

Seasonal variation of giant gourami (Osphronemus goramy) spawning activity and egg production in aquaculture ponds

Jacques Slembrouck, Otong Zenal Arifin, Simon Pouil, Jojo Subagja, Akhmad Yani, Asependi Asependi, Anang Hari Kristanto, Marc Legendre

▶ To cite this version:

Jacques Slembrouck, Otong Zenal Arifin, Simon Pouil, Jojo Subagja, Akhmad Yani, et al.. Seasonal variation of giant gourami (Osphronemus goramy) spawning activity and egg production in aquaculture ponds. Aquaculture, 2020, 527, pp.735450. 10.1016/j.aquaculture.2020.735450. hal-03163603

HAL Id: hal-03163603 https://hal.inrae.fr/hal-03163603

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	Seasonal variation of giant gourami (Osphronemus goramy) spawning activity and eg				
2		production in aquaculture ponds			
3					
4	Jacques Slembrouck ^{a*} , Otor	ng Zenal Arifin ^b , Simon Pouil ^a , Jojo Subagja ^b , Akhmad Yani ^c ,			
5	Asependi Asependi ^c , Anang	g Hari Kristanto ^b , Marc Legendre ^a			
6					
7	^a ISEM, Université de	e Montpellier, CNRS, IRD, EPHE, Montpellier, France			
8	^b RIFAFE, Bogor, Inc	lonesia			
9	^c BPPSIGN, Tasikma	laya, Indonesia			
10					
11	* Corresponding author:	Jacques Slembrouck			
12		E-mail: jacques.slembrouck@ird.fr			
13		Phone: +62 (0) 21 71 79 46 51			
14					
15	Jacques Slembrouck https	://orcid.org/0000-0001-7102-1528			
16	Simon Pouil https://orcid.o	rg/0000-0003-1531-0362			
17	Marc Legendre https://orc	id.org/0000-0003-3122-2098			

18 Abstract

19 The giant gourami Osphronemus goramy Lacépède, 1801, spontaneously spawns in captivity, 20 making nests for egg deposition when suitable nest supports and nesting material are made 21 available in rearing facilities. The seasonal variation in reproductive performance of the giant 22 gourami was characterized during a 20-month experiment in two compartmentalized ponds 23 (about 550 m² each) at a fry production center in West Java, Indonesia. A total of 208 giant 24 gourami broodfish were introduced in the two experimental ponds, with a sex-ratio of one male 25 to three females in each of the 52 spawning compartments delimited by vertical nets. Nesting 26 supports in each spawning compartment were examined every two days for the presence of 27 eggs resulting from natural reproduction. Three performance indicators were quantified from 28 the collected nests: spawning frequency (monthly number of spawns per female), effective 29 fecundity (number of eggs per spawn) and egg quality (estimated from the proportion of clear 30 living eggs in each spawn). The seasonality of giant gourami reproduction was analyzed as a 31 function of seasonal variation in rainfall, rearing water temperature and day length. Based on a 32 total of 413 collected spawns, the multiple linear regression models did not show any significant 33 relationship between giant gourami spawning frequency and the three environmental variables 34 studied. In contrast, the number of eggs per spawn was highly and positively related to rainfall 35 $(p \le 0.0001)$, moderately and negatively related to water temperature $(p \le 0.001)$, and weakly and negatively related to day length (p < 0.01). The proportion of clear eggs was a positively 36 37 related to day length (p < 0.01). Overall, this study represents one of the first comprehensive 38 datasets on the reproductive phenology of giant gourami, and as such will be helpful in 39 formulating broodfish management strategies for the species.

