigned deforestation 
to the following classes: conversion from TMF to tree plantations, 
mainly oil palm and rubber (class 2a); water surface (discriminating 
between permanent and seasonal water), mostly due to new dams 
(class 2b); and other land cover, such as agriculture, infrastructure, 
etc. (class 2c). This was carried out using ancillary spatial datasets 
completed by visual interpretation of high-resolution (HR) imagery 
(see Supplementary Text on ancillary data). Last, we reassigned dis-
turbances within two geographically specific tropical forest forma-

tions: (i) the bamboo-dominated forest and (ii) the semideciduous 
transition tropical forest (see Supplementary Text on specific tropi-
cal forest formations).

Each disturbed pixel (degraded forest, deforested land, or forest 
regrowth) is characterized by the timing and intensity of the ob-
served disruption events. The start and end dates of the disturbance 
allow us to identify, in particular, the timing of new road creation or 
of logging activities and the age of forest regrowth or degraded for-
ests. Three decadal periods have been used in the transition map to 
identify age subclasses of degradation and forest regrowth: (i) be-
fore 2000, (ii) within 2000–2009, and (iii) within 2010–2019. The 
number of annual disruption observations combined with the 
duration can be used as a proxy for the disturbance intensity and 
impact level.

In the last mapping step, we created a collection of 30 maps pro-
viding the spatial extent of the TMF and disturbance classes on a 
yearly basis, from 1990 to 2019, using dedicated decision rules (see 
Supplementary Text on annual change dataset and thematic maps). 
These maps were used in our annual trend analysis, described in the 
next subsection, to document the annual disturbances over the full 
period, with 10 classes of transition for each annual statistic (Figs. 3 
and 4 and figs. S1 and S11):

1) Short-duration degradation followed by a recovery period (not 
followed by deforestation). 

2) Long-duration degradation followed by a recovery period (not 
followed by deforestation). 

3) Degradation followed by a recovery period, followed by 
deforestation. 

4) Degradation followed by a recovery period, followed by de-
forestation, and followed by a recovery period in itself (regrowth). 

5)  Deforestation of undisturbed forest, not followed by a recov-
ery period. 

Table 10. Total areas and proportions of TMF disturbances (deforestation without regrowth, regrowth after deforestation, and forest degradation) 
and reforestation areas (initially other land cover) over the period 1990–2020 for each subregion and continent (areas in million hectares and 
proportions in percentages). LC, land cover.  

Disturbed areas (Mha) % of total disturbances % of undisturbed forest in 1990

Subregion Deforestation Regrowth Degradation Total Deforestation Regrowth Degradation Deforestation Regrowth Degradation Total
Reforestation 

(from other LC)

West Africa 11.8 0.7 6.5 19.0 61.9 3.7 34.5 34.0 2.0 18.9 55.0 0.4

Central Africa 21.2 2.1 15.1 38.4 55.2 5.4 39.4 9.5 0.9 6.8 17.2 1.1

Southeast Africa 6.7 0.5 2.1 9.3 71.9 5.7 22.4 42.5 3.4 13.3 59.2 0.2

Central America 10.6 1.8 5.9 18.3 58.0 9.7 32.3 30.7 5.1 17.1 53.0 0.7

South America 78.1 10.9 33.4 122.4 63.8 8.9 27.3 11.6 1.6 5.0 18.2 4.0

Continental  

Southeast 

Asia

22.0 4.9 12.2 39.1 56.2 12.4 31.4 30.0 6.6 16.7 53.3 2.0

Insular Southeast 

Asia
38.9 8.7 31.1 78.8 49.4 11.1 39.5 16.4 3.7 13.1 33.1 1.6

Continent Deforestation Regrowth Degradation Total Deforestation Regrowth Degradation Deforestation Regrowth Degradation Total
Reforestation 

(from other LC)

Africa 39.6 3.3 23.8 66.7 59.4 4.9 35.6 14.5 1.2 8.7 24.4 1.6

Latin America 88.7 12.6 39.3 140.7 63.1 9.0 27.9 12.6 1.8 5.6 19.9 4.7

Asia-Oceania 60.9 13.6 43.4 117.8 51.7 11.5 36.8 19.6 4.4 13.9 37.9 3.6

Total 189.2 29.5 106.5 325.2 58.2 9.1 32.7 14.9 2.3 8.4 25.7 10.0
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6) Deforestation of undisturbed forest, followed by a recovery 
period (forest regrowth). 

7) Deforestation of a degraded forest (with a recovery period be-
tween degradation and deforestation stages). 

8) Deforestation of a degraded forest (with a recovery period be-
tween degradation and deforestation stages), followed by a recovery 
period (regrowth). 

