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Radiocesium accumulation in aquatic organisms: A global synthesis from an 1 

experimentalist’s perspective 2 

Abstract: 3 

A better understanding of the fate of radiocesium in aquatic organisms is essential for making 4 

accurate assessments of potential impacts of radiocesium contamination on ecosystems and 5 

human health. Studies of the accumulation of 
134

Cs and 
137

Cs in diverse biota have been the 6 

subject of many field investigations; however, it may often be difficult to understand all the 7 

mechanisms underlying the observations reported. To complement field investigations, 8 

laboratory experiments allow better understanding the observations and predicting dynamics 9 

of Cs within aquatic ecosystems by accurately assessing bioaccumulation of Cs in living 10 

organisms. The present review summarizes selected relevant laboratory studies carried out on 11 

Cs bioaccumulation in aquatic organisms over a period of more than 60 years. To date, 125 12 

experimental studies have been carried out on 227 species of aquatic organisms since 1957. 13 

The present review provides a synthesis of the existing literature by highlighting major 14 

findings and identifying gaps of key information that need to be further addressed in future 15 

works on this topic. Thus, influences of some environmental parameters such as water 16 

chemistry both for marine and freshwater ecosystems, and biotic factors such as the life-17 

stages and size of the organisms on radiocesium bioaccumulation should be examined and 18 

become priority topics for future research on Cs accumulation in aquatic organisms. 19 

Keywords: Aquatic biota; Radiocesium; Radiotracer experiment; Radioecology; Review.  20 



1. Introduction 21 

While radioactive releases into the ocean have in general decreased over recent time (Ito et 22 

al., 2003), there are still many unresolved concerns in coastal areas receiving direct 23 

radioactive inputs. This is particularly true after the 2011 accident that occurred in the nuclear 24 

power plant at Fukushima where a significant amount of radiocesium was released into the 25 

marine environment (Bailly du Bois et al., 2012; Chino et al., 2011). After this accident, the 26 

activity of radiocesium increased as much as 1000 times more than the background levels 27 

observed in the coastal waters off Japan before this event (Buesseler et al., 2011, 2012; 28 

Estournel et al., 2012). 29 

Radiocesium isotopes are persistent in aquatic environments (
134

Cs: t½ = 2.06 yr and 
137

Cs: 30 

t½ = 30.17 yr), and so can be readily bioaccumulated by aquatic organisms at the bottom of 31 

the aquatic food chain (e.g. phytoplankton and macrophytes; Fisher, 1985; Harvey and 32 

Patrick, 1967; Heldal et al., 2001; Warnau et al., 1996) and can then be transferred to higher 33 

trophic levels such as fish (Pentreath, 1963; Zhao et al., 2001; Mathews and Fisher, 2009). 34 

Furthermore, radiocesium concentrations have been measured in the field up to 1000 Bq kg
-1

 35 

(338 Bq kg
-1 

of 
134

Cs and 699 Bq kg
-1 

of 
137

Cs) in fish (Chen, 2013; Iwata et al., 2013; Wada 36 

et al., 2016). Such observations confirm the importance of aquatic organisms as vectors for 37 

bioaccumulation and potential biomagnification of radiocesium (Tateda et al., 2013) as has 38 

also been suggested from results of laboratory radiotracer experiments (e.g. Mathews et al., 39 

2008; Mathews and Fisher, 2008; Pan and Wang, 2016; Zhao et al., 2001). 40 

The determination of radiocesium bioaccumulation parameters in aquatic organisms under 41 

controlled laboratory conditions can be key to better understanding the significance of field 42 

measurements (Warnau and Bustamante, 2007; Wang et al., 2018). Indeed, an experimental 43 

radiotracer approach can provide relevant information about contamination pathways or 44 

uptake and depuration capacities of exposed organisms (e.g. Pouil et al., 2015; Reinardy et al., 45 



2011; Sezer et al., 2014; Wang et al., 2000). Laboratory experiments allow (1) comparing the 46 

bioaccumulation capacities of different marine organisms in fairly comparable contamination 47 

conditions, (2) obtaining information about food chain transfer, (3) delineating the major 48 

uptake pathway(s) through computation of the data, and (4) providing a clear insight into 49 

major biological mechanisms that are activated during pollution events (Metian et al., 2016). 50 

In comparison to stable isotope approaches, radiotracer techniques offer several unique 51 

advantages, such as cost effectiveness and elevated throughput of samples. Furthermore, 52 

gamma-emitting radiotracers allow radioanalysis of live organisms and thus, substantially 53 

decrease the number of sacrificed organisms and generate data with reduced biological 54 

variability (Warnau and Bustamante, 2007). Laboratory experiments also enable the selection 55 

of appropriate candidate species for carrying out biomonitoring programs (e.g. Bervoets et al., 56 

2003; Børretzen and Salbu, 2009; Warnau et al., 1999). Thus, experimental results help to 57 

better understand and predict the dynamics of radiocesium in aquatic environments and in 58 

biota after a contamination event. 59 

The present review also identifies trends and gaps in the literature,  as well as offers an 60 

opportunity to outline methodologies for measuring the bioaccumulation of radiocesium in 61 

marine organisms. The experiments outlined in the database and built into this review helped 62 

scientists understand the effects of radiological depositions by controlling environmental 63 

parameters in a laboratory. Such works which were carried out under controlled conditions 64 

were then compared to field data that were collected after accidents such as Chernobyl and 65 

Fukushima for making an even deeper analysis of the consequences of a nuclear accident on 66 

the environment. Furthermore, many different models have been developed to simulate 67 

additional depositions or to outline the pathways by which contamination moves through an 68 

organism and where the contamination will accumulate in these organisms. The necessary 69 



inputs for these models are also outlined in works held within this database. This review 70 

therefore aims at outlining key results of previous experiments as a toolbox for modelers.  71 