40

41 Keywords: Reproduction control; Breeding cycle; Natural spawning; Freshwater aquaculture;
42 Indonesia

43 **1. Introduction**

44 Native to Southeast Asia, notably from Indonesia, the Malay Peninsula, Thailand and the Mekong basin, the giant gourami Osphronemus goramy Lacépède, 1801, has been introduced 45 46 to several other countries for aquaculture purposes (Welcomme, 1988). This fish is omnivorous, 47 with a strong vegetarian tendency, and shows relative robustness and adaptability to 48 unfavorable environmental conditions (aerial respiration), which make it a very attractive 49 candidate for low-input aquaculture (Caruso et al., 2019). In Indonesia, the giant gourami is 50 one of the main freshwater commodities of economic importance owing to its high price and 51 local demand (Rimmer et al., 2013). Since 2000, giant gourami aquaculture production has 52 grown by a factor of 10 in Indonesia, the main country farming this species (145,000 tons in 53 2017; FAO, 2019). The Indonesian national production is ensured by approximately 100,000 54 small-scale fish farmers mainly located on Java Island (79%; BPS, 2013). Although the giant 55 gourami has been reared for decades and has now reached a significant production level, there 56 are still important gaps in our knowledge on several aspects of its biology.

57 The production of giant gourami fry relies on the natural spawning of captive broodfish held in 58 ponds, but the commercial-scale propagation of the species still needs to be standardized 59 (Amornsakun et al., 2014a; Arifin et al., 2019; Prakoso et al., 2019). The overall recruitment of 60 this multiple spawning species (i.e. number of fry produced per broodfish and per spawn) in 61 the breeding ponds remains generally low, resulting from variable spawning frequency or 62 success, and variable egg number and quality (Azrita, 2015). Therefore, ensuring a regular and 63 sufficient supply of fry through reliable production methods remains a major challenge for the 64 expansion of gourami aquaculture (Amornsakun et al., 2014a, b; Slembrouck et al., 2019). 65 Among the various biotic and abiotic factors influencing the reproductive performance of 66 broodfish, the effects of pond management strategies, sex-ratio and duration of egg production 67 periods were specifically investigated in a recent study (Arifin et al., 2020). Nevertheless, the

68 seasonality of reproduction has also been mentioned as an important limitation to a regular 69 supply of giant gourami fry (e.g. Arfah et al., 2006; Kristanto et al., 2019; Wijayanti et al., 70 2009). In some instances, this seasonality has prompted studies to test hormonal treatments that induce oocyte maturation and ovulation of giant gourami broodfish (Arfah et al., 2006). 71 72 Nevertheless, to our knowledge, an accurate description of the seasonal variation in 73 reproductive performance of captive giant gourami broodfish is still lacking in the scientific 74 literature. Such information would help to rationalize and optimize hatchery operations, as in 75 many intensively farmed finfish species (Migaud et al., 2013). Because there are considerable 76 interspecific variations in the patterns of reproductive seasonality (Wootton and Smith, 2014; 77 Paugy et al. 2017), such investigation would also be useful to further document the influence 78 of the environment on the reproductive phenology of freshwater tropical fishes for which, with 79 the exception of some families (mostly cichlids and clariids), availability of accurate datasets 80 remains limited.

81 The objective of the present study was to assess seasonal fluctuations in the reproduction of 82 giant gourami (spawning frequency, number of eggs in a spawn and egg quality), based on 83 nearly two years of follow-up in ponds at the Tasikmalaya Center for the Development of Giant 84 Gourami Culture (BPPSIGN), the largest giant gourami fry production center in the West Java Province, Indonesia. The seasonality of giant gourami reproduction was analyzed in function 85 86 of seasonal variation in rainfall, rearing water temperature and day length, three environmental 87 parameters considered as major cues for the reproductive phenology of most tropical fishes 88 (Lowe-McConnell, 1979; Legendre and Jalabert, 1988; Paugy et al., 2017).

89 2. Materials and Methods

90 **2.1. Experimental facilities and pond water quality**

91 This study was carried out at the BPPSIGN Tasikmalaya Center (7°19'37.992"N, 92 108°6'101.155"E; altitude 489 m). The experiment was performed over a period of 20 months 93 from May 2016 to December 2017. Experimental structures were two earthen-bottom ponds of 94 527 and 563 m² in surface area with vertical concrete banks and an average water depth of 0.6 m. The two ponds were divided into spawning compartments of about 20 m² each (52 95 96 compartments in total), delimited with nets embedded in the sediment and held vertically on 97 bamboo poles. Ponds were supplied from a conduit carrying spring water from the Galunggung 98 Mountain located less than 10 km from the BPPSIGN Center.