9) Deforestation with a forest conversion to water bodies. 
10) Deforestation with a forest conversion to commodities.
To produce a more conservative map of undisturbed forests by 

excluding potential missed areas affected by logging activities, we 
created a disturbance buffer zone using a threshold distance of 
120 m around disturbed pixels. This distance corresponds to the 
average observed distance between two logging decks (landing) and 
is consistent with the distances used in previous studies for assess-
ing intact forests (15).

Trend analysis
The areas of TMF and disturbance classes are reported annually in 
5-year intervals from 1990 to 2019, by country, subregion, and con-
tinent (Tables 1 to 10, Figs. 3 and 4, fig. S11, and see Supplementary 
Text on trend analysis), using the country limits from the Global 
Administrative Unit Layers dataset from the FAO (57). Area mea-
surements were also computed for 1° by 1° cells of a systematic lati-
tude-longitude grid to delineate hot spot areas of deforestation and 
degradation for the three decades (Fig. 5). For the three most recent 
years of the considered period (i.e., for 2017–2019), the proportions 
of disturbance types (degradation followed by deforestation, degra-
dation not followed by deforestation, and direct deforestation) were 

calibrated with historical proportions (2005–2014) of the three types 
of disturbances. For countries with moist forest areas larger than 
5 million ha in 1990 (i.e., for 32 countries) and for all subregions, we 
analyzed the temporal dynamics of annual changes from 1990 to 
2019 (fig. S11 and see Supplementary Text on trend analysis).

Validation
The performance of our classifier was assessed in term of errors of 
omission and commission at the pixel scale, and the uncertainties in 
the area estimates derived from the transition map were quantified 
(see Supplementary Text on validation). A stratified systematic 
sampling scheme was used to create a reference dataset of 5250 
sample plots of 3 by 3 pixels (0.81 ha of plot size) (fig. S8). For each 
sample plot, Landsat images on several dates were visually inter-
preted, together with the most recent HR images available from the 
Digital Globe or Bing collections, to create the reference dataset. 
The dates of the Landsat images to be interpreted were selected to 
optimize the assessment of the performance of our classifier as follows 
(fig. S9): (i) at least one random date within three successive key 
periods to verify the consistency of the temporal sequencing and 
the classifier performance across the main sensors (L5, L7, and L8); 
(ii) for the disturbed classes, the two dates corresponding to the 
first and last disruption observations were selected to assess the com-
mission errors; and (iii) for the undisturbed forest class, at least 
one random date during the GFC loss year (if existing) to assess 
omission errors. It resulted in the interpretation of two to four 
Landsat images for each sample plot, with a total of 14,295 images.

The user, producer and overall accuracies, the confidence in-
tervals of the estimated accuracies, and the corrected estimates of 

Table 11. Comparison of estimates of annual deforested areas (in million hectares per year) from previous studies and our study, over the tropical 
belt, over the three continents and Brazil. 

Source GFC (24) Sample-
based (32)

FAO national 
statistics (31)

PRODES-
INPE (30) This study

Forest extent
Whole TMF 

(undisturbed 
and degraded)

Primary 
forest from 

INPE

Natural 
forest*

All tropical 
forests 

(evergreen and 
deciduous)

Primary 
forest Whole TMF

TMF 
excluding 

the tree 
plantations

Primary 
forest from 

INPE

Pantropical 
region

2001–2010 4.67 7.24 7.72

2001–2012 4.80 6.5 ± 0.7 7.19 6.44

2001–2015 5.07 6.66 6.95

2001–2019 5.79 6.66

Africa
2001–2012 0.73 1.21 ± 0.4 1.60 1.57

2001–2019 1.28 1.64

Latin America
2001–2012 2.19 3.7 ± 0.5 3.25 3.19

2001–2019 2.41 2.93

Asia-Oceania
2001–2012 1.89 1.6 ± 0.4 2.34 1.67

2001–2019 2.10 2.09

Brazil

2001–2010 1.61 1.35 1.65 2.55 1.57

2001–2012 1.54 1.26 2.1 ± 0.3 1.47 2.32 2.27 1.42

2010–2019 1.64 1.34 0.67 1.63 1.04

2001–2019 1.64 1.35 1.19 2.10 1.31

 *Evergreen and deciduous, excluding manage forests (e.g., tree plantations).
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undisturbed and disturbed forest areas with a 95% confidence inter-
val on this estimation were computed in accordance with the latest 
statistical practices (27). The performance of our disturbance detec-
tion results in 9.4% omissions, 8.1% false detections, and 91.4% 
overall accuracy (tables S2 and S3). In addition, the uncertainties of 
area estimates (forest cover and changes) have been assessed from a 
sample of 5119 reference plots. This accuracy assessment shows that 
a direct area measurement from the forest cover maps underestimates 
the forest area changes by 11.8% (representing 38.4 million ha, with 
15 million ha having a confidence interval of 95%) (tables S4 and S5).

