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Highlights 8 

• A new combined mixing model for concentration-discharge relationships. 9 

• A formula combining dynamics of the discharge, with dynamics of the ion concentrations.  10 

• An unusual approach of hydrograph separation. 11 

• How coupling a time dynamic hydrological model with static � − � relations.  12 

 13 

Abstract 14 

Streamflow is the major factor influencing the evolution of solute concentration in river water and 15 

different modelling approaches exist to characterize the dependency of ion concentration to 16 

discharge: the simplest are based on measurable quantities (stream discharge and stream ion 17 

concentration) but do not allow for an explicit, physical, flow-path interpretation; the more complex 18 

are based on mixing assumptions with different end-members sources, but require the knowledge of 19 

(unmeasurable) flow components. We present here a new concentration-discharge model, which 20 

associates a classical concentration-discharge relationship with a classical two-component mixing 21 

equation. The originality of our approach lies in the fact that we do not proceed in the usual way to 22 

perform the hydrograph separation: we use an a priori assumption of the baseflow-quickflow 23 

separation to infer the source concentration values, contrarily to the usual (inverse) approach. The 24 

other notable originality is that all the parameters of this model depend on the temporal variation of 25 

the stream discharge. This combined model was tested on high-frequency ion concentration series 26 

from the ORACLE-Orgeval observatory (France). This work demonstrates that high temporal 27 

resolution data allows for explicit testing of model performance across different hydrologic scales. 28 

Results show that the combined mixing model allows a better estimation of streamflow solute 29 

concentration series for most ions tested at inter-annual scale, except for nitrate (which do not 30 

exhibit a clear � − � relationship). Our results also confirm the advantage of coupling a time 31 

dynamic hydrological model with static � − � relations for each of the flow components. 32 
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1. Introduction 36 

Concentration-discharge (� − �) relationships are interesting for a variety of purposes and potential 37 

users and because they employ simple approaches to describe complex hydro-chemical interactions, 38 

hydrologists and geochemists have been using and exploring them for over 70 years (see Chanat et 39 

al., 2002; Durum, 1953; Hem, 1948; Johnson et al., 1969; Kirchner, 2019; Moatar et al., 2017). The 40 

established relations can be purely empirical, used to infill lacking concentration data and compute 41 

fluxes over long time periods, or to characterize the regime export of chemical components in a 42 

number of catchments and empirically derive euristic patterns on a regional and global scale (e.g. 43 

Bieroza et al., 2018; Meybeck and Moatar, 2012; Moatar et al., 2017). In some cases, the relations 44 

have been derived from a more complex model, describing a physical representation of water 45 

circulation and composition, from various mixing sources, with the objective to derive relevant 46 

information on internal functionning (Johnson et al., 1969). 47 

To model � − � relationships, two classical approaches exist: 48 

• The temporal � − � patterns relationship (i.e. fit parameters of � vs �, Musolff et al. (2017)) 49 

try to explain the processes controlling the mobilization and delivery of chemical elements 50 

into streams (i.e. export regimes): dilution, flow-enhancement, or no-variation at all (see e.g. 51 

Salmon et al., 2001), as well as biogeochemical transformations in river networks (Minaudo 52 

et al., 2019). These models are, first and foremost, based on observations of concentrations 53 

relatively stable over time, as electro-conductivity (EC) or chlorides (Durum, 1953; Hem, 54 

1948). Often, the main objective is to identify the groundwater contribution to streamflow 55 

(Durum, 1953). These models are based on measurable quantities (discharge and in-stream 56 

chemical concentrations) (Durum, 1953; Hem, 1948; Tunqui Neira et al., 2020) (see example, 57 

Eq. (1) and Eq. (2) in Table 1). 58 

• The more complex n-component models have in addition the aim of quantifying the sources 59 

of the chemical concentrations measured in the river (Barthold et al., 2011). Introduced at 60 

the end of the 1960s (Hubert et al., 1969; Johnson et al., 1969; Pinder and Jones, 1969), they 61 

are based on the chemical contribution of hydrological sources (i.e. groundwater, runoff, 62 

precipitation), assuming each one can be characterized by a constant concentration and 63 

assuming the existence of a methodology to identify the relative contribution of each source 64 

to streamflow. This mixing approach is based on the mass balance equation (see its simplest 65 
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expression, Eq. (3), Table 1). Hall (1970) gives an exhaustive presentation of these models, 66 

their different expressions and assumptions. The mixing model was applied at different time 67 

scale from flood and event scale (Hubert et al., 1969; Pinder and Jones, 1969) to annual scale 68 

(Johnson et al., 1969) and for different purposes such as hydrograph separation (Pinder and 69 

Jones, 1969), understanding of flowpaths in catchment (Johnson et al., 1969), or the 70 

dynamics of the components of storm flow (Hubert et al., 1969).  71 

Table 1: Classical � − � relationships used in literature  72 

Approach Equation 
Number of 

parameters 
Formula Eq. n° 

Temporal � − � 

patterns 

Power-law 2 � = ��� Eq. (1) 

Two-sided power-law 

equation 
3 ��� = � + 
Q�� 

Eq. (2) 

Mixing end-

member sources 

 

mixing model (with at 

least two sources 

which can be 

simplified with base 

flow and quick flow) 

at least 2 � =  ��
��
� +  �


�

�  Eq. (3) 

With      C : total streamflow ion concentration at time t (mgL-1) 

Q : total streamflow (m3s-1) at time t 

a, b, n   : parameters 

Qb : base flow (m3s-1) 

Qq : quick flow (m3s-1
, Qq = Q - Qb) 

Cb : ion concentration of the base flow (mgL-1) 

Cq : ion concentration of the quick flow (mgL-1) 

 73 

Despite their simplicity, the power-law models can yield excellent fits for some ions, explaining up to 74 