 72 

2. Material and methods 73 

2.1. Literature search 74 

Searches were performed to list all the available experimental studies carried out on 75 

radiocesium bioaccumulation in aquatic organisms. Laboratory studies with stable cesium 76 

isotopes, a less relevant approach to studying kinetics of radiocesium bioaccumulation, were 77 

not considered in this review. Commonly used databases were searched, e.g. Elsevier, Google 78 

Scholar, Scopus and Web of Science. For each database, searches included peer-reviewed 79 

articles, conferences articles, thesis and scientific reports over the time span from 1950 to 80 

present (2018). All available citation indexes of the database core collection were included in 81 

the search. Due to differences in search functionality, coding of the searches was adapted with 82 

selected keywords: “bioaccumulation”, “cesium”, “caesium”, and “aquatic organisms”. 83 

Following searches, duplicates were deleted. Non-relevant records, studies that not explicitly 84 

addressed bioaccumulation of radiocesium by an experimental approach, and review articles 85 

were removed. Records not written in English, at least the abstract, were excluded from 86 

further analysis. The completeness of the results obtained was considered as satisfactory 87 

based on “snowballing” (i.e. checking citations on reference lists of relevant articles until no 88 

further relevant articles could be found; Sayers, 2007). 89 

 90 

2.2. Database construction 91 

A bibliographic database (see supplementary material) was assembled to archive all 92 

publications (book chapters, conference articles, peer-reviewed articles, reports and theses) 93 



that address radiocesium bioaccumulation in aquatic organisms under controlled conditions. A 94 

total of 125 publications was finally selected.  95 

The information extracted for the database fell into 6 different sections: 96 

1. Paper information and objective(s) of the experiment: This section includes reference 97 

information such as title, year and authors of the publication. Objective(s) of the 98 

experiment(s) including the tested variable and the isotope of cesium used (
134

Cs and 
137

Cs) 99 

were also compiled. 100 

2. Biological model information: All details are provided about the biological model such as 101 

phylogeny, diet and trophic level and habitat (e.g. benthic, demersal, pelagic). For trophic 102 

level, information was collected from databases such as FishBase (Froese and Pauly, 2018) or 103 

scientific literature on the given species. In some cases, when there was no information 104 

available, approximations have been made, taking the TL of the closest-related species (e.g. 105 

filter-feeder bivalves were considered to be at a trophic level of 2.1 ± 0.13). 106 

3. Location information: Geographical information on where the sampling and experiments 107 

took place.  108 

4. Experimental conditions: This section is focused on the materials and methods information 109 

such as the uptake pathway(s) examined, if uptake and/or loss were investigated, and the level 110 

of exposure (in Bq L
-1

 or Bq g
-1

). Details of size and/or weights of the experimental organisms 111 

are provided. Ambient habitat conditions of the organisms including source of water used 112 

(natural or artificial), open or closed water circulation, pH, temperature and salinity are 113 

described, and acclimation and experiment duration (expressed in days) are also indicated. 114 

5. Data collection methodology: Herein is indicated the type of data collected (e.g. kinetic 115 

parameters, organotropism) and the biological level considered (i.e. whole-body or specific 116 

organs and tissues). For kinetics of radiocesium accumulation, when available, information is 117 



provided on modelling approaches used to describe observed trends: exponential, linear or 118 

logarithmic models. 119 

6. Results and additional information: The data collected in the results section of the 120 

publications were compiled in this section as well as the main points discussed. Additional 121 

information about the contents of the publication was also detailed. Normalization of the data 122 

(such as unit conversion and transformation) was done for comparison purposes and is clearly 123 

indicated in the database (see supplementary material). 124 

 125 

3. Global overview of the database 126 

3.1. History of radiocesium bioaccumulation in experimental studies 127 

Overall analysis of the database reveals that there is no coincidence that this research began 128 

after the early developments of nuclear weapons. Weapons testing left large amounts of 129 

fission products scattered throughout the environment, and since some radioisotopes of Cs 130 

have a long half-life (e.g. 30.17 years for 
137

Cs), the deleterious effects of this contaminant on 131 

the aquatic environment and humans can extend over several decades.  132 

The importance of studies outlining the bioaccumulation of radiocesium becomes even more 133 

obvious when assessing the effects of nuclear accidents. Nevertheless, our findings indicated 134 

that the number of publications on this topic has not increased significantly following the 135 

Chernobyl nuclear accident in 1986 and later after the Fukushima Daiichi nuclear power plant 136 

accident in Japan in 2011 (Fig. 1A). It was expected that there would be a sharp increase in 137 

the number of papers written following events such as Chernobyl and Fukushima. However, 138 

since 1990, there is a consistency in the publications per decade carried out on the 139 

experimental bioaccumulation of radiocesium in aquatic organisms (Fig. 1B). While the focus 140 

of studies changes over time, the overall objective of the selected publications appears to 141 

remain constant. It seems that since the early stages of nuclear power and weapons 142 



development (in the 1950-1960’s), the majority of research was focused on the accumulation 143 

and retention of radiocesium in different types of marine organisms, firstly through empirical 144 

approaches (e.g. Bryan and Ward, 1962; Gutknecht, 1965; Jefferies and Hewett, 1971) and 145 

more recently using kinetic models (e.g. Belivermiş et al., 2017; Metian et al., 2016; Sezer et 146 

al., 2014).  147 

3.2. Biological models (species and taxa) 148 

There is a great taxonomy diversity in the aquatic taxa selected in the experimental studies of 149 