99 Before starting the experiment, the spawning ponds were dried, cleaned, rid of all other species 100 and limed before being refilled. Pond water pH, dissolved oxygen, conductivity, and turbidity 101 were measured at quarterly intervals between 07:00 and 08:00 AM with direct measurements using a multi-parameter probe (HI 9829 Hanna). Water concentration in ammonia (NH₃), nitrite 102 103 (NO_2) and nitrate (NO_3) was measured at the same time using spectrophotometry analysis 104 (Hanna HI83399). The average and range of variation of these parameters are provided in 105 Table 1 and indicate that the pond water quality remained stable during the experiment and 106 within appropriate standards for tropical freshwater fish (Colt, 2006).

107

108 **2.2 Fish maintenance and assessment of reproductive performance**

109 The mature broodfish (n = 208) used in this study were descendants of giant gourami belonging 110 to the "Galunggung" strain (Arifin et al., 2018). The females were 3-5 years old and weighed 111 \sim 3 kg, whereas males were 5-7 years old and weighed \sim 4 kg. Identification of fish sex and 112 assessment of their sexual maturity were done on the basis of morphological criteria, milt 113 emission following gentle abdominal massage or examination of oocytes obtained by intraovarian biopsies as described by Slembrouck et al. (2019). One sexually mature male and
three sexually mature females were placed in each of the 52 spawning compartments of the two
experimental ponds.

117 The giant gourami is a nest builder; therefore, nest supports and nesting material were provided 118 in each compartment for spawning. Nest supports were baskets made of braided bamboo strips 119 (total length: 25 cm, including an opening of about 30 cm in diameter), attached to bamboo 120 stakes, and placed about 15 cm below the water surface with the opening positioned slightly 121 downward (angle of about 30°). Plant fibers from palm trees (Arenga sp.) were piled on a 122 bamboo table positioned at the surface of the water in the middle of every compartment, so that 123 the broodfish could easily grasp the fibers with their mouths and build their nests (see Arifin et 124 al., 2020, for picture of the nest supports).

125 Every two days, all nest supports were examined and closed nests containing eggs were 126 collected, transferred to the hatchery, then immersed in a water tank to release the eggs by 127 carefully opening the palm fiber material as detailed in Arifin et al. (2020). All the eggs from 128 each nest were manually counted, separating live (transparent/clear) eggs from dead 129 (opaque/white) eggs. During the experiment, reproductive performance was assessed by 130 monitoring spawning frequency (the number of spawns per female per month), the number of 131 eggs in a spawn (i.e., numbers of eggs in a nest) and egg quality (estimated by the proportion 132 of clear eggs in each spawn). In some instances, the eggs were newly hatched at the moment of 133 nest collection; however, this had no or little incidence on the evaluation of progeny number 134 and spawn quality because white (dead) eggs take more than one day to break up and newly 135 hatched larvae, unable to swim, remain inside the nest.

During the egg production periods, the broodfish were fed with leaves of elephant ear plants
(*Alocasia macrorrhizos*) and commercial floating pellets (32% proteins, 5% lipids) distributed
at a daily feeding rate of 2% and 1% of fish biomass, respectively. The egg production periods

139 lasted for 3 or 7 months depending on spawning compartments, two durations that lead to 140 equivalent results in terms of egg production over the long term (Arifin et al., 2020). Between 141 two successive egg production periods, the broodfish were reconditioned for 1 month 142 (separating males and females in different ponds and using reverse daily feeding rates of 143 elephant ear leaves and floating pellets). The broodfish fish were examined every three months 144 and weighed with a digital scale for adjustment of feeding rations.

145

146 **2.3. Monitoring of environmental conditions**

147 Throughout the 20-month experiment, fluctuations of three environmental parameters were 148 considered: rainfall, pond water temperature and day length. Pond water temperature was 149 monitored continuously using a data logger (Onset HOBO) placed in the center of the ponds at 150 20 cm depth. A rain gauge was installed in the immediate vicinity of the ponds to record the 151 daily rainfall and the information related to day length was collected from Time and Date 152 (2019).

153

154 **2.4. Data treatment and statistical analysis**

Prior to statistical analysis, fish reproduction and environmental data were compiled and, for each pond and each variable, monthly means of the recorded values were calculated. Statistical analyses were then performed on these average monthly values.