90 % of the variance of the concentrations. For this reason, they are still widely used today (Barco et 75 

al., 2008; Godsey et al., 2009; Moatar and Meybeck, 2007; Probst and Bazerbachi, 1986). However, 76 

several authors have criticized the power-law models, underlining that they lump different hydro-77 

chemical processes and dynamics, and do not allow for an explicit physical flow-path interpretation 78 

(Moatar et al., 2017; Rose et al., 2018). Godsey et al. (2009) compared different � − � models, and 79 

concluded that it is difficult to find simple generalizable models that accurately represent the typical 80 

shape of the � − � relationship, which are internally consistent, and make plausible assumptions 81 

about catchment behavior.  82 

The variability of � − � relationships could be due to a large number of processes, varying in space, 83 

time and with the characteristics of the catchment. The exact mechanisms leading to � − � relations 84 

remain an open question. Both natural and anthropogenic factors affect the biogeochemical 85 

response of streams, and, while the majority of solutes show identifiable behaviors in individual 86 

catchments, only a minority of behaviors can be generalized (Botter et al., 2019). Some recent 87 
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studies attempt to differentiate two distinct behaviors: chemodynamic and chemostasic export. 88 

Chemostasic export is defined as relatively small variations in concentrations compared to discharge 89 

(Musolff et al., 2015; Thompson et al., 2011). Chemostasis could be associated with constant rate of 90 

chemical weathering (Godsey et al., 2009), “a legacy storage” of anthropogenic nutriment which 91 

buffer the variability in concentrations (Basu et al., 2010; Clow and Mast, 2010), or with a significant 92 

hydraulic residence time compared to weathering kinetics (Ameli et al., 2017; Maher, 2011). 93 

Chemostasic export processes could represent the long-term trend of basin chemistry and can 94 

therefore be identified as an average of concentrations (Musolff et al., 2015). Chemodynamic 95 

patterns are characterized as high variations in concentrations compared to discharge caused by 96 

flushing, enrichment behavior, or dilution behavior (Musolff et al., 2015). It can be controlled: (i) by 97 

activation of solute sources heterogeneously distributed in space; (ii) by threshold-driven transport 98 

of constituents or (iii) high reactivity of constituents (Jones et al., 2017; Musolff et al., 2015; Vaughan 99 

et al., 2017; Zhang et al., 2016). We could also note that Zhang et al. (2016) emphasized that 100 

temporal patterns � − � models (including the 
 parameter of Eq. (1)) may vary over time or with 101 

season, and a single b coefficient for the entire period of record is over-simplification and potentially 102 

misleading. The other difficulty of a generalization is also the difference in behavior and source of the 103 

different ions. Beyond the patterns, changes can occur whether due to weathering, meteorological 104 

or anthropic processes, affecting one ion more than another (Knapp et al., 2020; Musolff et al., 2017; 105 

Rose et al., 2018; Zhi et al., 2019). 106 

To deal with the non-linearity of the � − � relationship, some authors have proposed to increase the 107 

number of hydrological components (e.g. Evans and Davies, 1998; Probst, 1985), make specific 108 

catchment calibration (Godsey et al., 2009), consider flow classes, e.g. low and high flows (Meybeck 109 

and Moatar, 2012; Moatar et al., 2017) or integrate significant time steps (Kirchner, 2019). To gain 110 

insight into the linkages between chemical and hydrologic processes that yield the observed 111 

concentration-discharge relationship, research has often focused on only one of the modeling 112 

solutions (i.e. on either power-law model or mixing model). 113 

The temporal patterns (dilution, constant, enrichment) or the mass balance (end-members mixing) 114 

approaches are operational and widely used to describe � − � relationships. There are also other 115 

compound methods in the literature, based on solute production models (Ibarra et al., 2016; Maher, 116 

2011; Maher and Chamberlain, 2014) or on end-members models (Bao et al., 2017; Bouchez et al., 117 

2017; Zhi et al., 2019). However, none offers a parsimonious and generalized approach as proposed 118 

in this paper. To date, no simple conceptual model still allows combining a dynamic of 119 

concentrations with a dynamic of water flow. The new model proposed in this paper is trying to solve 120 

this problem, by combining the two approaches (i.e., power-law and mixing model). The originality of 121 
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our approach is that we do not proceed by assuming an end-member concentration value to perform 122 

the baseflow-quickflow separation, but we use instead the inverse approach, an a priori assumption 123 

of the baseflow-quickflow using a hydrological hydrograph separation method to infer the source 124 

concentration values. All the parameters of the model proposed depend on the temporal variation of 125 

the stream discharge. Using the high frequency series of concentrations and discharges, observed 126 

during two years on the ORACLE-Orgeval observatory (France), we have tested the performances of 127 

this new model at different hydrological time scales and on a full range of flow and concentration. 128 

The first aim of this paper is to present the model and its validation on one long high-frequency time-129 

series. The second aim is to discuss of its performances with regards to the classical models. Note 130 

that this paper is methodological: it does not focus on the different hydro-chemical processes 131 

involved in the composition of the stream solutes or on others watershed functioning considerations.  132 

2. The combined mixing model  133 

The combined model tested here associates a � − � relationship with a two-component mixing 134 

equation: 135 

• As � − � relationship, we use the two-sided affine power scaling relationship (2S-APS), 136 

which we recently proposed to fit the � − � relationship, as a natural extension of the well-137 

known and widely-used power law relationship (see Tunqui Neira et al., 2020); 138 

• As mixing equation, we use the simplest of the existing schemes, i.e. a two-component 139 

equation distinguishing “base flow” and “quick flow” (e.g Pinder and Jones, 1969). 140 

To combine the 2S-APS relationship with the two-component mixing equation (see Eq. (2) and Eq. 141 