Cs bioaccumulation. Indeed, among the 125 publications analyzed, 110 used animals as 150 

biological models (Fig. 2A). Thus, 158 animal species were studied including mainly ray-151 

finned fish (Actinopterygii), bivalves and malacostracans (i.e. approx. 70% of the animals 152 

studied, Fig. 2B). 153 

Plants, which include both macrophytes and some microalgal species, were studied in 22 154 

publications and used 40 species from 9 different classes (Fig. 2A). Among the latter, 155 

Chlorophyceae, Florideophyceae and Ulvophyceae were the most studied (Fig. 2B). 156 

Chromista, including mostly algae were rarely studied; e.g.17 publications based on 21 157 

species. The low representation of bacteria (Fisher, 1985; Harvey, 1969a; Harvey and Patrick, 158 

1967; Vogel and Fisher, 2010) and protozoa (Williams, 1960) confirms that the research 159 

effort examining bioaccumulation of radiocesium in aquatic microorganisms is still very 160 

limited (Fig. 2A). 161 

 162 

3.3. Exposure pathways 163 

The experimental study of radiocesium bioaccumulation can be done through (1) an exposure 164 

via a unique pathway (so-called single-pathway approach) or (2) several pathways studied 165 

separately or together (so-called multiple-pathway approach). The latter experimental 166 

approach allows a more comprehensive understanding of the mechanisms of bioaccumulation 167 



in a given species, and it is useful to estimate, through a modelling approach, the main 168 

pathways of bioaccumulation (Børretzen and Salbu, 2009; Hewett and Jefferies, 1978; Metian 169 

et al., 2016; Pentreath, 1973; Pouil et al., 2015). 170 

This review indicates that the single-pathway approach was used in 79% of the publications 171 

(Fig. 3) with a main focus on the water pathway (85% of the publications concerned). Food 172 

and sediment were also studied as single pathways in 9% and 1% of the publications, 173 

respectively (Fig. 3A). In the remaining publications (5%), other pathways were considered 174 

such as radiocesium injection into the bloodstream (e.g. Peters et al., 1999) and via maternal 175 

transfer to offspring (e.g. Jeffree et al., 2015, 2018).  176 

Only 21% of the studies conducted a multiple-pathway approach. Among them, the 177 

combination of water and food occurred in 69% of the publications (Fig. 3B). Unlike single-178 

pathway studies, more information on sediment is available in multiple-pathway studies, an 179 

aspect that was dealt with in 5 publications (Amiard-Triquet, 1974, 1975; Evans, 1984; Ueda 180 

et al., 1978, 1977). Furthermore, only 3 experimental works were conducted with 3 exposure 181 

pathways: water, food and sediment (Bustamante et al., 2006; Metian et al., 2011, 2016). The 182 

multi-pathway studies allow acquiring data regarding the major pathways of radiocesium 183 

bioaccumulation under similar experimental conditions (e.g. under the same physicochemical 184 

conditions whatever the studied pathway). Since aquatic organisms are naturally exposed to 185 

radiocesium from dissolved and particulate pathways (food, sediment), a multi-pathway 186 

approach should be preferred to highlight the main source of uptake and thus better 187 

characterize the main bioaccumulation pathway of this contaminant. 188 

 189 

4. Factors influencing radiocesium bioaccumulation 190 

4.1. Temperature 191 



Temperature is one of the most important environmental variables in aquatic ecosystems since 192 

it has a strong impact on the physiology of organisms. For this reason, the influence of this 193 

abiotic factor on bioaccumulation of radiocesium has been extensively studied (17 194 

publications). Interestingly, the effects of temperature are similar in different taxa. Thus, an 195 

increase in temperature leads, in most cases, to an increase of concentration factors (CFs) of 196 

dissolved radiocesium in ray-finned fish (Hiyama and Shimizu, 1964; Prihatiningsih et al., 197 

2016a), arthropods (Bryan, 1965; Bryan and Ward, 1962), echinoderms (Hutchins et al., 198 

1996a, b), molluscs (Qureshi et al., 2007; Wolfe and Coburn, 1970) and algae (Boisson et al., 199 

1997; Styron et al., 1976). Elimination of radiocesium following dissolved or trophic 200 

exposure is also temperature-dependent, with usually a higher radiocesium retention (i.e. 201 

longer Tb1/2 and lower ke) when temperature decreases (Cocchio et al., 1995; Hutchins et al., 202 

1996a, b; Ugedal et al., 1992). However, there are some exceptions where the temperature had 203 

no effect on uptake (Harvey, 1969b; Lacoue-Labarthe et al., 2012) or on the elimination of 204 

radiocesium (Hutchins et al., 1998). In some cases, reverse effects have been shown with, for 205 

example, a decrease in CFs observed in the goldfish Carassius auratus in relation to 206 

increasing temperatures (12, 20 and 28°C, Srivastava et al., 1994). Organotropism of 207 

radiocesium can also be affected by temperature. Indeed, it has been demonstrated in the 208 

channel catfish Ictalurus punctatus, after radiocesium injection into the blood, that its 209 

partitioning in the peripheral tissues decreased with increased temperature (Peters et al., 210 

1999).   211 

Interestingly, a meta-analysis based on information available in the database (see 212 

Supplementary Material) was performed and revealed no general trend regarding the 213 

influence of temperature on uptake (uptake rate and CF) and retention (Tb1/2, absorption 214 

efficiency) of dissolved radiocesium in aquatic organisms. Overall, these results suggest that 215 

the effects of temperature, the most studied abiotic factor, on the bioaccumulation of 216 



radiocesium are complex and dependent both on the species considered and other 217 

environmental factors. For these reasons modeling the effects of temperature requires special 218 

attention. 219 

 220 

4.2. Salinity 221 

Salinity is a master variable for coastal and marine ecosystems and can play an important role 222 

in the chemical speciation of many elements and also affect the physiology of aquatic 223 

organisms. This review showed that 15 publications explicitly dealt with salinity in Animalia, 224 