The non-significance of the variable "pond", initially included in general linear models (GLM) with quantitative environmental variables was confirmed. Then, stepwise multiple linear regression models (MLR) were used to test for relationships between female spawning frequency, egg numbers or clear egg proportion in spawns and environmental variables (rainfall, water temperature and day length). The assumptions underlying the MLR were checked by visual observation of the model residuals and by statistical analysis (GoldfeldQuandt test, Rainbow test and Shapiro-Wilk test). Variance inflation factors (VIF) were used to estimate collinearity of the explanatory variables, with VIF values close to 1 indicating the absence of strong multi-collinearity (Hair et al., 2010). Statistical analyses were performed using R freeware version 3.5.2 using the packages "car", "Imtest" and "stats" (R Development Core Team, 2019).

169

170 **3. Results**

At the BPPSIGN Tasikmalaya Center, day length varied annually between 11 h 41 min and 12 h 33 min, and pond water temperature ranged from 22.6°C to 32.7°C. The cumulative monthly rainfall ranged from 5 to 528 mm during the experiment, from May 2016 to December 2017. Overall, the monthly mean of the pond water temperature showed limited variation (between 25.4°C and 28.0°C), whereas the monthly rainfall was much lower during the second than during the first half of the experimental period (from 331 to 528 mm vs. 0.5 to 288 mm, respectively; Figure 1A).

178 During this 20-month period, as determined from the 413 spawns collected in the two 179 experimental ponds (206 and 207 spawns per pond), the reproduction of giant gourami occurred 180 continuously. Because no effect of the duration of egg production periods (successive periods 181 of 3 or 7 months) was detected for any variable (spawning frequency, egg number and quality), 182 the data were pooled for analyses. The mean monthly spawning frequency of giant gourami varied between 0.07 and 0.26 spawn female⁻¹ month⁻¹ without a clear seasonal rhythm in the 183 184 intensity of spawning activity (Figure 1B). The mean monthly number of eggs per spawn collected from the nests varied between 2020 and 5920 eggs spawn⁻¹ and peaked (more than 185 186 4000 eggs spawn⁻¹) during the period between July and November 2016 (Figure 1B). The mean 187 monthly proportion of clear (live) eggs in the spawns varied between 79 and 96% (Figure 1B).

188 The MLR did not reveal any significant relationship between giant gourami spawning 189 frequency and any of the environmental variables (Table 2). Observed monthly variation in 190 spawning frequency had no clear seasonal rhythm; it was not related to simultaneous variations 191 in rainfall, water temperature or day length. In contrast, variation in the number of eggs 192 produced per spawn was clearly related to variation in environmental variables (multiple R^2 = 193 0.71; p < 0.0001). Egg number was highly and positively related to rainfall (t-value = 7.777, p 194 < 0.0001), moderately and negatively related to water temperature (t-value = -4.387, p = 0.001), 195 and weaklier and negatively related to day length (t-value = -2.983, p < 0.01) (Table 2). For 196 egg quality, as evaluated through the proportion of clear eggs, there was a positive but relatively 197 weak relationship with day length (t-value = 3.126, p < 0.01), but not with rainfall or water 198 temperature.