(3), Table 1), we propose to write the concentrations of each of components in Eq. (3) (i.e. �� and �
) 142 

as a function of total discharge, using the same transformation: 143 

�� =  ��� + 
���� �
�

 

�
 =  ��
 +  

��� �
�

 

The total discharge (and not the discharge of each of the two hydraulic components) was used to 144 

seek simplification, not increasing too much the number of parameters. We will discuss later the 145 

value of this simplification. Then, the mixing equation becomes: 146 

� =  ��� + 
���� �
� ��

�  + ��
 +  

��� �
� �


�  

 

Eq. (4) 
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The “combining” procedure merges the two most used forms of equations of the hydro-chemical 147 

literature (i.e. Eq. (2) and Eq. (3)). The advantage of this new model is to improve the mixing 148 

approach by introducing dynamic concentrations for the sources.Depending on the values taken by 149 

parameters � and 
 in Eq. (4), three schematic situations can be identified, briefly described below 150 

and illustrated by Figure 1.  151 

2.1. Case 1: chemostatic components (bb = bq = 0) 152 

In this case, �� and �
 are constant and independent of river discharge. Thus, � is only influenced by 153 

the discharge components dynamics (�� and �
) (see Case 1 in Figure 1). The case 1 represents the 154 

chemostatic export characterizing a catchment controlled by large legacy stores (see Musolff et al., 155 

2015). It corresponds to the assumption of the classical mixing equation approach, where the �� and 156 

�
 values can assume for example the average of concentrations, measured respectively during the 157 

dry and wet seasons (i.e. Saraiva Okello et al., 2018; Stewart et al., 2007; Zhang et al., 2013).  158 

2.2. Case 2: single 2S-APS relationship (ab =aq = a and bb = bq = b) 159 

This case reduces to �� = �
 (Case 2 in Figure 1) and to the simple � − � relationship: 160 

� = ��+
����
�

 161 

The observed concentration is only a function of discharge. 162 

2.3. Case 3: General case (a and b are different)  163 

This is the general case of the transformed mixing equation (Eq. (4)). Unlike the classical mixing 164 

equation (chemostatic components), the �� and �
 values are not constant but vary individually as a 165 

function of stream flow (see Case 3 in Figure 1). The general case allows accounting for the temporal 166 

variation of the chemical components. It allows connecting concentration with total discharge and 167 

the hydrograph separation components (�� and �
, i.e. with �
 = � − �� , see Table 1). 168 

 169 
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 170 

Figure 1: The three hypothetical � − � scenarios due to the values taken by parameters � and 
 of 171 

Eq. (4): case 1, case 2 and case 3. The green hatching represents the probable ���� yields by our 172 

model in the � − � space. 173 

3. Material and methods 174 

3.1. Study site and datasets 175 

The combined model (Eq. (4)) was applied to the high-frequency hydro-chemical dataset measured 176 

at the Oracle-Orgeval Observatory (Tallec et al., 2015) by the River Lab (Floury et al., 2017). The 177 

Oracle-Orgeval Observatory is a small catchment located 70 km east of Paris, France. It is subjected 178 

to a temperate and oceanic climate, with annual average temperature of 11 ± 1 °C and a mean 179 

annual rainfall of 674 ± 31 mm (Tallec et al., 2013). The average measured streamflow at the 180 

Avenelles outlet (sub-catchment of 46 km2 and location of the River Lab on the Oracle-Orgeval 181 

Observatory) is about 0.2 m3/s (1962 - 2017), with minimum flows in summer (< 0.1 m3/s) and floods 182 

up to 10 m3/s in winter and spring. With respect to geology, the catchment is underlain entirely by 183 

limestone rocks, with two aquifers: the shallower aquifer of the Brie limestone and the deeper 184 

Champigny limestone aquifer (Mouhri et al., 2013). Land use is mostly agricultural with few villages, 185 

and with intensive farming practices, mainly based on mineral nitrogen fertilization (Garnier et al., 186 

2016). Nearly 60% of the surface of the catchment is drained with tile drains. 187 

Among all ions measured every 30 minutes by the River Lab laboratory, we used 3 ions (see Table 2) 188 

whose behavior exhibit notable differences in the Orgeval catchment: sulfate, nitrate and chloride. 189 

Chloride mainly come from rain inputs during the wet season and to a smaller extent from fertilizers 190 

(Floury et al., 2018). Sulfate comes from the chemical weathering of gypsum, which makes it highly 191 

variable, depending on the season and the leaching of concerned localized underground layers 192 

(Floury et al., 2018; Mouchel et al., 2016). Nitrate mostly come from agricultural activities and 193 

fertilizers inputs, with specific seasonal leaching rates (Garnier et al., 2016). Finally, we also used 194 

electro-conductivity reflecting the presence of all ions in stream water (EC, see Table 2). The main 195 

data set (flow rates and chemical concentrations) covers the period between June 2015 and March 196 

2018 (Table 2), i.e. 20,700 measurements over 33 months. To perform a split-sample test, according 197 
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to Klemeš (1986), we divided the dataset into two periods. Table 2 presents a first period used for 198 

the model calibration and a second period for the model validation.  199 

Table 2: High-frequency measurements of chemical concentrations (average, minimum, maximum 200 

values and difference between quantiles 90 and 10 divided by the mean (CV)) from the River Lab at 201 

the Avenelles outlet, Oracle-Orgeval Observatory (June 2015 to July 2017 for calibration period and 202 

August 2017 to March 2018 for validation period). 203 

Solute Unit 
Calibration period (June 2015 to July 2017) 

Mean Min Max CV 

Sodium mg.L-1 13 2 17 0.12 

Sulfate mgS.L-1 19 2 32 0.19 

Chloride mg.L-1 30 4 40 0.15 

EC µS.cm-1 704 267 1015 0.11 

  Validation period (August 2017 to March 2018) 