Chromista and Plantae species. Most of these studies found effects of salinity on the 225 

bioaccumulation of dissolved radiocesium in several taxa. For ray-finned fish species, there 226 

are contradictory findings on the effects of salinity on bioaccumulation of dissolved 227 

radiocesium, with an increase in CFs observed at the lowest (15 psu, Zhao et al., 2001), 228 

highest (35 psu, IAEA, 1975) or intermediate (29 psu, Prihatiningsih et al., 2016a) salinity 229 

conditions. In addition, Hattink et al. (2009) have demonstrated that radiocesium uptake in 230 

European seabass is independent of salinity (approx. 1-35 psu) as well as the assimilation 231 

efficiency (AE) of ingested radiocesium. Nevertheless, in turbot Scophthalmus maximus, 232 

Pouil et al. (2018) found a significantly higher AE when fish are exposed to low salinity 233 

conditions (10 and 25 psu) compared to the control condition (salinity: 38 psu). These results 234 

show that effects of salinity are species-dependent, likely in relation to their salinity tolerance 235 

ranges. Among invertebrates, Topcuoǧlu (2001) found that bioaccumulation of radiocesium in 236 

the isopod Idothea primastica was significantly enhanced in a low salinity regime (approx. 7 237 

psu). Similar findings were highlighted for the lugworm Arenicola marina (Amiard-Triquet, 238 

1974). Generally, the same results have been reported for bivalves (Ke et al., 2000; Qureshi et 239 

al., 2007; Wolfe and Coburn, 1970) and malacostracans (Bryan, 1961; Bryan and Ward, 1962; 240 

Bryan, 1963) for salinity values from approx. 1 to 35 psu. Not surprisingly, radiocesium CFs 241 



in algae are usually higher at the lower salinity (3.5-8 psu, Carlson and Erlandsson, 1991; 242 

Styron et al., 1976). Although there are some contradictory results, especially in fish, most 243 

experimental studies have shown that salinity strongly affects the bioaccumulation of 244 

radiocesium in aquatic organisms which usually results in an increase in concentration in low 245 

salinity regimes (< 15 psu). Various mechanisms have been proposed to explain that 246 

organisms living in low salinity regimes generally contain higher radiocesium concentrations. 247 

Indeed, salinity can affect physiological conditions of the organisms (e.g. cell volume, 248 

membrane permeability, water pumping rate) and chemical element speciation. Furthermore, 249 

an increase in cation concentrations with increasing salinity affects the permeability of the 250 

membranes and increases the competition for binding sites. 251 

 252 

4.3. Water composition 253 

The effect of water composition on radiocesium  bioaccumulation in aquatic organisms has 254 

been studied from different angles. Since Cs is an alkali metal, it is highly soluble in the water 255 

and exists almost exclusively as the monovalent cation Cs
+
 in aqueous solution. This 256 

dissolved form of radiocesium is chemically similar to the potassium (K) and sodium (Na) 257 

ions. Effects of K concentrations in water on the bioaccumulation of Cs were considered in 7 258 

publications. In three species of ray-finned fish exposed via the dissolved pathway, an 259 

increase in K concentrations led to a decrease in radiocesium uptake (Cocchio et al., 1995; 260 

Srivastava et al., 1990, 1994). Similar findings have been reported for the green-lipped mussel 261 

Perna viridis (Ke et al., 2000) and for the microcrustacean Daphnia magna (Hagstroem, 262 

2002). A plausible explanation for such findings may be competitive inhibition of 263 

radiocesium uptake by the high K concentrations (Bryan, 1963). However, a larger magnitude 264 

of effects of K concentration has been observed in microorganisms (Plantae and Protozoa). 265 

Thus, Hagstroem (2002) has found a negative effect of the increase of K in water on the 266 



uptake of the dissolved radiocesium in two species of Chlorophyta, Chlamydomonas 267 

noctigama and Scenedesmus quadricauda, while Williams (1960) showed a positive 268 

relationship between K concentrations and the uptake of radiocesium in one species of 269 

Chlorophyta, Chlorella pyrenoidosa, and a species of Euglenozoa, Euglena deses. 270 

Considering the assumption that K could change the distribution of radiocesium between the 271 

solid and the liquid phase of sediment, Bervoets et al. (2003) studied the accumulation of 272 

radiocesium from the sediment in the benthic midge larvae Chironomus riparius and found it 273 

was unaffected by K concentrations in water. The influence of sodium (Na) concentrations 274 

has also been examined, and some authors have demonstrated that Na has little effect on the 275 

bioaccumulation of Cs (Hagstroem, 2002), and that is also true for calcium (Cocchio et al., 276 

1995). In addition, Fraysse et al. (2002) showed the absence of an effect of the dissolved trace 277 

metals Cd and Zn on the bioaccumulation of radiocesium in the zebra mussel Dreissena 278 

polymorpha, contrary to what they observed for two other radionuclides (
57

Co and 
110m

Ag). 279 

All of these results demonstrate that there is ultimately insufficient experimental works 280 

investigating the effects of water chemistry on the bioaccumulation of radiocesium, such as, 281 

for example, water hardness. Nevertheless, field investigations have shown that, in freshwater 282 

ecosystems, water hardness and conductivity play a role in the level of radiocesium in biota 283 

(Hakanson et al., 1992; Särkkä and Luukko, 1995). 284 

 285 

4.4. Cs concentration 286 

The influence of environmental stable Cs concentrations on subsequent radiocesium 287 

bioaccumulation in aquatic organisms has been studied in fish and bivalves, as well as in 288 

phytoplankton and bacteria species. In the mangrove snapper Lutjanus argentimaculatus, 289 