199

200 **4. Discussion**

201 In the present study, giant gourami clearly reproduced all year round in the ponds at the 202 BPPSIGN Tasikmalaya Center. No clear seasonal rhythm was revealed in the spawning 203 frequency of broodfish, which was not related to concurrent variations in rainfall, water 204 temperature or day length. Although the spawning activity of the giant gourami is often 205 considered as continuous all year round (Bhimachar et al., 1944), seasonal variations in the 206 spawning frequency have been noted, depending on the region or authors (Arfah et al., 2006; 207 Bhimachar et al., 1944; Wijayanti et al., 2009), but relationships between these variations and 208 environmental variables were not documented. In a recent study performed in the West Java 209 Province, targeted questionnaires and interviews also highlighted that fish farmers from Bogor 210 districts report seasonal variation in the reproductive intensity of their giant gourami broodfish, 211 with rain events (possibly together with associated variation in water temperature) leading to a 212 reduction in spawning frequency (Kristanto et al., 2019). In the same study, farmers from the 213 Tasikmalaya district observed no clear seasonality in giant gourami spawning activity, which 214 the present investigation confirms. In contrast to spawning frequency, the number of eggs 215 collected from the nests were strongly related to environmental factors; it was positively related 216 to rainfall, intermediately and negatively related to water temperature and weakly, and 217 negatively related to day length. To our knowledge, such temporal variation in egg number and 218 their strong relationship with rainfall and water temperature has not been reported previously 219 in the giant gourami. However, seasonal variation in fecundity is known to occur in several 220 tropical species reproducing all year round. In the African catfish Heterobranchus longifilis, 221 maximal egg production is observed during the rainy season, whereas in the lagoon tilapias 222 Sarotherodon melanotheron and Tilapia guineensis, fecundity is highest during the hot, dry 223 season (Legendre, 1992). In Oreochromis niloticus, the peak of fecundity corresponds with 224 maximum resource availability and flooding imminence (Duponchelle et al., 2000). Tropical 225 fish species are generally very plastic and can allocate resources to reproduction according to 226 rainfall regimes (Chellappa et al., 2009). In the present study, the giant gourami egg quality 227 was positively, although weakly, related to day length. Prayogo et al. (2018) claimed that 228 experimentally controlled long photoperiods (18L-6D) have a positive effect on the expression 229 levels of vitellogenin genes. It is well known that fish vitellogenins are critical for providing an 230 adequate nutritional reserve for embryonic development and are also involved in other complex 231 functions that influence egg quality (Reading et al., 2018). Nevertheless, further studies are 232 needed to better understand the mechanisms underlying the positive influence of day length 233 observed here on giant gourami egg quality.

As a whole, the present study provides the first detailed long-term investigation on the seasonal variation of the spawning performance of captive giant gourami. We found no clear spawning rhythms in this species in the environmental conditions of the Tasikmalaya area. On the same location and using identical rearing procedures, it was observed that a same female spawns in 238 average every 5 months and that spawning frequency was strongly influenced by broodfish sex-239 ratio (Arifin et al, 2020). In Tasikmalaya ponds, fluctuations of environmental parameters were 240 limited (particularly temperature) and, as a matter of fact, remained during the whole study in 241 a range favorable to giant gourami gametogenesis and spawning. Nevertheless, in other areas, 242 several studies (op. cit.) reported the occurrence of seasonal variation in giant gourami 243 reproduction, probably as a consequence of a locally less stable environment. Further 244 investigation conducted in such area with the same methodology as in the present study would 245 provide complementary view on the environmental control of giant gourami reproductive 246 phenology. By contrast to spawning frequency, the number of eggs per spawn showed greater 247 sensitivity to environmental changes and was strongly related to variations of environmental 248 variables (particularly rainfall and, to a lesser extent, water temperature and day length). Egg 249 quality was also affected by day length. These findings should be taken into consideration when establishing egg production plans in commercial hatcheries. For instance, egg production 250 251 periods of 6-7 months separated by resting/reconditioning periods of 1 month are 252 recommended in the management of giant gourami spawning ponds (Arifin et al., 2020). As far 253 as possible, it is therefore recommended for optimizing egg production to synchronize the 254 broodfish resting/reconditioning periods with the periods of the year during which rainfall and 255 broodfish fecundity are at their lowest.

256

257 Acknowledgements

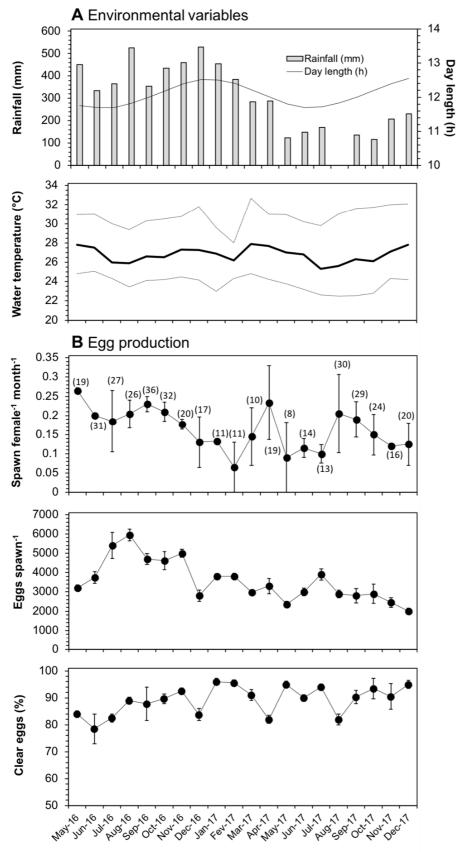
The authors acknowledge Maman Sudirman and the technicians of the West Java Center for the Development of Giant Gourami Culture (BPPSIGN) for sharing their experience and for their assistance throughout this study. This is a publication ISEM no. XXX-XXX.