Comparison with the GFC dataset
We compared our transition classes with the GFC dataset (24) for 
the TMF domain (undisturbed and degraded forest) in 2000 and 
over the period 2001–2019, which is the common period between 
the two products. We synthesized the GFC multiannual product 
into four classes of forest cover changes from the combination of 
the GFC annual layers of tree cover loss and gain over the period 
2001–2019: (i) unchanged (no loss and no gain), (ii) at least one loss 
but no gain, (iii) at least one gain but no loss, and (iv) at least one 
loss and one gain. A new version of the transition map with eight 
classes was created (through the combination with annual maps) to 
characterize the disturbances that occurred from 2001 to 2019: (i) 
undisturbed forest (at the end of 2019), (ii) old degradation or re-
growth (initiated before 2001), (iii) old deforestation (before 2001), 
(iv) degradation initiated from 2001 to 2019, (v) direct deforesta-
tion initiated from 2001 to 2019, (vi) deforestation that follows deg-
radation and initiated from 2001 to 2019, (vii) regrowth initiated 
from 2001, and (viii) other land cover.

A matrix of correspondences between the synthesized GFC map 
(four classes) and our reclassified transition map (eight classes) was 
then produced for each continent and for the pantropical region, 
where area estimates are compared (table S1). This comparison shows 
that our annual change dataset depicts 138.9 million ha of forest 
disturbances in the period 2001–2019 that are not depicted in the 
GFC map (representing 59% of the total area of our disturbances). 
This finding is corroborated by previous studies (32, 33). In addi-
tion, 17.6 million and 3.2 million ha are depicted as a GFC loss, 
whereas it is classified as old deforestation and degradation, respec-
tively, (before 2001) in our TMF dataset. Among the disturbances 
that are not depicted by GFC, the greatest discrepancies concern the 
gradual processes such as degradation, the forest regrowth classes, 
and the deforestation that follows degradation. For these processes, 
the respective results showed that 75, 67, and 59% of our depicted 
areas are missing on the GFC map, whereas our direct deforestation 
class corresponds well with the GFC map (60%). The discrepancy 
between our dataset and the GFC map is even greater for the chang-
es within mangroves, with an 83% difference. Mangroves are a key 
ecosystem within the TMF. We also observed a lower level of agree-
ment for the disturbance classes in Africa (38% of our disturbances 
are depicted by GFC) compared with other continents (40.9 and 
43.3% for Asia and Latin America, respectively). A higher underes-
timation of GFC loss in Africa compared with other continents has 
also been observed by Tyukavina et al. (32) using a sample-based 
analysis.

We observe greater discrepancies between GFC and our study 
for shorter and lower-intensity events. We observe an average dura-
tion of 6.7 years (visible impact) for the disturbances (both degra-
dation and deforestation) detected only by our approach (and not 

by GFC) and an average duration of 9.4 years for the disturbances 
captured by both approaches (GFC and our approach). We observe 
an average intensity (or total number of disruptions detected for each 
disturbance) of 9.9 for the disturbances detected only by our approach 
compared with 32.6 for the disturbances captured by both approaches.

The evolution of the discrepancies over time shows major dif-
ferences between the period (2001–2010) for which our annual 
change dataset depicts 61.4% more deforested areas and the past 
decade (2010–2019) for which GFC losses include all our deforesta-
tion areas and 5.7% of our degradation areas (Table 11 and Fig. 3). 
This change in the past decade has also been observed in another 
study (58) and can be explained (i) by the differences in process-
ing applied by the GFC team before and after the year 2011 
(https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.3.html) and (ii) by the inclusion of burned areas 
in the GFC loss (particularly for the dry period of 2015–2016) that 
are mainly classified as degradation in our TMF dataset.

Projection of future forest cover
Temporal projections of future forest cover are provided for (i) un-
disturbed forest area and (ii) total forest area (undisturbed and de-
graded forests) per country (fig. S12 and table S8). We considered 
that the annual disturbed areas followed an independent log normal 
distribution for each country, and we used a modified version of 
the Cox method to estimate the means and the 95% confidence in-
terval (59) of the distribution. We used these estimates for the past 
10 years (period 2010–2019) to project disturbances over the period 
2020–2050 under a business-as-usual scenario. Several metrics, 
with their uncertainties, have been produced: (i) forest area at the 
end of 2050, (ii) percentage of remaining forest area at the end of 
2050 compared with forest area at the end of 2019, and (iii) year 
corresponding to full disappearance of forest cover.