Zhao et al. (2001) found that radiocesium CFs were not influenced by the stable Cs 290 

concentrations (0.006-0.6 mM), whereas the calculated uptake rate (ku) increased linearly 291 



with increasing ambient stable Cs concentration. Similar findings have been reported for the 292 

green-lipped mussel (stable Cs concentrations of 0.006-0.6 mM; Ke et al. 2000). Such results 293 

are in agreement with Argiero et al. (1966) who did not find any effect of external 294 

radiocesium concentration on CF in another bivalve species (Mytilus galloprovincialis). For 295 

microorganisms, Williams (1960) found in the bacteria Euglena deses and in the microalga 296 

Chlorella pyrenoidosa that the uptake of dissolved radiocesium was directly proportional to 297 

the ambient stable Cs concentration in water (0-2.5 mM). All of these results indicate that 298 

increasing ambient Cs concentrations lead to a positive linear response of the radiocesium 299 

uptake rate in the aquatic organisms studied. In other words, this suggests that, for the limited 300 

number of aquatic organisms studied, equilibration of radiocesium uptake was not reached 301 

within the experimental Cs concentrations tested (broad range from 0 to 2.5 mM). 302 

 303 

4.5. pH  304 

That the physiological processes of aquatic organisms are affected by changes of pH is 305 

especially important in the context of ocean acidification. For this reason, effects of pH are 306 

increasingly being considered in ecotoxicology studies. Nevertheless, reports in the literature 307 

on the influence of pH on radiocesium bioaccumulation remain rare. Indeed, only 4 308 

publications dealing with pH have been identified. In ray-finned fish species, the Atlantic 309 

salmon Salmo salar and the brown trout Salmo trutta trutta, which were maintained in 310 

freshwater at two pH values (5.00 and 7.40), the Cs uptake rate was significantly reduced at 311 

low pH, but efflux rates were little affected (Morgan et al., 1993). More recently, pH 312 

experiments have been carried out on marine invertebrates; e.g. in cuttlefish eggs of Sepia 313 

officinalis (Lacoue-Labarthe et al., 2012) and in the Manila clam Ruditapes philippinarum 314 

(Sezer et al., 2018). In a comparative study, Lacoue-Labarthe et al. (2018) showed no 315 

influence of pH on the bioaccumulation of radiocesium in the variegated scallop 316 



Mimachlamys varia and the kuruma shrimp Penaeus japonicus. These four studies did not 317 

show any significant difference in the bioaccumulation of dissolved Cs in either the molluscs 318 

(bivalves and cephalopods) or the arthropod exposed to low pH (minimum values of 7.60). At 319 

the organ and tissue level, Lacoue-Labarthe et al. (2012) found that the fraction of 320 

radiocesium associated with the perivitelline fluid of the cuttlefish eggs was higher at lower 321 

pH levels than at normal pH, whereas radiocesium in the eggshell was lower at pH 7.60 than 322 

at pH 8.10. The same authors attributed this result to an increase in the concentration of H
+
 323 

that may reduce the radionuclide adsorption on the eggshell or epithelia through increasing 324 

competition between cations for the binding sites. Thus current knowledge, based on very few 325 

publications, suggests that the influence of pH on the bioaccumulation of radiocesium in 326 

aquatic organisms is limited. 327 

 328 

4.6. Species 329 

Interspecific difference is one of the most studied factors influencing the bioaccumulation of 330 

radiocesium in aquatic organisms (49 publications). Thus, bioaccumulation of radiocesium in 331 

190 species of Animalia, Bacteria, Chromista, Plantae has been compared in the literature. 332 

Examples showing differences in bioaccumulation in phylogenetically-close species are 333 

numerous. Differences between these species have been found after exposures from food (e.g. 334 

Hewett and Jefferies, 1978; Pan and Wang, 2016; Warnau et al., 2002), sediment (e.g. 335 

Amiard-Triquet, 1975; Marc Metian et al., 2016; Ueda et al., 1978) and water (e.g. Baptist 336 

and Price, 1962; Bryan and Ward, 1962; Harvey and Patrick, 1967; Heldal et al., 2001). 337 

Linking taxonomy, phylogeny and radiocesium bioaccumulation can be very complex (Brown 338 

et al., 2019). Nevertheless, a simple meta-analysis of data from the database revealed 339 

differences in the CFs and AEs observed among the different kingdoms (Animalia, Bacteria, 340 

Chromista and Plantae). Thus, CFs of dissolved radiocesium in these different taxonomic 341 



groups were ranked in the following decreasing order Bacteria  Chromista > Animalia  342 

Plantae (p < 0.05, Fig. 4A). AEs of ingested radiocesium in the different classes were ranked 343 

in the following decreasing order Asteroidae  Elasmobranchii > Actinopterygii  Gastropoda 344 

 Malacostraca  Polychaeta  Bivalvia (p < 0.05, Fig. 4B). These meta-analyses allow 345 

highlighting global trends, but their interpretation must take into account the large disparities 346 

in the study of the different taxonomic groups (see Section 3.2) that may affect results. 347 

 348 

4.7. Size and life-stages 349 

In aquatic organisms, such as invertebrates and fish, age and size are correlated. The database 350 

analysis revealed a relative abundance of information on the influence of these variables on 351 

the bioaccumulation of radiocesium in various species of ray-finned fish (Actinopterygii) and 352 

molluscs (bivalves and cephalopods). Thus, in ray-finned fish, some publications have 353 

demonstrated higher CFs of dissolved radiocesium in small or medium size individuals 354 

compared to larger ones (Malek, 1998, 1999; Suzuki et al., 1992). Similarly, Morgan et al. 355 