Sodium mg.L-1 13 3 17 0.24 

Sulfate mgS.L-1 18 3 26 0.27 

Chloride mg.L-1 29 4 40 0.29 

EC µS.cm-1 576 171 813 0.25 

 204 

3.2. Hydrograph separation 205 

To apply the combined mixing model (Eq. (4)), we have to separate the hydrograph in order to 206 

compute the values of base flow (��) and quick flow (�
). To perform the baseflow-quickflow 207 

separation (because we do not know the source concentration values) we use an a priori assumption 208 

of the baseflow-quickflow separation to infer the source concentration values (and not the usual 209 

inverse approach).  210 

In this study, we use the Recursive Digital Filter (RDF) hydrograph separation approach. The RDF 211 

approach, adapted in the late 1970s from the signal-processing theory, is widely applied for 212 

hydrograph separation. Indeed, RDF methods are computationally efficient, easily automated and 213 

applied to long continuous streamflow records (Chapman, 1991; Eckhardt, 2005). Among all the RDF-214 

methods existing in literature (Brodie et al., 2007 p.62), we used the well-known Lyne-Hollick method 215 

(LH-RDF method) (Lyne and Hollick, 1979; Nathan and McMahon, 1990). Base flow is considered here 216 

as a low-frequency signal, and surface runoff as a high-frequency signal. By filtering out the high-217 

frequency signal, the low-frequency signal (i.e. base flow) can be revealed (Longobardi and Loon, 218 

2018; Nathan and McMahon, 1990). 219 

The LH-RDF method is defined as follows: 220 

������� = min ��� ����� +  � !"
# $������ +  ����%, ����'     Eq. (5) 
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where ��, �, �� and ( are respectively, the baseflow, the total flow, the LH-RDF filter parameter and 221 

the time. 222 

Iterative application of the filter allows smoothing data and nullifying phase distortion. We have used 223 

the forward-backward-forward application proposed by Nathan and McMahon (1990). The LH-RDF 224 

method is characterized by one parameter (��) which defines the speed of convergence of the filter. 225 

It is a common practice (e.g. Longobardi et al., 2016; Zhang et al., 2017) to adapt the filter parameter 226 

(��) to the hydrological recession time constant of the catchment (τ). Otherwise, either �� or �
 227 

would have an unwanted behavior on a seasonal time scale (too slow convergence of �� or too fast 228 

decrease of �
 during flood events). Another important reason for this adaptation, is that the default 229 

value of �� (0.925, proposed by Nathan and McMahon, 1990) applied in small catchments controlled 230 

by the regional scale factors such as slope and shape, has shown poor performance when computing 231 

�� (Ladson et al., 2013; Zhang et al., 2017). 232 

During seasons without significant recharge, stream flow may recess exponentially and follows the 233 

form: 234 

Q���) �� =  ����. exp� ./0 � = ����. 1 
Eq. (6) 

 

where 1 is the so-called recession constant of the catchment. 235 

The recession constant 1 can be obtained using the master recession curve (MRC) approach (Nathan 236 

and McMahon, 1990). A linear regression (i.e. plot Q ��� vs Q � see Figure 2A) allows establishing the 237 

recession constant K, which also represents the �� parameter of LH-RDF method (Eq. (5)). This 238 

analysis was applied on daily flow data of the Avenelles station from January 1, 2000 to September, 239 

2018 as follows: the daily stream flow data of several seasons were overlapped according to the day 240 

of the year, starting from the beginning of June, and assuming that the stream flow decreases under 241 

a continuous recession process for the period June-September. The 1 value obtained about 0.90 has 242 

been calculated for a daily discharge (see Figure 2A). However, for high frequency discharge 243 

measurements (i.e. time step of 30 min or 0.5 hours), this value must be transformed at the 244 

appropriate time step as proposed by Eckhardt (2008) :  245 

12.34 =  $15%2.3 #67  = 0.99  

With the LH-RDF method (i.e., Eq. (5)) and the calibrated value of 1 (i.e. 0.99 for the Avenelles 246 

catchment), we computed the values of the base flow (��) and the quick flow (�
) (see example of 247 

the results Figure 2B). 248 
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A B 

  

Figure 2: A. Scatter plot of daily discharge Q ��� against Q � during recession periods, Avenelles 249 

station. Dashed black line: line through origin with slope 15 = 0.90. B. Example of hydrograph 250 

separation obtained with the LH-RDF method and the constant recession value 12.34 (i.e., 0.99), 251 

Avenelles station, with blue line as the baseflow and black line the total flow. 252 

We should not fail to mention here that the baseflow-quickflow methods have been widely criticized: 253 

see e.g. Beven (1991) for a vibrant indictment against them and the arguments raised by Pelletier 254 

and Andréassian (2019) in the discussion of their paper, for a careful use of them. We do not wish to 255 

enter this debate. We will not claim to have identified a precise physical pathway and in this paper, 256 

we will thus limit our ambition to the identification of what Pelletier and Andréassian (2020) have 257 

named the “not-too-delayed” and the “delayed-enough” flow components (baseflow and quickflow). 258 

3.3. Calibration of :, ; <=> ? parameters 259 

The combined mixing model (Eq. (4)) was applied with the baseflow calculated by the LH-RDF 260 

method. For each ion and the EC, we used the parameter @ previously determined by Tunqui Neira et 261 

al. (2020) on the same data set, but without flow separation. 262 

The extremely large number of values in this high-frequency dataset may cause problems for a 263 

robust identification of (�, 
) parameters, over the full range of discharges using a simple linear 264 

regression. Indeed, the largest discharge values are in small numbers (in our dataset only 1% of 265 

discharge values are in the range [2.6 m3s-1, 12.2 m3s-1], and they correspond to the lowest 266 

concentrations). To address this question, we successively tested a large number of (�,
) pairs from 267 