Known limitations and future improvements
Disturbances that affect less than the full pixel area (0.09-ha size), 
e.g., the removal of a single tree, are not included in our results 
when the impact of partial tree cover removal on the spectral values 
of the pixel is not strong enough to be detected. However, in specific 
cases, where the impact on the forest canopy cover significantly 
modifies the spectral values within a single pixel, e.g., the opening of 
a narrow logging road (<10 m wide) or the removal of several big 
trees, our approach can detect these disturbances.

We have addressed the geographic and temporal discontinuities 
of the Landsat archive (see the “Data” and “Mapping method” sec-
tions) by determining at the pixel level (i) an initial period (baseline) 
of at least 4 years (increasing when the annual number of valid ob-
servations is low) for mapping the initial TMF extent and (ii) a 
monitoring period for detecting the changes. This minimizes the 
risk of inclusion of nonforest cover types (such as agriculture) and 
deciduous forests in the baseline when there are few valid observa-
tions over a short period. This risk has been underestimated by pre-
vious studies that did not use a long period of analysis and did not 
account for the number of valid observations.

The accuracy of the disturbance detections has been assessed in 
the validation exercise (see the “Validation” section and Supple-
mentary Text on validation). The assignment of the disturbance 
types at any location improves as the number of valid observations 
increases. The meta-information documents (i) the annual number 
of valid observations, (ii) the first year of valid observation (fig. S15), 
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and (iii) the start year of the monitoring period (fig. S18) at each 
pixel location. This meta-information (in particular, the number of valid 
observations) can be considered as a proxy measure of confidence. 
Hence, our estimates of changes in the regions where the total num-
ber of valid observations is particularly low and/or the start year of 
the monitoring period is late (figs. S14, S15, and S18), e.g., Gabon, 
Solomon Islands, and La Réunion, should be considered with lower 
confidence. However, considering the geographic completeness of 
Landsat 8 coverage after the year 2013, there is high confidence for 
the contemporary reported estimates.

Short-duration events are likely to be underestimated for re-
gions with geographic and temporal discontinuities in the Landsat 
archive and/or with gaps caused by persistent cloud cover. This is 
the case for Africa, which is poorly covered by Landsat acquisitions 
before the year 2000 (fig. S16). To provide a more conservative esti-
mate of the remaining undisturbed forested areas, we also produced 
another estimate of undisturbed forested areas, using a buffer zone 
with a threshold distance of 120 m from the detected disturbed pixels 
to exclude the potentially edge-affected forest areas. Further con-
textual spatial analysis would be needed to better estimate the char-
acteristics of fragmented areas.

At pantropical scale, with fine spatial resolution and annual fre-
quency, detailed information about the historical forest area changes 
within the plantation concessions of oil palm and rubber are pro-
vided through to the combination of ancillary information and 
dedicated visual interpretation (see Supplementary Text on ancil-
lary datasets). Although some confusion between forests and old 
plantations may remain (in particular, for plantations that are not 
included in the ancillary database of concessions or that cannot be 
easily identified visually in satellite imagery from a regular geomet-
rical shape), these errors are expected to be limited because of the 
consideration of (i) a minimum duration for the initial period and 
(ii) a long observation period. Classes of tree plantations do not 
include all commodities, such as coffee, tea, and coconut, that are 
detected as deforested land (if initially TMF and converted into 
commodity during the monitoring period) or other land cover (if 
the concession was already established during the initial period).

Some isolated commission errors may remain in the bamboo-
dominated TMF, wetlands, and semideciduous forests, as reference 
data were available on restricted areas (see Supplementary Text on 
specific tropical forest types). These will be continuously improved 
as the reference information layers improve and based on the feedback 
of users and national authorities.

The L7 SLC-off issue may introduce some spatial inconsistencies 
owing to a higher number of valid observations outside the SLC-off 
stripes, allowing more disruptions to be captured and, potentially, 
leading to a different transition class.

Efforts have been made to classify disturbances based on their 
characteristics (timing, recurrence, and sequence) to fit with the 
land cover use. However, all metrics used in this study are made 
freely available to the end user, who may apply different decision 
criteria that would better match specific user needs and constraints, 
e.g., the threshold applied to discriminate between deforestation 
and degradation may be different because of the selected definition 
of degradation.

This approach can be applied to future Landsat data (from 2020) 
automatically and is intended to be adapted to Sentinel-2 data 
(available since 2015) for TMF monitoring with higher temporal 
frequency and finer spatial resolution.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/10/eabe1603/DC1
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