(1993) stated that juvenile brown trout are more susceptible to bioaccumulate dissolved 356 

radiocesium than adults. Furthermore, Ugedal et al. (1992) reported a higher retention of 357 

radiocesium in small individuals of brown trout. 358 

For molluscs, a higher ability to bioaccumulate dissolved radiocesium has been shown in 359 

smaller (= younger) individuals of bivalve mussels (M. galloprovincialis and P. viridis) 360 

through the measurements of ku or CF (Argiero et al., 1966; Ke et al., 2000). Nevertheless, 361 

Güngör et al. (2001) and Nolan and Dahlgaard (1991) have shown more contrasting results 362 

with no significant difference of CF or Tb1/2 between mussels (M. edulis and M. 363 

galloprovincialis) of different sizes. Such differences observed for the same species (or a 364 

phylogenetically closely related species) can be explained, at least partially, by the size ranges 365 

used which vary greatly in these publications. Indeed, while Ke et al. (2000) used individuals 366 



of 3-4 cm shell length, Güngor et al. (2001) and Nolan and Dahlgaard (1991) have made their 367 

observations on a larger size range (approx. 2.8-6.5 cm shell length. In the cephalopod S. 368 

officinalis, Bustamante et al. (2006) demonstrated a higher assimilation efficiency (i.e. AE) 369 

and retention (i.e. Tb1/2) of ingested radiocesium in juveniles compared to adults indicating 370 

that the greater ability of smaller (= younger) individuals to bioaccumulate radiocesium can 371 

be also true when radiocesium is taken up from food.  The authors stated that these 372 

differences could be related to the decrease of digestive metabolism with age in cephalopods, 373 

with the consequence of a higher efficiency of digestion process in smaller (= younger) 374 

individuals.  375 

Interestingly, even though this was not the main purpose of their study, Warnau et al. (1996) 376 

showed in plants (the Neptune grass Posidonia oceanica) and the killer algae (Caulerpa 377 

taxifolia) that adult leaves have a higher radiocesium retention time (i.e. slower depuration) 378 

than that in younger leaves. This is one of the few publications available on the influence of 379 

size or stage of life on the bioaccumulation of radiocesium in plants. 380 

 381 

4.8. Food quality and starvation 382 

Food quality (type of natural prey and compounded food) is well-known to affect the 383 

assimilation of trace elements in aquatic organisms. For radiocesium, effects of food quality 384 

have been investigated in ray-finned fish and in several invertebrate species (arthropods and 385 

molluscs). Zhao et al. (2001) found in the mangrove snapper (L. argentimaculatus) that there 386 

was no significant difference in radiocesium AE when fed with different prey. Similar results 387 

were found in three species of ray-finned fish with contrasting feeding habits (Pan and Wang, 388 

2016). In bivalves, no significant effect of food has been shown in the Manila clam Ruditapes 389 

philippinarum although AE varied slightly between the experimental treatments (Belivermiş 390 

et al., 2017). Thus, interestingly, the type of food seems to have very limited effect on the 391 



assimilation of radiocesium in aquatic organisms. Furthermore, uptake of dissolved 392 

radiocesium was not affected by starvation as has been shown for several species of 393 

Malacostraca (Bryan, 1961; Bryan and Ward, 1962).  394 

 395 

4.9. Trophic ecology 396 

Meta-analyses were conducted to characterize the influence of trophic ecology on the ability 397 

of aquatic organisms to accumulate radiocesium. Thus, data available on major kinetic 398 

parameters determined respectively from dissolved (CF) and trophic (AE) exposures were 399 

represented as a function of the trophic level of each study (Fig. 5). Regarding CFs, no clear 400 

relationship could be established. However, the results indicate that organisms belonging to 401 

the lowest trophic level (i.e. 1, primary producers) are likely to reach very high CFs values (> 402 

1000, Fig. 5A) in contrast to consumers (trophic levels > 1, Fig. 5A). These results suggest 403 

that, although considerable variabilities exist within each trophic level group, there is no 404 

general trend for the radiocesium CFs to increase with increasing trophic level as suggested in 405 

some previous studies (Fisher et al., 1999; Wang et al., 2000; Zhao et al., 2001). In fact, the 406 

results in Figure 5A even suggest a tendency to decrease with increasing trophic level. 407 

Regarding AE of ingested radiocesium, the meta-analysis showed a trend towards a linear 408 

increase in AE as a function of trophic level (Fig. 5B), a finding that can partly explain why 409 

Cs is one of the few trace elements which show a biomagnification potential at the top level of 410 

food chain (Mathews et al., 2008; Mathews and Fisher, 2008; Zhao et al., 2001).  411 

 412 

5. Organotropism of Cs in aquatic organisms 413 

Measurements of the distribution of radiocesium in organs and tissues are important to 414 

understand the site-specificity of radiocesium binding, to provide additional mechanistic 415 

information potentially helpful in the interpretation of results from whole-body kinetic 416 



measurements, and to furnish additional information for modelling. This literature review 417 

reveals that radiocesium organotropism is relatively poorly studied in laboratory experiments. 418 

Indeed, specific data on the distribution of radiocesium in organs and tissues, expressed as 419 

percentages, have been reported in only 35 publications. Results concerning Cs organotropism 420 

are always difficult to compare between studies since it is rarely the same body compartments 421 

that are considered, and because there is an internal redistribution of the bioaccumulated Cs, 422 

i.e. the time of sampling can greatly affect the results of organotropism (e.g. Onat and 423 

Topcuoǧlu, 1999; Wang et al., 2000). Nevertheless, some results are notably similar between 424 

studies. Indeed, in ray-finned fish many have demonstrated a high proportion of Cs in muscles 425 