Eq. (4) (@ remaining fixed). Each pair yields a series of simulated concentrations (����) that can be 268 

compared with the observed concentrations (�A��).  269 

Among the many numerical criteria that could be used, we chose the bounded version of the Nash 270 

and Sutcliffe (1970) efficiency criterion BCDE (Mathevet et al., 2006), which is commonly used in 271 

hydrological modeling. BCDE can be computed on concentrations or on discharge-weighted 272 



11 

 

concentrations (which corresponds to the load). We chose the average of both, because we found 273 

that it allows more weight to be given to the lowest concentrations and thus to avoid the issue of 274 

under-representation of high-discharge/low-concentration measurement points. If other criteria 275 

exists to test the model performances, the BCDEFA�� has the advantage to privilege neither the load 276 

nor the concentration and integrates both in a single criterion. Table 3 presents the formula for these 277 

numerical criteria. We retained as optimal the pair of (�,
) that yielded the highest BCDEFA�� value 278 

(we explored in a systematic fashion the range [1–5] for � and [-1.2–1.2] for 
). 279 

Table 3: Numerical criteria used for optimization (Cobs – observed concentration, Csim – simulated 280 

concentration, Q – observed discharge). The Nash and Sutcliffe (1970) efficiency (NSE) criterion is 281 

well known and widely used in the field of hydrology. The rescaling proposed by Mathevet et al. 282 

(2006) transforms NSE into NSEB, which varies between -1 and 1 (its optimal value). The advantage 283 

of this rescaled version is to avoid the occurrence of large negative values (the original NSE criterion 284 

varies in the range [-∞, 1]). 285 

BCDFA�F = 1 − ∑ ��A��� − ����� �#�
∑ ��A��� − �A��IIIIII�#�

 Eq. (7) 

BCDEFA�F = BCDFA�F
2 − BCDFA�F

 Eq. (8) 

BCDKALM = 1 −  ∑ ����A��� − ������� �#�
∑ ����A��� − ��A��IIIIIIII�#�

 Eq. (9) 

BCDEKALM = BCDKALM
2 − BCDKALM

 Eq. (10) 

BCDEFA�� = 1
2 �BCDEFA�F + BCDEKALM� Eq. (11) 

 286 

For each ion and for EC, Table 4 presents the results obtained for the @, � and 
 parameters 287 

calibrated for the Avenelles sub-catchment and their corresponding optimal BCDEFA�� criterion. 288 

Although the parameters of the combined mixing model are shown here, we will not discuss them in 289 

this paper. Indeed, for now, without generalized studies covering several catchments it is not 290 

possible to interpret them physically. Note that for these reasons we have chosen to present Table 4 291 

in this section and not in the Results and discussion section. 292 

 293 
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Table 4: Values set for : in the combined model and (;?,??) and (;P,?P) parameters for each case 294 

and solute. Values obtained for optimal BCDEFA�� criterion. Note that case 1 corresponds to 295 

chemostatic components, case 2 to the single 2S-APS relationship and case 3 to general case of the 296 

combined model. BCDEFA�� is optimum in 1. 297 

Solute n Case ab bb aq bq QRSTUVW?

Sulfate 5 

1 1.9 0 1.3 0 0.46 

2 2.2 -0.55 2.2 -0.55 0.69 

3 2.3 -0.7 2 -0.4 0.73 

Nitrate 5 

1 1.8 0 1.6 0 0.39 

2 1.8 -0.1 1.8 -0.1 0.41 

3 2.3 -1.2 2.1 -0.3 0.45 

Chloride 3 

1 3.3 0 1.6 0 0.52 

2 3.7 -1 3.7 -1 0.83 

3 3.6 -0.7 3.3 -0.8 0.86 

EC 5 

1 3.8 0 3.1 0 0.61 

2 4.2 -0.7 4.2 -0.7 0.77 

3 4.2 -0.7 3.9 -0.5 0.83 

 298 

3.4. Performances of the model  299 

We evaluate the combined model performance in calibration and validation mode. Due to the 300 

temporal density of the dataset, we have tested the performances of the models in calibration mode 301 

on widely different discharge ranges: over the entire calibration period and for selected storm events 302 

(from June 2015 to July 2017, see Table 2, Chapter 3.1). In validation mode, the performances have 303 

only been assessed over the entire period (from August 2017 to March 2018, see Table 2, Chapter 304 

3.1). 305 

The 
X�Y and the standardized root mean square error (YZ[CD) allow assessing respectively 306 

accuracy and precision of the combined mixing model. Table 5 presents the formula for these 307 

numerical criteria. 308 

Table 5: Numerical criteria used for model performance comparison (Cobs – observed concentration, 309 

Csim – simulated concentration, ( – the time step, B – the number of observed concentration) 310 


X�Y �%�       = 100 ∗ ∑ ������ − �A��� ��
∑ ��A��� ��

 Eq. (13) 

YZ[CD �%�  = 100 ∗
^1B ∑ ��A��� − �FLK� �#�

 �A��
 

Eq. (14) 

 311 
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4. Results and discussion  312 

4.1. Performance of the combined model over the entire period  313 

Table 6 presents the evaluation of the combined mixing model, in calibration and validation mode 314 

over the entire period. Whatever the mode (calibration or validation) and whatever the solute 315 

species considered, the optimal YZ[CD and 
X�Y values are obtained for the general case (Case 3, 316 

see Table 6). The results also show that a single 2S-APS relationship (Case 2) explains better the 317 

variations of the stream water concentrations than a mass balance equation with constant 318 

concentration components (Case 1) (see YZ[CD and 
X�Y values from case 1 to case 2, Table 6).  319 