References

263	Arfah, H., Maftucha, L., Carman, O., 2006. Induced spawning of giant gourami Osphronemus		
264	gouramy Lac. by Ovaprim. Jurnal Akuakultur Indonesia 5, 103-112.		
265	https://doi.org/10.19027/jai.5.103-112.		
266	Amornsakun, T., Kullai, S., Hassan, A., 2014a. Some aspects in early life stage of giant		
267	gourami, Osphronemus goramy (Lacepède) larvae. Songklanakarin J. Sci. Technol. 36,		
268	493-498.		
269	Amornsakun, T., Kullai, S., Hassan, A., 2014b. Feeding behavior of giant gourami,		
270	Osphronemus gouramy (Lacepède) larvae. Songklanakarin J. Sci. Technol. 36, 261-264.		
271	Arifin, O.Z., Imron, I., Asependi, A., Hendri, A., Muslim, N., Yani, A., 2018. Intraspecific		
272	hybridization between two populations of Galunggung giant gourami (Osphronemus		
273	goramy, Lacepède, 1801) (in Indonesian). J. Ris. Akuakultur 12, 315-323.		
274	Arifin, O.Z., Prakoso, V.A., Kristanto, A.H., Pouil, S., Slembrouck, J., 2019. Effect of		
275	stocking density on growth, food intake and survival of giant gourami (Osphronemus		
276	goramy, Lacepède) larvae. Aquaculture 509, 159-166.		
277	https://doi.org/10.1016/j.aquaculture.2019.05.010.		
278	Arifin, O.Z., Slembrouck, J., Subagja, J., Pouil, S., Yani, A., Asependi, A., Kristanto, A.H.,		
279	Legendre, M., 2020. New insights into giant gourami (Osphronemus goramy)		
280	reproductive biology and egg production control. Aquaculture 519, 734-743.		
281	Azrita, H.S., 2015. Morphological character among five strains of giant gourami,		
282	Osphronemus goramy Lacepède, 1801 (Actinopterygii: Perciformes: Osphronemidae)		
283	using a truss morphometric system. Int. J. Fish Aquat. Stud. 2, 344-350.		

- Bhimachar, B.S., David, A., Muniappa, B., 1944. Observations on the acclimatization, nesting
 habits and early development of *Osphronemus gorami* (Lacepède). Proc. Natl. Acad.
 Sci. India Sect. B Biol. Sci. 20, 88-101.
- BPS., 2013. Number of non-ornamental fish farms by region and fish species (in Indonesian).
 https://st2013.bps.go.id/dev2/index.php/site/tabel?tid=57&wid=320000000 (accessed
 13 September 2019).
- 290 Caruso D., Arifin, Z.O., Subagja, J., Slembrouck, J., New, M., 2019. *Osphronemus goramy*.
- 291 Cultured Aquatic Species Information Programme. In: FAO Fisheries and Aquaculture