(>50%) after exposure by the dissolved route (Guimarães, 1992; Jeffree et al., 2006b; Malek, 426 

1999, 1998; Malek et al., 2004; Twining et al., 1996) or by injection into the blood (Peters et 427 

al., 1999). In bivalves, results are contrasted with absorption of radiocesium in the shell 428 

surface that can be species-dependent (Ke et al., 2000; Metian et al., 2016; Onat and 429 

Topcuoǧlu, 1999; Pouil et al., 2015) and pathway-dependent (Metian et al., 2016; Metian et 430 

al., 2011; Pouil et al., 2015). Nevertheless, care needs to be taken in interpreting these results. 431 

Indeed, rinsing methods of organisms for removal of adsorbed radiocesium before carrying 432 

out radiocesium measurements are sometimes not adequately reported and can therefore lead 433 

to an overestimation of radiocesium on the external surfaces (Cresswell et al., 2017). 434 

 435 

6. Gaps and perspectives 436 

Much has been done over the last 60 years in radioecological research to better assess 437 

radiocesium dynamics, with a main focus on fish and a few abiotic parameters. Figure 6 438 

highlights the research efforts on bioaccumulation and on a series of factors influencing the 439 

bioaccumulation of radiocesium  in aquatic organisms. It also brings gaps of knowledge to the 440 

fore, identified by the limited number of studies and/or unclearly explained effects. It is 441 



especially true for (1) some abiotic environmental factors such as water chemistry (e.g. 442 

chemical composition and pH) and (2) biotic factors (the life-stages and size of the 443 

organisms). All the listed factors should be looked at and become priority topics for further 444 

investigations on radiocesium accumulation in aquatic organisms. Therefore, future research 445 

on this topic should include the effect of abiotic factors (single or multiple factors) and 446 

examine some species that have not been investigated to date. For instance, there is a need to 447 

focus future work on small organisms that constitute food for fish, and to investigate some 448 

abiotic factors that have not been examined to date such as seawater deoxygenation. In 449 

addition, it would be important to better assess the main uptake pathway in a wider range of 450 

taxa, not considering only water and food but also sediment. 451 

In future experimental research on radiocesium  in aquatic organism, a special effort should 452 

be made to examine food transfer. Indeed, radiocesium  enters aquatic food chains primarily 453 

from the aqueous phase into plankton (phyto- and zoo-) which is then consumed and highly 454 

assimilated by a variety of organisms including fish (Thomas et al., 2018). This gap is 455 

confirmed by our meta-analysis (Fig. 5). In fact, one recent modeling approach has indicated 456 

that 99% of the  total body burden of radiocesium in fish is diet-driven in both marine and 457 

freshwater environments (Thomas et al., 2018). 458 

 459 

7. Conclusion 460 

As summarized in this review, laboratory-based investigations and subsequent meta-analyses 461 

are proven useful to identify general trends regarding the factors influencing the 462 

bioaccumulation of radiocesium isotopes, and thus better understand their transfer in aquatic 463 

environments after accidental contaminations. In addition, our database available as 464 

supplementary material, provides an exhaustive source of experimental data useful for 465 

modeling purposes. 466 
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Captions to figures 834 

 835 

Figure 1. Number of publications dealing with experimental studies of radiocesium 836 

bioaccumulation in aquatic organisms (A) per year in relation with the Chernobyl and 837 

Fukushima accidents, and (B) per decade. 838 

 839 

Figure 2. Taxa used as biological models to study bioaccumulation of radiocesium expressed 840 

(A) by kingdom, and (B) by class. 841 

 842 

Figure 3. Proportion and pathways considered in experimental studies conducted by (A) 843 

single-pathway approach, and (B) multiple-pathway approach. 844 

 845 

Figure 4. Influence of phylogeny on (A) Concentration Factor (CF) values determined from 846 

dissolved exposure in the different kingdoms, and (B) Assimilation Efficiency (AE) values 847 

calculated after trophic exposure in different classes of aquatic animals. Whiskers represent 848 

both the max and min values, and the black line represents the median values. Small case 849 

letters (a and b) denote statistical differences (pKruskal-Wallis < 0.05).  850 

 851 

Figure 5. Influence of trophic level (mean values, ranking from 1 for autotroph producers to 5 852 

for higher heterotroph consumers) on (A) Concentration Factor (CF) values determined from 853 

dissolved exposure, and (B) Assimilation Efficiency (AE) calculated after trophic exposure to 854 

aquatic organisms. 855 

 856 

Figure 6. Synthesis of the different factors influencing the bioaccumulation of radiocesium in 857 

aquatic organisms which have been studied, and their relative occurrence in the literature. 858 



* Effects of antibiotics, cell density, food preparation and sex.  859 
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Table 1. Summary of the abiotic factors whose effects have been studied in relation to the 866 

bioaccumulation of radiocesium in aquatic organisms 867 

Variable Pathway Kingdom Number of publications 

Cs concentration 
Food 

Water 

Animalia 

Plantae 

Protozoa 

4
a
 

Pathway 

Food 

Water 

Sediment 

Animalia 13
b
 

pH Water Animalia 4
c
 

Salinity 

Food 

Water 

Sediment 

Animalia 

Chromista 

Plantae 

15
d
 

Temperature 

Food 

Injection in the blood 

Oral administration 

Water 

Animalia 

Bacteria 

Chromista 

Plantae 

17
e
 

Water composition 

Food 

Sediment 

Water 

Animalia 

Plantae 

Protozoa 

8
f
 

Others* Water 
Protozoa 

Plantae 
3

g
 

a 
(Argiero et al., 1966; Ke et al., 2000; Williams, 1960; Zhao et al., 2001) 868 

b
 (Børretzen and Salbu, 2009; Bustamante et al., 2006; Hansman et al., 2018 ; Metian et al., 2011; Pouil et al., 2015; Prihatiningsih et al., 869 