Table 6: Values obtained for the 
X�Y and the standardized RMSE (YZ[CD� for each case and solute, 320 

for an application of the combined model over the entire period. Note that case 1 corresponds to 321 

chemostatic components, case 2 to the single 2S-APS relationship and case 3 to general case of the 322 

combined model. 323 

Solute Case 
Calibration mode Validation mode    

ghiRS  
% 

?j;g  
% 

ghiRS 
% 

?j;g 
% 

   

Sulfate 
1 18.3 7.3 24.1 11.7    
2 11.5 3.8 14.8 -11.9    
3 11.3 0.4 10.0 -6.7    

Nitrate 
1 48.9 46.7 317 315    
2 31.8 30.4 267 266    
3 27.6 -11.2 144 119    

Chloride 
1 13.8 -4.5 20.0 -0.7    
2 6.3 -0.7 12.6 -3.3    
3 5.3 -0.3 12.1 -0.5    

EC 
1 10.3 1.5 16.8 7.9    
2 6.0 2.4 9.7 0.5    
3 5.2 -0.5 9.6 -2.7    

This means that - within the adopted modelling framework and in as much as the hydrograph 324 

separation can be considered as hydrologically relevant - the concentrations of the flow components 325 

cannot be considered constant across time (i.e., the behavior of the Avenelles catchment is non-326 

chemostatic). The stream water quality of the Avenelles sub-catchment appears strongly influenced 327 

by discharge processes. 328 

The most evident improvement of the case 3 model is observed for chloride and EC (see YZ[CD of 5 329 

% with a negative 
X�Y less than 0.5% in calibration mode, Table 6). Less importantly, sulfate 330 

YZ[CD is also much improved when variable concentrations are introduced in the quick and slow 331 

components (see YZ[CD around 10%, Case 3, in calibration and validation mode Table 6). In 332 

calibration mode, the sulfate 
X�Y is comparable to that obtained for chloride and EC (less than 0.5%, 333 

see Table 6).  334 
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According to Floury et al. (2018), chloride would come from the Brie aquifer with mainly external 335 

input from rainfall during the wet season. According to Mouchel et al. (2016), the variability of 336 

sulfate concentrations is related to the spatial heterogeneity of gypsum lenses and to the temporary 337 

variability of the water table heights. The spatial and temporal variability of sulfate and chloride 338 

concentrations is due to several chemo-dynamical processes, well modeled by the general case (case 339 

3). 340 

The lowest values of the general case are obtained for nitrate (see YZ[CD about 27.6% and a 
X�Y 341 

about -11.2%, case 3, in calibration mode, and both > 100 % in validation mode, Table 6). Nitrate 342 

present the largest seasonal variability, strongly related to farming practices (Garnier et al., 2016) 343 

and chemo-dynamic processes especially in the hyporheic-zone (Floury et al., 2018). This larger 344 

variability, either environmental or anthropogenic, cannot be simulated by our model, whatever the 345 

case.  346 

Figure 3 illustrates the simulations of the models, in the first period of calibration, in regard with the 347 

observed time series. As theoretically expected (see Figure 1), the simulated concentrations are more 348 

or less dispersed, from linear case 2 to very dispersed case 1 (see Figure 3). The case 3, as shown 349 

previously by the YZ[CD and the 
X�Y (see Table 6), is the one closest to the observed 350 

concentrations. For the nitrate, while cases 1 and 2 seem to overestimate the concentrations, case 3 351 

has the advantage, despite its poor performance, of covering all the nitrate concentration values. 352 

A significant feature, common to almost all ions (except nitrate and sulfate) and cases of the model, 353 

is the lower �
 concentration, compared to �� (see black lines vs pink lines, Figure 3). For the nitrate 354 

ion, �
 concentration becomes a more important contributor in the three cases, until becoming 355 

preponderant in the case 3 (see nitrate, pink line Figure 3). For sulfate, �
 is the main contributor to 356 

the stream concentration for discharges greater than ~ 0.5 m3.s-1 (see sulfate, pink lines Figure 3).  357 

This result confirm studies carried out at the Orgeval-ORACLE observatory (Billy et al., 2013; Floury et 358 

al., 2018; Garnier et al., 2016; Mouchel et al., 2016; Mouhri et al., 2013). Indeed, according to the 359 

results, the principal contributor to the stream concentration in the Avenelles catchment would be 360 

first groundwater (i.e. ��) for chloride and EC. During the wet season (i.e. for the discharge beyond 361 

0.5 m3.s-1) for the sulfate and whatever the season for nitrate, the principal contributor is the 362 

quickflow concentrations (i.e. �
). However, the combined mixing model does not seem to be able to 363 

consider the quickflow concentrations in a good way; i.e. integrating either the variations of the sub-364 

surface hydrological compartment or the variations of concentrations linked to this compartment.   365 
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 366 

Figure 3: Simulated concentration (����, in blue) obtained of each case of our combined method 367 

plotted in the � − � space for the three ions and EC in the calibration period. In addition, we have 368 

plotted the computed values for �� (black line) and �
 (pink line) for each case studied. Note that in 369 

case 2 the lines of �� and �
 overlap each other. Grey points represent the observed concentrations. 370 

4.2. Performances of the combined model for selected storm events 371 

We selected two representative flood events of short duration, at the end of fall (November 2015, 372 

low groundwater level, low soil moisture and no contribution of tile drains, see Figure 4A) and during 373 

winter (February 2016, high groundwater level, high soil moisture and tile drains contribution, see 374 