292 Department [online]. Rome.


- 293 Chellappa, S., Bueno, R.M.X., Chellappa, T., Chellappa, N.T., Val, V.M.F.A., 2009.
- Reproductive seasonality of the fish fauna and limnoecology of semi-arid Brazilian
 reservoirs. Limnologica 39, 325-329. https://doi.org/10.1016/j.limno.2009.06.003.
- 296 Colt, J., 2006. Water quality requirements for reuse systems. Aquacult. Eng. 34, 143-156.
- 297 Duponchelle, F., Cecchi, P., Corbin, D., Nunez, J., Legendre, M., 2000. Variations in
- 298 fecundity and egg size of female Nile tilapia, *Oreochromis niloticus*, populations from
- 299 man-made lakes of Côte d'Ivoire. Env. Biol. Fish 57, 155-170.
- 300 https://doi.org/10.1023/A:1007575624937.
- 301 FAO, 2019. FishStatJ: software for fishery statistical time series. FAO, Roma.
- Hair, J.F. Jr, Black, W.C., Babin, B.J., Anderson, R.E., 2010. Multivariate data analysis, 7th
 edition. Prentice Hall, Upper Saddle River, NJ.
- 304 Kristanto, A.H., Slembrouck, J., Subagja, J., Pouil, S., Arifin, O.Z., Prakoso, V.A., Legendre
- 305 M., 2019. Egg and fry production of giant gourami (*Osphronemus goramy*): Rearing
- 306 practices and recommendations for future research. J. World Aquacult. Soc. 51, 119-
- 307 138. https://doi.org/10.1111/jwas.12647.

- 308 Legendre, M., 1992. Aquaculture potentialities of cichlids (Sarotherodon melanotheron,
- 309 *Tilapia guineensis*) and clariids (*Heterobranchus longifilis*) autochthonous from
- 310 lagoons of Ivory Coast (in French). ORSTOM, Marseille, France. 83 p. + annex.
- 311 Legendre, M., Jalabert, B., 1988. Physiology of reproduction, in: Lévêque, C., Bruton, M.N.,
- 312 Ssentongo, G.W. (Eds.), Biology and ecology of African freshwater fishes (in French).
- 313 ORSTOM, Marseille, France, pp 153-175.
- Lowe-McConnell, R.H., 1979. Ecological aspects of seasonality in fishes of tropical waters.
 Symp. Zool. Soc. Lond. 44, 219-241.
- 316 Migaud, H., Bell, G., Cabrita, E., McAndrew, B., Davie, A., Bobe, J., Herráez, M.P., Carrillo,
- 317 M., 2013. Gamete quality and broodstock management in temperate fish. Rev.
- 318 Aquacult. 5, 194-223. https://doi.org/10.1111/raq.12025.
- 319 Paugy, D., Lévêque, C., Duponchelle, F., 2017. Reproduction, in: Paugy, D., Lévêque, C.,
- 320 Otero, O. (Eds.), The inland water fishes of Africa: Diversity, ecology and human use.
- 321 IRD Editions/Mrac, Marseille, France, pp. 189-217.
- 322 Prakoso, V.A., Pouil, S., Prabowo, M.N.I., Sundari, S., Arifin, O.Z., Subagja, J., Affandi, R.,
- 323 Kristanto, A.H., Slembrouck, J., 2019. Effects of temperature on the zootechnical
- 324 performances and physiology of giant gourami (*Osphronemus goramy*) larvae.
- 325 Aquaculture 510, 160-168. https://doi.org/10.1016/j.aquaculture.2019.05.047.
- 326 Prayogo, N.A., Siregar, A.S., Sukardi, P., Nugrayani, D., Ekasanti, A., Riviani, Bessho, Y.,
- 327 2018. Identification and expression of vitellogenin gene in the gouramy (*Osphronemous*
- 328 *gouramy*) under photoperiod manipulation. E3S Web Conf. 47, 1-10.
- 329 https://doi.org/10.1051/e3sconf/20184702001.
- 330 R Development Core Team, 2019. R: A language and environment for statistical computing.
- 331 R Foundation for Statistical Computing, Vienna.