2016b; Reinardy et al., 2011; Sezer et al., 2014; Suzuki et al., 1992; Topcuoǧlu and Van Dowen, 1997; Ueda et al., 1977; Warnau et al., 870 
1996; Zhao et al., 2001) 871 

c
 (Lacoue-Labarthe et al., 2012, 2018; Morgan et al., 1993; Sezer et al., 2018) 872 

d
 (Amiard-Triquet, 1974; Bryan, 1963, 1961; Bryan and Ward, 1962; Carlson and Erlandsson, 1991; Hattink et al., 2009; IAEA, 1975; Ke et 873 

al., 2000; Pouil et al., 2018a; Prihatiningsih et al., 2016a; Qureshi et al., 2007; Styron et al., 1976; Topcuoǧlu, 2001; Wolfe and Coburn, 874 

1970; Zhao et al., 2001)  875 

e
 (Boisson et al., 1997; Bryan, 1965; Bryan and Ward, 1962; Cocchio et al., 1995; Harvey, 1969b; Hiyama and Shimizu, 1964; Hutchins et 876 

al., 1996a, 1996b, 1998; Lacoue-Labarthe et al., 2012; Peters et al., 1999; Prihatiningsih et al., 2016a; Qureshi et al., 2007; Srivastava et al., 877 
1994; Styron et al., 1976; Ugedal et al., 1992; Wolfe and Coburn, 1970) 878 

f
 (Bervoets et al., 2003; Cocchio et al., 1995; Fraysse et al., 2002; Hagstroem, 2002; Ke et al., 2000; Srivastava et al., 1990, 1994; Williams, 879 

1960) 880 

g
 (Jeffree et al., 2018; Malek et al., 2004a; Williams, 1960) 881 

* Effects of antibiotics and food preparation  882 



Table 2. Summary of the biotic factors whose effects have been studied in relation to the 883 

bioaccumulation of radiocesium in aquatic organisms 884 

Variable Pathway Kingdom Number of publications 

Bioaccumulation capacity 

Food 

Sediment 

Water 

Maternal 

Animalia 

Bacteria 

Plantae 

31
a
 

Food Food Animalia 5
b
 

Life-stage 

Food 

Water 

Sediment 

Animalia 5
c
 

Size 
Oral administration 

Water 
Animalia 6

d
 

Species 

Food 

Oral administration 

Sediment 

Water 

Animalia 

Bacteria 

Chromista 

Plantae 

49
e
 

Sex Water 

Animalia 

Protozoa 

Plantae 

2
f
 

a
 (Adam et al., 2001; Ancellin et al., 1965 ; Cranmore and Harrison, 1975; Evans, 1984; Fisher, 1985; Fowler et al., 1971; Fowler and 885 

Teyssié, 1997; Garnier-Laplace et al., 1997; Gil Corisco and Carreiro, 1990; Guimarães, 1992; Güngör et al., 2001; Harrison, 1972; Harvey, 886 
1969b; Hewett and Jefferies, 1976; Ivanov, 1972; Jeffree et al., 2018, 2015, 2013, 2007, 2006a; Kalaycı et al., 2013; Kimura, 1984; Lacoue-887 
Labarthe et al., 2010; Malek et al., 2004; Milcent et al., 1996; Norfaizal, 2010; Onat and Topcuoǧlu, 1999; Twining et al., 1996; Varinlioglu 888 
et al., 2015; Warnau et al., 1999; Woodhead, 1970) 889 

b
 (Belivermiş et al., 2017; Bryan, 1961; Bryan and Ward, 1962; Pan and Wang, 2016; Zhao et al., 2001) 890 

c
 (Argiero et al., 1966; Bustamante et al., 2006; Kimura and Honda, 1977; Morgan et al., 1993; Suzuki et al., 1992) 891 

d
 (Güngör et al., 2001; Ke et al., 2000; Malek, 1999, 1998; Nolan and Dahlgaard, 1991; Ugedal et al., 1992)  892 

e
 (Adam and Garnier-Laplace, 2003 ; Amiard-Triquet, 1975; Ancellin and Vilquin, 1968; Avarguès et al., 1972, 1968; Baptist and Price, 893 

1962; Bonotto et al., 1981, 1978; Boroughs et al., 1957; Bryan, 1961; Bryan et al., 1966; Bryan, 1963; Bryan and Ward, 1962; Corcoran, 894 

1963; Forseth et al., 1998; Fowler et al., 2004; Fraizier and Vilquin, 1971; Genta-Jouve et al., 2012; Gutknecht, 1965; Harvey, 1969b; 895 
Harvey and Patrick, 1967; Heldal et al., 2001; Hewett and Jefferies, 1978; Hiyama and Shimizu, 1964; IAEA, 1975; Jefferies and Hewett, 896 

1971; Jeffree et al., 2010, 2006b; King, 1964; Lacoue-Labarthe et al., 2018 ; Lemée et al., 1970; Mathews et al., 2008; Metian et al., 2016, 897 
2005; Morgan, 1964; Pan and Wang, 2016; Polikarpov, 1964, 1961; Pouil et al., 2018b ; Styron et al., 1976; Suzuki et al., 1992, 1978; 898 
Topcuoǧlu, 2001; Ueda et al., 1978; Vogel and Fisher, 2010; Wang et al., 2016, 2000, Warnau et al., 2002, 1996) 899 

f
 (Bryan, 1965; Williams, 1960) 900 

*Effects of cell density and sex 901 