Figure 4B). A longer wet season flood event of March 2016, well covered during 15 days by the 375 
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concentration data set, is also added (see Figure 4C). Figure 4 presents observed data and the three 376 

cases of simulations with the combined mixing model as a function of time for the three events. For 377 

the three selected storm events, Table 7 presents the YZ[CD and 
X�Y values obtained in a 378 

calibration mode with the three cases of the combined model. 379 

At the event scale, except for nitrate during the dry season, we obtain the same results than with the 380 

entire period: the case 3 shows the optimal YZ[CD and 
X�Y values for all ions and EC (see YZ[CD 381 

and 
X�Y from case 1 to case 3, Table 7). The potential advantage of the general case of the 382 

combined mixing model (case 3) is to decouple rising and decreasing flow periods with changing 383 

�
/� and ��/� ratios (see hydrograph separation, Figure 4). The recursive filter is efficient in 384 

separating the base flow from the quick flow. It simulates a quick response of the quick flow at the 385 

beginning of flood periods, and a progressive increase of the base flow during the second part of 386 

flood periods. Accordingly, the two components model improves the simulation of complex 387 

concentration changes during flood events. 388 

We notice that the best results are obtained for the longest flood period: the performances of the 389 

case 3 are improved for the long event compared to short events (see YZ[CD and 
X�Y from short 390 

event to long event during wet period, Table 7). As shown in Figure 4C, because of the longer 391 

duration of the flood, the recursive filter simulates important variations of the �
/�� ratio during the 392 

event: during most of peak flow period, most of the discharge is due to the quick flow component, 393 

while the quick flow component turns back to zero after day 10. As expected from the wider range of 394 

�
/�� ratio, the model simulates more difference between concentrations during the rising part of 395 

the event than the descending part (Figure 4C).  396 

We also observe that during short events, the simulated concentrations are slightly shifted compared 397 

to the observed concentration (see example for EC, Figure 4). This comes from the limit of our 398 

hydrograph separation filter in a flood with a longer duration, the bias due to the time lag is less 399 

significant and a wider distribution of the �
/�� ratio, as simulated by the RDF method, is expected 400 

(see Figure 4). 401 

During the wet and dry hydrological seasons, almost all ions behavior (except for nitrates) and EC 402 

show a dilution pattern with water of lower concentration followed by a step of increasing 403 

concentration (see dotted black line �A��, Figure 4). A common pattern with three stages can be 404 

observed in most storm events.  405 

During the first stage we observed a slight increase in concentration during the initial increase in the 406 

discharge; then, in the second stage, which is generally short in time, the concentrations strongly 407 
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decrease while the discharges quickly increase. In the third stage, both concentrations increase again 408 

while discharges continue to decrease and once more reach a lower flow and higher concentration 409 

(see Figure 4). To discuss the performances obtained for each case of our combined model, we use 410 

the stages outlied above. 411 

The first stage would correspond to a pre-event pattern during which the concentrations come 412 

mostly from the groundwater pool (Evans and Davies, 1998; Rose et al., 2018). The following stages 413 

correspond to the emergence of soil waters and/or runoff mixing in varying proportions during the 414 

event (Evans and Davies, 1998; Rose et al., 2018) (see Figure 4). The contribution of these pools (and 415 

the dilution that accompanies it) persists for some time after the peak flow, but in increasingly 416 

weaker proportions compared with those of the groundwater. Note that in the dry season, for all 417 

ions and EC, the soft dilution stage (first stage) is interrupted by rapid and abrupt dilution (Figure 4). 418 

This last dilution would correspond to a larger proportion of rain water; it is indistinguishable during 419 

the wet season, because rain water is mixed with water from tile drains during this period of the year 420 

(Billy et al., 2013). 421 

In all storm events (dry and wet), for all ions (except nitrate) and EC, case 3 best simulates the third 422 

stage of the storm event (where the mixing of two end members is most evident, see Figure 4). In the 423 

second stage of the wet season storm events (Figure 4B and C), we can observe that for the chloride 424 

and sulfate ions and EC, the 3 cases have an adequate performance (although none manages to 425 

simulate the maximum dilution point, see Figure 4). In the dry season storm event (Figure 4A), the 426 

second stage of chloride and sulfate ions and EC is better simulated by case 2, followed nearby case 427 

3; case 1 has the lowest performance of the simulations in this stage. Finally in the first stage of each 428 

of the storm events for the chloride ion, sulfate ion and EC we note the same dynamics that occurred 429 

with the second stage for case 1 and 2: case 3 performs better �A�� during the 2 storm events of the 430 

wet season, and case 2 performs better in the storm event of the dry season (see Figure 4A). 431 

From this analysis we can deduce that in the dry season (Figure 4A), the first and second stages are 432 

almost completely dominated by the groundwater pool (both in terms of concentration and 433 

discharge), minimizing the other contributing pools (i.e. soil, runoff, represented by �
 and �
). For 434 

this reason case 2 (assuming total discharge � ≈ � groundwater) has the better performance in 435 

simulating the �A�� of chloride and sulfate ions in addition to EC. However, in the wet season events 436 

(Figure 4B and C), and although in the first and second stage the groundwater pool is still the main 437 

contributor, the contribution of the other pools (i.e. soil, runoff, represented by �
 and �
) are much 438 

more notorious. Therefore, case 3 has better performances for chloride and sulfate ions and EC. 439 
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In the case of nitrates, we must acknowledge that the combined mixing model fails to fit the 440 

observed data whatever the event (see nitrates, Figure 4). Unlike other ions, nitrates are more 441 

concentrated in soils and drain water than in groundwater or rainwater. According to Garnier et al. 442 

(2014), in the Avenelles sub-catchment, sub-root nitrate concentrations average 22 mgN.L-1, close to 443 

the average concentration observed in drains in the same area (26 mgN.L-1). Nitrate concentrations 444 

in the Brie aquifer are only around 13.2 mgN.L-1, whereas in rainfall they are about 0.75 mgN.L-1 445 