332	Reading, B.J., Andersen, L.K., Ryu, Y.W., Mushirobira, Y., Todo, T., Hiramatsu, N., 2018.		
333	Oogenesis and egg quality in finfish: Yolk formation and other factors influencing		
334	female fertility. Fishes 3, 45. https://doi.org/10.3390/fishes3040045.		
335	Rimmer, M.A., Sugama, K., Rakhmawati, D., Rofiq, R., Habgood, R.H., 2013. A review and		
336	SWOT analysis of aquaculture development in Indonesia. Rev. Aquac. 5, 255-279.		
337	https://doi.org/10.1111/raq.12017.		
338	Slembrouck, J., Arifin, O.Z., Pouil, S., Subagja, J., Yani, A., Kristanto, A.H., Legendre, M.,		
339	2019. Gender identification in farmed giant gourami (Osphronemus goramy): A		
340	methodology for better broodstock management. Aquaculture 498, 388-395.		
341	https://doi.org/10.1016/j.aquaculture.2018.08.056.		
342	Time and Date, 2019. Weather in Tasikmalaya, Java, Indonesia.		
343	https://www.timeanddate.com/worldclock/indonesia/tasikmalaya (accessed 12		
344	September 2019).		
345	Welcome, R.L., 1988. International introductions of Inland aquatic species. FAO Fish. Tech.		
346	Pap. 294, Roma, Italy, 318 p.		
347	Wijayanti, G.E., Soeminto, Simanjuntak, B.I., 2009. Reproductive hormone profiles and		
348	gametogenegis in female giant gourami (Osphronemus gouramy) (in Indonesian). Jurnal		
349	Akuakultur Indonesia 8, 77-89.		
350	Wootton, R.J., Smith, C., 2014. Reproductive Biology of Teleost Fishes. Wiley Blackwell,		
351	Chichester, West Sussex, UK. 496 p.		
352			

353 **Captions to figure**

355 Figure 1. Mean monthly variation in environmental variables (A) and egg production 356 characteristics of giant gourami in ponds (B) at the BPPSIGN Tasikmalaya Center. A1: rainfall 357 and day length, A_2 : pond water temperature (mean \pm extreme instantaneous temperature), B_1 : 358 female spawning frequency, B₂: number of eggs in a spawn and B₃: egg quality according to 359 the proportion of clear eggs. In graphs B₁, B₂ and B₃, vertical bars indicate the range between 360 the means recorded in the two compartmentalized ponds. Due to the occurrence of periodic 361 reconditioning periods, the number of females actually involved in reproduction each month 362 was not constant and varied between 72 and 156 individuals (127 females per month on 363 average). The total number of spawns collected per month is given in parentheses (graph B₁).

364 Figure 1

365 Table 1. Summary of water quality parameters measured in the ponds during the 20-month366 experiment.

Parameters ¹	Mean ± SD (Range)		
DO (mg L ⁻¹)	5.2 ± 1.3 (3.8-7.3)		
pH	7.6 ± 0.2 (7.5-7.9)		
Conductivity (μ S cm ⁻¹)	180 ± 8 (171-188)		
Turbidity (NTU)	9 ± 3 (9-13)		
$NH_3 (mg L^{-1})$	<0.0065		
$NO_2^{-}(mg L^{-1})$	$0.010 \pm 0.005 \ (0.006 - 0.020)$		
NO_{3}^{-} (mg L ⁻¹)	$0.41 \pm 0.12 \ (0.26 - 0.59)$		

367 ¹DO: dissolved oxygen

369 Table 2. Results of multiple linear regression models assessing the effects of environmental
370 variables (i.e. daily rainfall, water temperature and day length) on the reproductive performance
371 (i.e. female spawning frequency, egg number and egg quality) of captive giant gourami
372 broodfish.

A - Spawning frequency								
Multiple R ² : 0.08	Estimate	SD	t-value	p-value				
Intercept	0.7356	0.6163	1.194	0.241				
Daily rainfall	0.0032	0.0027	1.183	0.245				
Water temperature	0.0093	0.0180	0.520	0.606				
Day length	-0.0707	0.0459	-1.541	0.132				
B - Number of eggs per spawn								
Multiple R ² : 0.71	Estimate	SD	t-value	p-value				
Intercept	34172.81	5151.12	6.634	< 0.0001				
Daily rainfall	180.07	23.15	7.777	< 0.0001				
Water temperature	-678.61	154.70	-4.387	< 0.001				
Day length	-1172.40	393.08	-2.983	< 0.01				
0	C - Proportion of	clear eggs						
Multiple R ² : 0.24	Estimate	SD	t-value	p-value				
Intercept	14.356	42.061	0.341	0.735				
Daily rainfall	-0.217	0.189	-1.148	0.260				
Water temperature	-1.678	1.263	-1.328	0.194				
Day length	10.034	3.210	3.126	< 0.01				