(Mouchel et al., 2016; Floury et al., 2018). For nitrate ions, a third component representing soil water 446 

would be needed as well as an appropriate parameterization of the seasonal nature of fertilizer 447 

applications. Several studies (Burns et al., 2019; Sebestyen et al., 2014) have demonstrated that for 448 

nitrate ion, more than two different concentration pools (i.e. groundwater, soil water, etc.) are 449 

involved in rising and declining limbs of hydrograph. 450 

Table 7: Values obtained for standardized RMSE (YZ[CD) and 
X�Y for each case and solute, for an 451 

application of the combined model on selected storm events. Note that case 1 corresponds to 452 

chemostatic components, case 2 to the single 2S-APS relationship and case 3 to general case of the 453 

combined model. 454 

Solute Case 
Short flood event,  

dry season �Figure 4 A� 
Short flood event, 

wet season �Figure 4 B� 
Long flood event, 

wet season �Figure 4 C�  
ghiRS 

% 
?j;g 

% 
ghiRS  

% 
?j;g 

% 
ghiRS 

% 
?j;g 

% 
Sulfate 

1 16.2 -19.0 16.9 22.0 32.3 37.7 
2 10.3 10.1 6.2 9.8 3.7 1.7 
3 7.9 -3.0 4.4 3.6 3.1 -0.5 

Nitrate 
1 13.1 10.1 37.9 45.6 58.8 64.4 
2 20.3 18.2 36.8 43.8 36.2 41.3 
3 21.2 16.5 34.4 9.4 40.2 -34.2 

Chloride 
1 28.4 -33.9 11.3 -8.9 16.3 13.8 
2 5.7 3.9 5.7 -7.1 7.0 -6.0 
3 6.4 -5.8 5.6 -6.2 4.9 1.3 

EC 
1 13.2 -15.0 8.7 8.6 16.3 16.9 
2 8.2 8.3 7.1 8.2 5.3 1.4 
3 4.2 -2.5 4.2 1.6 3.9 -1.1 

 455 
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 456 
Figure 4: For the three selected storm events (short flood events during the dry season (November 457 

2015) (A) and wet season (February 2016) (B) and long flood event (March 2016) (C)), as a function of 458 

time (days): the flow and the hydrograph separation; the comparison for solutes and EC of observed 459 

(black line) and simulated concentrations from the Case 1 (orange line), the Case 2 (violet line) and 460 

the Case 3 (green line) of the combined model. 461 
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5. Conclusions 462 

5.1. Synthesis 463 

The new concentration-discharge model presented in this paper associates a classical concentration-464 

discharge relationship with a classical two-component mixing equation. The originality of our 465 

approach lies in the fact that we do not proceed in the usual way by assuming a source concentration 466 

value to perform the baseflow-quickflow separation: we use the inverse approach, and use an a 467 

priori assumption of the baseflow-quickflow separation to infer the source concentration values. 468 

Our approach allows a better estimation of streamflow ionic concentration series for most ions at 469 

inter-annual scale, except for nitrate (which do not exhibit a clear � − � relationship), with improved 470 


X�Y and YZ[CD criteria. This shows the advantage of coupling a time dynamic hydrological model 471 

with static � − � relations for each of the flow components.  472 

5.2. Limits of our approach 473 

The first limit of our approach is apparent for the nitrate case: nitrate are known to be poorly 474 

described by concentration-discharge relationships, and our model does not allow improving much 475 

the issue. The two-member hydrograph separation tested here may be a limiting factor: for nitrate 476 

ions, the two components hydrograph separation (�~ and �
) seems to be inadequate, while for 477 

sulfate, chloride and EC, it seems sufficient. The base flow separation method used in this article 478 

carries naturally its share of uncertainties due to the arbitrary and speculative hypotheses used in its 479 

conception (Beven, 1991; Brutsaert, 2008; Cheng et al., 2016) . The "simple" separation into two 480 

components cannot explain the complexity of the behavior of the nitrate ions. Indeed, several 481 

studies (Miller et al., 2017; Probst, 1985) have shown that the introduction of a third component 482 

(which would come to represent the soil pool component) is a prerequisite to represent the behavior 483 

of nitrate. 484 

We also need to underline that we acknowledge that our approach remains conceptual, and we do 485 

not claim to have identified ‘physically’ the water masses that produce the quick and base flow. 486 

5.3. Further perspectives 487 

As the model does not simulate the decoupling of discharge and concentration patterns, due to a 488 

short time lag explained by hydraulic mechanisms; doing so, would be an interesting extension of this 489 

work. An isotope study would be helpful to this aim. 490 

Another priority would be to test the implementation of our model elsewhere, especially on high-491 

frequency water quality stations (Kirchner et al., 2004). Different types of chemical signatures, 492 

reflecting different types of hydrological and hydro-chemical functions underlying the transfer 493 



21 

 

processes, could be studied in detail, including different flow decomposition concepts and may be 494 

other � − � relations possibly including specific seasonal features. 495 

Another alternative would be to test this new methodology with other hydrograph separation 496 

methods than the RDF Lyne-Hollick to prove their validity (e.g. the methods developed by Eckhardt, 497 

2005; Pelletier and Andréassian, 2020). 498 

If high-frequency measurements become more and more available for science (Kirchner et al., 2004), 499 

their implementation at large scale still difficult and low frequencies measurements (i.e. daily, 500 

weekly) remain the rule (Moatar et al., 2017). Thus, it remains important to continue methodological 501 

development through modelling which allow us, with a limited number of measurements and a good 502 

representativeness, to assess the quality of rivers in large scale, in the framework of low frequency 503 

monitoring. Ultimately, further developments of the combined mixing model should go in this 504 

direction.  505 
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